A HIGH PRESSURE OXIDATION STUDY OF DI-n-PROPYL ETHER
Zeynep Serinyel, Maxence Lailliau, Guillaume Dayma, Philippe Dagaut

To cite this version:
Zeynep Serinyel, Maxence Lailliau, Guillaume Dayma, Philippe Dagaut. A HIGH PRESSURE OXIDATION STUDY OF DI-n-PROPYL ETHER. Mediterranean Combustion Symposium, Jun 2019, Tenerife, Spain. hal-02273272

HAL Id: hal-02273272
https://hal.archives-ouvertes.fr/hal-02273272
Submitted on 28 Aug 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A HIGH PRESSURE OXIDATION STUDY OF DI-n-PROPYL ETHER

Z. Serinyel,1,2 M. Lailliau1,2, G. Dayma1,2, and P. Dagaut2
zeynep.serinyel@cnrs-orleans.fr
1CoST, Université d’Orléans, rue de Chartres, 45100 Orléans
2CNRS-ICARE, 1C avenue de la Recherche Scientifique, 45071 Orléans cedex 1

Abstract
The oxidation of di-n-propyl-ether (DPE), was studied in a jet-stirred reactor. Fuel-lean, stoichiometric and fuel-rich mixtures (φ = 0.5–4) were oxidized at a constant fuel mole fraction of 1000 ppm, at temperatures ranging from 470 to 1160 K, at 10 atm, and constant residence time of 700 ms. The mole fraction profiles obtained through sonic probe sampling, were analyzed by gas chromatography and Fourier Transform Infrared spectrometry. As was the case in our previous studies on ethers (diethyl ether and di-n-butyl ether), the carbon neighboring the ether group was found to be the most favorable site for H-abstraction reactions and the chemistry of the corresponding fuel radical drives the overall reactivity. The fuel concentration profiles indicated strong low-temperature chemistry. A kinetic sub-mechanism is developed based on similar rules as the other two symmetric ethers investigated. The proposed mechanism shows good performances in representing the present experimental data, nevertheless, more data such as atmospheric pressure speciation will be needed in order to better interpret the kinetic behavior of DPE.

Introduction
Given the strict emission regulations for automotive sector and environmental concerns, there has recently been a growing need to find alternative feedstocks for the next generation biofuels. These include di-n-butyl ether (DBE, C₅H₁₀–O–C₄H₉), diethyl ether (DEE, C₂H₅–O–C₂H₅), and dimethyl ether (DME, CH₃–O–CH₃) among many other families of oxygenated molecules. DBE can be produced from lignocellulosic source, while DEE can be produced from bioethanol by dehydration and very recently, DBE and DEE received a lot of interest. They were studied in different laboratory set-ups, in terms of oxidation pyrolysis, ignition delays, laminar flame speeds and laminar flame structure.

Our team has recently studied DBE and DEE in jet-stirred reactor [1, 2]. An unusual oxidation behavior showing double-NTC region was observed with DBE, which was not the case with DEE under same conditions, the latter having shown conventional low-temperature reactivity. Di-n-propyl ether (DPE, C₃H₇–O–C₃H₇), on the other hand, is not considered a potential biofuel and has not been studied in combustion. However, in terms of carbon number, this symmetric ether is between DEE and DBE, it is therefore of fundamental interest to study its oxidation behavior. The structures of these ethers are shown in figure 1.

Figure 1. Structures of diethyl, di-n-propyl and di-n-butyl ethers
Oxidation of DPE, is therefore studied in the same experimental conditions as DEE and DBE, 10 atm, between 470 to 1160 K. A kinetic sub-model is developed for this fuel and compared to the present data only, given that this study is the first investigating di-n-propyl ether oxidation.

Experimental approach

Experiments were carried out in a fused silica jet-stirred reactor settled inside a stainless-steel pressure resistant jacket. An electrical oven enabled to perform experiments up to c.a. 1280K. The temperature within the reactor was continuously monitored by a Pt/Pt-Rh thermocouple located inside a thin wall fused silica tube to prevent catalytic reactions on the metallic wires. Initial fuel mole fraction was 1000 ppm for all experiments, pressure and residence time (τ) were held constant 10 atm and 0.7s. The reactive mixtures were highly diluted by nitrogen to avoid high heat release inside the reactor and experiments were performed at temperatures ranging from 450 to 1160 K similar to our previous studies [1, 2]. The liquid fuel was atomized by a nitrogen flow and vaporized through a heated chamber. Reactants were brought separately to the reactor to avoid premature reactions and then injected by 4 injectors providing stirring. Flow rates of the diluent and reactants were controlled by mass flowmeters. A low-pressure sonic probe was used to freeze the reactions and take samples of the reacting mixtures.

Online analyses were performed after sending the samples via a heated line to a Fourier transform infrared (FTIR) spectrometer for the quantification of H2O, CO, CO2, and CH2O. Samples were also stored at ca. 40 mbar in Pyrex bulbs for further analyses using gas chromatography (GC). Two gas chromatographs with a flame ionization detector (FID) were used: one equipped with a DB624 column to quantify oxygenated compounds and the other one with a CP-Al2O3/KCl column to quantify hydrocarbons. Identification of the products was done by GC/MS on a Shimadzu GC2010 Plus, with electron impact (70 eV) as the ionization mode. Hydrogen profiles were measured using a GC-TCD equipped with a CP-CarboPLOT P7 column. The species quantified in this study include di-n-propyl-ether (DPE), H2, H2O, CO, CO2, C2H4, CH4, C3H6, C3H8, formaldehyde, propanal, acetaldehyde, and propanoic acid. Some other minor oxygenated species were also identified, such as 2-ethyl-4-methyl-1,3-dioxolane, 2-(propoxymethyl)oxirane, and traces of propyl formate and ethyl formate. The cyclic ethers cited are proper to DPE low-temperature chemistry, they are identified, however not directly calibrated. The carbon balance was checked for each sample and was found to be typically within ±10–15%.

Kinetic modeling

As the study of DPE is in line with our previous studies on diethyl ether (DEE) and di-n-butyl ether (DBE), a sub-mechanism was developed in a similar way to these of DEE and DBE and integrated into the mechanism as provided in [2]. In the present DPE sub-mechanism, rate constants of the main reactions were adopted from the literature, as follows:

- Reactions of hydrogen abstraction from fuel by OH radicals are taken from Zhou et al. [3] for the alpha C–H site. For the beta C–H site, the rate constant is evaluated by evaluating a fit to the theoretical calculations performed by [4-6] for the beta C–H in n-butanol. For the gamma C–H site, the rate constant is also assigned by fitting to the calculations of [4-6] and the measurements of Droege and Tully [7] for the delta C–H bond in n-butanol, as this one is the furthest away from the alcoholic carbon.
- Reactions of hydrogen abstraction from fuel by H atoms are taken from the theoretical study of Ogura et al. [8] for the alpha site. For the beta and gamma C–H bonds, rate constants are adopted from Tsang [9].
- H-abstraction rate constants by HO₂ and CH₃ radicals are adopted from the theoretical studies of Mendes et al. [10] and Xu et al. [11], respectively.
- Rate constants adopted from Goldsmith et al. [12] for R+O₂ ⇌ RO₂ reactions, both for 1ˢᵗ and 2ⁿᵈ addition.
- Rate constants adopted from Villano et al. [13, 14] for RO₂ ⇌ QOOH, QOOH ⇌ cyclic ether + OH.
- Beta-scission reactions of fuel radicals and those of QOOH radicals are adopted from the theoretical calculations of Villano et al. [14], Sakai et al. [15], and from our previous calculations on DBE [1].
- Other reactions related to low-temperature chemistry are taken analogous to our previous DBE study [1].
- Unimolecular decomposition reactions of DPE were taken from the study of Yasunaga et al. [16] in analogy with DEE. These reactions have no importance under present experimental conditions.

Thermochemistry of the fuel, fuel radical as well as all related low-temperature species were calculated using Thergas [17] which uses group additivity methods as proposed by Benson [18]. Simulations were carried out with the Chemkin II package, the Perfectly Stirred Reactor (PSR) code [19] was used to perform simulations for the JSR. Results are shown in the following figures.

Results and discussion

Fuel conversion and fuel mole fractions for all experiments are presented in Figure 1.

![Figure 1](image-url)

Figure 1. DPE conversion (left) and mole fraction profiles (right) for all mixtures.

According to this, DPE shows a strongly pronounced low-temperature reactivity, followed by an NTC region. For example, the NTC region for the φ = 1 and 2 mixtures, begin around 530 K and arrive to a plateau around 600 K. Then within a temperature window of ~ 60 K, no further fuel conversion is observed, and past 660 K reactivity decreases again. This behavior resembles what was previously observed in DBE oxidation as double-NTC [1]. For the φ =
0.5 mixture, it would not be adequate to reach this conclusion as the single experimental point (600 K) that could prove this behavior is within experimental uncertainty. On the other hand, the $\varphi = 4$ mixture does not show this behavior, also the temperature zone between the end of NTC and start of high-temperature reactivity is wider for this mixture, and approaches zero between 660–780 K.

The kinetic model can predict the NTC behavior except for the “2nd NTC” region, although a small difference in the slope can be observed for the lean mixture. These kinetic uncertainties are due to the rate constants adopted in the low-temperature oxidation mechanism. Often, these rate constants are more adequate for alkane oxidation and analogies have to be made in developing mechanisms for oxygenated compounds. The effect of some of these rate constants will be illustrated in the coming sections.

In the following figures (2–5), experimental results are presented along with simulations, a representative 15% uncertainty bar is added to the fuel profile in order to give an idea. General tendency is well predicted by the model, some discrepancies exist due to the chosen rate constants in low-temperature oxidation. From Fig 1 already, one can speculate that the experimental global reactivity differences are under-estimated by the model going to higher equivalence ratios. Rich mixtures are experimentally more reactive than model predictions.

![Figure 2. Mole fraction profiles as a function of reactor temperature ($\varphi = 0.5$)](image)

The most important low-temperature products were observed to be formaldehyde, propanal, acetaldehyde and propanoic acid. Formaldehyde being a typical marker of low-
temperature reactivity of many fuels, the typical intermediate in the case of DPE is propanal. Similarly, butanal and acetaldehyde were observed in large quantities in DBE and DEE oxidation, respectively.

An interesting feature of ether oxidation turns out to be the formation of carboxylic acids. As an example, formic acid was identified and quantified in a flow reactor by Curran et al. [20]. More recently the jet-stirred reactor by Moshammer et al. [21] and the flow reactor study by Wang et al. [22] confirm the formation of formic acid. In contrast to these studies, in their jet-stirred reactor study on low-temperature DME oxidation by Rodriguez et al. [23], no formation of formic acid was reported.

\[\text{Figure 3. Mole fraction profiles as a function of reactor temperature (}\varphi = 1) \]

In our DEE study, acetic acid was quantified at low temperatures in considerable quantities and in DBE oxidation butanoic acid was identified for some experiments but not quantified. The formation routes of these acids are unclear and probably due to an unconventional pathway followed by the radicals formed by ketohydroperoxide decomposition. Formation of propanoic acid cannot be explained by analogy to the formic acid formation pathway first proposed by Curran [20] and later calculated by Wang and co-workers [22]. This formic acid pathway involves an internal hydrogen transfer from the aldehyde site of the \(\cdot \text{OCH}_2\text{CHO} \) radical (formed by C–O scission of the aldohydperoxide) followed by its \(\alpha \)-scission to formic acid and CO. On the other hand, in DPE oxidation the most abundant carbonylhydroperoxide is a ketohydroperoxide (shown in Fig 7 as
c3oc31ohhket1) and that such a pathway is not possible. Therefore, although propanoic acid is quantified with a 125 ppm peak for $\varphi = 0.5$ mixture and 16 ppm peak for $\varphi = 4$ mixture, its profile is not simulated.

![Mole fraction profiles as a function of reactor temperature ($\varphi = 2$)](image)

Figure 4. Mole fraction profiles as a function of reactor temperature ($\varphi = 2$)

Generally speaking, for all conditions, kinetic model agrees reasonably well with the data. A factor of 1.5–2 discrepancy is observed with ethylene peak value and CO is slightly over-predicted in rich mixtures.
Reaction pathways

DPE can form three distinct fuel radicals, α-radical (dpe1), β- (dpe2) and γ- (dpe3) radicals. C–H bond dissociation energies for DPE are calculated on G3B3 and CBS-QB3 levels using Gaussian09 [24] and are presented below. According to this, the alpha C–H bond is the weakest and therefore the dpe1 radical is favored, which was naturally the case with DBE and DEE. Also, note that the gamma C–H bond energy is similar to a primary C–H bond in alkane, confirming the choice of analogy.

Figure 6. C–H bond dissociation energies of DPE calculated with G3B3 (bold) and CBS-QB3 (italic)

Main reaction pathways are presented in Fig 7 for the low-temperature oxidation of DPE, which is mainly consumed by H-abstraction reactions by OH radicals and this is the case at any temperature. The percentages are evaluated at 500 K for the $\phi = 1$ mixture, as an example.
Figure 7. Main reaction pathways at low temperatures (% are given at 500 K, $\varphi = 1$)

At low temperatures, addition of fuel radicals to molecular oxygen is dominant forming the RO$_2$ radicals. The RO$_2$ radicals formed can go through isomerization (internal hydrogen transfer) to form QOOH radicals. At these conditions the QOOH produced via 6-membered transition states are favored and lead to the species and pathways as presented below. Propanal formation at low temperature is via ketohydroperoxide decomposition, which is probably the most important in low-temperature chemistry. In fact, this reaction is often written in one step with chain branching fragments and an OH radical as products. The rate constant used for this reaction in various mechanisms comes from an experimental study by Sahetchian et al. [25] focusing on the decomposition of organic hydroperoxides, and it can be approximately written as $k = 1x10^{16} \exp(-43 \text{kcal}/RT)$. A slightly different pre-exponential factor or activation energy can be found in various literature mechanisms.

The following figure (Fig 8) shows the effect of this rate constant on the predictions of fuel mole fraction. Activation energy of the KHP decomposition was modified by up to 6 kcal, this very low activation energy was proposed in the kinetic model of Cai et al. [26] on DBE oxidation for all KHPs possible. The considerable effect this rate constant on mole fraction profiles can be clearly observed. We have also included the theoretical study of Goldsmith et al. [27] on the decomposition of HOOCHCH$_2$CHO, via various channels. This rate constant appears to be very close to the one obtained by reducing the original activation energy by 3 kcal, i.e. when using $1x10^{16} \exp(-40 \text{kcal}/RT)$ as the rate constant, which is therefore adopted here. Furthermore, in order to highlight the effect of R + O$_2$ \rightleftharpoons RO$_2$ rate constant, we have compared predictions with two theoretically calculated rate constants by Goldsmith [12] and Miyoshi [28], both are widely used in kinetic mechanisms. Actually, this reversible reaction is very sensitive to thermochemistry, and note that in this study group additivity is used. Also, as is the case with the rate constants adopted from Villano et al. [13, 14] for the classed mentioned earlier, very often these calculations are done for alkanes. The similarities assumed are therefore similarities with alkanes although the fuel is an ether. This probably adds an additional uncertainty to the predictions.
Figure 8. Effect of KHP decomposition (left) and R + O₂ ⇌ RO₂ (right) reactions on model predictions. For the figure on the left: (a) assuming Eₐ = 43 kcal/mol for all KHP, (b) assuming Eₐ = 37 kcal/mol for all KHP, (c) assuming Eₐ = 40 kcal/mol for all KHP, (d) assuming Eₐ = 37 kcal/mol except for c3oc31ohhket1, (e) assuming Eₐ = 40 kcal/mol except for c3oc31ohhket1, (f) using the rate constant calculated by Goldsmith et al. [27] for the reaction HOOCH₂CH₂CHO → •OCH₂CH₂CHO + •OH.

Comparison of DEE, DPE and DBE

Figure 9. Comparison of the reactivity of DEE, DPE and DBE, all studied under same conditions (lines added to guide the eye).

Figure 9 illustrates the experimental fuel conversion of DEE, DPE and DBE, in order to compare their relative reactivity. On this plot one can clearly see the differences and similarities. All three ethers are very reactive, conversion begins right above 450 K, and they all exhibited a strong low-temperature reactivity and NTC behavior. On the other hand, DBE showed a clear double-NTC behavior, which is less pronounced in DBE oxidation and
appears to be absent in the case of DEE. Among the three, DBE stands out with its very high conversion even in both NTC regions, for example as far as the $\varphi = 0.5$ mixture is concerned fuel conversion does not drop to less than 60%, and for $\varphi = 2$ not less than 30%. Note that these observations hold for the investigated conditions of 1000 ppm initial fuel mole fraction, 10 atm and for a residence time of 700 ms.

Summary

In line with our previous studies on ether oxidation, in the present study high-pressure oxidation of di-n-propyl ether was studied in a jet-stirred reactor at various equivalence ratios ($\varphi = 0.5–4$), for the first time. DPE exhibited an important low-temperature reactivity and a double-NTC behavior, although to a lesser extent that that of DBE. A kinetic model is developed in order to understand the oxidation patterns based on our previous efforts and literature. This model shows a good agreement in general, however some discrepancies arise from uncertainties in the rate parameters used. In order to extend this study to atmospheric pressure, more experiments will be performed. Also, theoretical calculations could be useful in interpreting the low-temperature oxidation behavior of the ether-related species.

References

