R. Glowinski, Numerical methods for nonlinear variational problems, Scientific Computation, 2008.

J. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, 1969.

Y. Achdou, F. Hecht, and D. Pommier, A posteriori error estimates for parabolic variational inequalities, J. Sci. Comput, vol.37, issue.3, pp.336-366, 2008.

T. Gudi and P. Majumder, Convergence analysis of finite element method for a parabolic obstacle problem, J. Comput. Appl. Math, vol.357, pp.85-102, 2019.

P. Jaillet, D. Lamberton, and B. Lapeyre, Variational inequalities and the pricing of american options, ACTA APPL. MATH, vol.21, pp.263-289, 1990.
URL : https://hal.archives-ouvertes.fr/hal-01667008

P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial, 1998.

J. Rodrigues, The variational inequality approach to the one-phase Stefan problem, Acta Appl. Math, vol.8, issue.1, pp.1-35, 1987.

A. Lauser, C. Hager, R. Helmig, and B. Wohlmuth, A new approach for phase transitions in miscible multi-phase flow in porous media, Advances in Water Resources, vol.68, pp.957-966, 2011.

J. Steinbach, A variational inequality approach to free boundary problems with applications in mould filling, vol.136, 2012.

I. Ben-gharbia, J. Dabaghi, V. Martin, and M. Vohralík, A posteriori error estimates for a compositional two-phase flow with nonlinear complementarity constraints, Comput. Geosci
URL : https://hal.archives-ouvertes.fr/hal-01919067

S. J. Wright, Primal-dual interior-point methods, Society for Industrial and Applied Mathematics (SIAM), 1997.

C. Kanzow, An active set-type Newton method for constrained nonlinear systems, Complementarity: applications, algorithms and extensions, vol.50, pp.179-200, 1999.

T. De-luca, F. Facchinei, and C. Kanzow, A semismooth equation approach to the solution of nonlinear complementarity problems, Math. Programming, vol.75, pp.28-35, 1996.

M. Hintermüller, K. Ito, and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim, vol.13, issue.3, pp.865-888, 2002.

K. Ito and K. Kunisch, Semi-smooth Newton methods for variational inequalities of the first kind, ESAIM Math. Model. Numer. Anal, vol.37, issue.1, pp.41-62, 2003.

F. Facchinei and J. Pang, Finite-dimensional variational inequalities and complementarity problems, vol.I, 2003.

F. Facchinei and J. Pang, Finite-dimensional variational inequalities and complementarity problems, vol.II, 2003.

G. Stadler, Semismooth Newton and augmented Lagrangian methods for a simplified friction problem, SIAM J. Optim, vol.15, pp.39-62, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01371364

S. Zhang, Y. Yan, and R. Ran, Path-following and semismooth Newton methods for the variational inequality arising from two membranes problem, J. Inequal. Appl, vol.2019, issue.1

J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal, Numerical optimization, 2006.

M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics, 2000.

R. Verfürth, A posteriori error estimation techniques for finite element methods, Numerical Mathematics and Scientific Computation, 2013.

M. Ainsworth, J. T. Oden, and C. Lee, Local a posteriori error estimators for variational inequalities, Numer. Methods Partial Differential Equations, vol.9, issue.1, pp.23-33, 1993.

Z. Chen and R. H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems, Numer. Math, vol.84, issue.4, pp.527-548, 2000.

A. Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems, SIAM J. Numer. Anal, vol.39, issue.1, pp.146-167, 2001.

T. Gudi and K. , A posteriori error control of discontinuous Galerkin methods for elliptic obstacle problems, Math. Comp, vol.83, issue.286, pp.579-602, 2014.

M. Bürg and A. Schröder, A posteriori error control of hp-finite elements for variational inequalities of the first and second kind, Comput. Math. Appl, vol.70, issue.12, pp.2783-2802, 2015.

J. Dabaghi, V. Martin, and M. Vohralík, Adaptive inexact semismooth Newton methods for the contact problem between two membranes, HAL Preprint 01666845, 2020.

R. Verfürth, A posteriori error estimates for nonlinear problems: L r (0, T ; W 1,? (?))-error estimates for finite element discretizations of parabolic equations, Numer. Methods Partial Differential Equations, vol.14, issue.4, pp.487-518, 1998.

A. Bergam, C. Bernardi, and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations, Math. Comp, vol.74, issue.251, pp.1117-1138, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00020615

A. Ern, I. Smears, and M. Vohralík, Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems, SIAM J. Numer. Anal, vol.55, issue.6, pp.2811-2834, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01377086

A. Ern, I. Smears, and M. Vohralík, Equilibrated flux a posteriori error estimates in L 2 (H 1 )-norms for high-order discretizations of parabolic problems, IMA J. Numer. Anal, vol.39, issue.3, pp.1158-1179, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01489721

K. Moon, R. H. Nochetto, T. V. Petersdorff, and C. Zhang, A posteriori error analysis for parabolic variational inequalities, ESAIM Math. Model. Numer. Anal, vol.41, issue.3, pp.485-511, 2007.

H. Gimperlein and J. Stocek, Space-time adaptive finite elements for nonlocal parabolic variational inequalities, Comput. Methods Appl. Mech. Engrg, vol.352, pp.137-171, 2019.

F. B. Belgacem, C. Bernardi, A. Blouza, and M. Vohralík, A finite element discretization of the contact between two membranes, M2AN Math. Model. Numer. Anal, vol.43, issue.1, pp.33-52, 2008.

F. B. Belgacem, C. Bernardi, A. Blouza, and M. Vohralík, On the unilateral contact between membranes. Part 2: a posteriori analysis and numerical experiments, IMA J. Numer. Anal, vol.32, issue.3, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00461144

F. B. Belgacem, C. Bernardi, A. Blouza, and M. Vohralík, On the unilateral contact between membranes. Part 1: Finite element discretization and mixed reformulation, Math. Model. Nat. Phenom, vol.4, issue.1, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00461144

J. Dabaghi, A posteriori error estimates for variational inequalities: application to a two-phase flow in porous media, 2019.
URL : https://hal.archives-ouvertes.fr/tel-02151951

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, 2011.

M. Ulbrich, Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces, vol.11, 2011.

S. C. Eisenstat and H. F. Walker, Globally convergent inexact Newton methods, SIAM J. Optim, vol.4, issue.2, pp.393-422, 1994.

C. T. Kelley, Iterative methods for linear and nonlinear equations, vol.16, 1995.

P. Destuynder and B. Métivet, Explicit error bounds in a conforming finite element method, Math. Comp, vol.68, issue.228, pp.1379-1396, 1999.

D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements, Math. Comp, vol.77, issue.262, pp.651-672, 2008.

J. Pape?, U. Rüde, M. Vohralík, and B. Wohlmuth, Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach. Recovering mass balance in any situation, HAL Preprint 01662944, 2019.

A. Ern and M. Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput, vol.35, issue.4, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00681422

P. Raviart and J. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche, vol.606, pp.292-315, 1975.

Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput, vol.7, issue.3, pp.856-869, 1986.