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The spectroscopic characteristics (excitation, emission and lifetime) of Eu(III) dissolved in 1-

methyl-3-butylimidazolium bistrifluoromethanesulfonimide (BumimTf2N) are reported. In a 

first series of experiments, the effect of the presence of water in BumimTf2N is examined. It 

appears that non-degassed solutions are most probably inhomogeneous, displaying large water 

clusters leading to an intense diffusion of the red light of a He:Ne laser. In these samples, the 

Eu emission spectrum is close to the one observed in slightly acidic aqueous solutions. When 

the samples are degassed, by contrast, the solution appears homogeneous and water is to be 

considered as a competitive ligand for the first coordination sphere of Eu. In a subsequent 

series of experiments, tetrabutylammonium chloride (TBACl) is added to the solution and the 

resulting species investigated. The ensuing enhancement in the metal-centred luminescence is 

interpreted in terms of changes in the inner-coordination sphere of the Eu(III) ion and possible 

structures are discussed. 

 

Introduction 
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Room temperature ionic liquids (RTIL) appear as “multi-purpose liquids” able to replace 

usual organic solvents in almost every field of chemistry (e.g. catalysis, synthesis, 

electrochemistry).
1
 Both the cationic and the anionic components of these liquids can be 

easily varied, and they can therefore be tailored for particular applications or for specific sets 

of properties. As a consequence, RTIL's represent a green alternative to volatile organic 

solvents, offering environmentally safe processes.  

 In particular, in the field of nuclear waste reprocessing, there is still a need for 

improved routes for the actinide/lanthanide separation/extraction. In addition to promising 

studies on the use of ionic liquids for liquid/liquid extraction,
2
 a recent study has shown that 

some ionic liquids display reasonable stability under  and  irradiation,
3
 thus reinforcing 

their potential interest for the nuclear fuel industry. However, despite the increasing number 

of publications devoted to ionic liquids, the solvation effects, the solute-solvent and solvent-

solvent interactions as well as the general structural organization of these solvents are still 

hardly known. These fundamental aspects are of tremendous importance to the understanding 

of the solvating properties of these new solvents, thus limiting their applications for 

liquid/liquid extraction. In order to gain better insight into these questions, we have 

undertaken a spectroscopic investigation on the solvation of Eu(III) in 1-methyl-3-

butylimidazolium bistrifluoromethanesulfonimide (BumimTf2N, see scheme 1). This ionic 

liquid has been chosen because it can be used, among others, for biphasic separations such as 

liquid extraction, due to its hydrophobic properties. Eu(III) has been chosen as representative 

of lanthanide ions and as a good homologue of Am(III), an actinide of great concern in the 

nuclear fuel cycle. In this work, we take advantage of the specific properties of Eu(III) to 

investigate its solvation in BuminTf2N by means of luminescence measurements. Specific 

attention is paid to the role of water (considered as a solute) onto the luminescence properties 

of Eu(III) and the effect of added tetrabutylammonium chloride is also investigated.  

 

Results and discussion 

Synthesis of BumimTf2N and experimental methods: All chemicals were of the best 

reagent grades (Aldrich) and were used without further purification. All aqueous solutions 

were prepared with de-ionized water (Millipore deionization system,  = 18.3 Mcm
-1

). 

The synthesis of BumimTf2N is derived from the previously reported synthesis of 

BumimPF6
4
 and is typically performed as described in the following. 
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First step : synthesis of BumimCl. A three-necked round bottomed flask under argon, 

equipped with a water refrigerant was loaded with methylimidazole (1 mole, 82.11 g) and of 

n-chlorobutane (1 mole, 92.57 g). The mixture was stirred under argon for 48 h at 70°C, until 

appearance of a pale yellow viscous mixture. It was then transferred into a flask and stored at 

3-5°C under argon until quantitative precipitation ( 12 h). White crystals were obtained 

which were washed several times with ethyl acetate and filtered each time on a Büchner 

apparatus. They were transferred into a dry box containing phosphorus pentoxide and set 

under vacuum. A fine white powder of BumimCl was obtained with typical yields of  80%. 

Second step : Synthesis of BumimTf2N. A solution of BumimCl (110 g) in water (150 mL) was 

added to a solution of LiTf2N (200 g) in water (300 mL) and the resulting mixture was stirred 

at 70°C for 16 h. Two phases were obtained and the upper one (aqueous phase) was decanted. 

The bottom phase (BumimTf2N) was washed several times with de-ionized water (10x350 

mL). BumimTf2N, as a transparent, slightly viscous liquid, was transferred and stored in a dry 

box under vacuum containing phosphorus pentoxide. Typical yields: 80%. The water content 

of the samples was determined by Karl Fischer titration, using standard procedures, a Mettler 

DL18 titrator, hydranal composite 5 (Fluka) and analytical grade methanol. 

Absorption spectra in the range 190-900 nm were recorded on a Uvikon 930 (Kontron) 

spectrometer with 1-cm quartz cuvettes. In all cases, the reference was an empty quartz 

cuvette. No precaution was taken for the storage of the samples, that were simply left in the 

quartz cuvettes (with teflon cap), so that the water content may have changed with time (see 

the relevant study in the text). 

Emission and excitation spectra were recorded on a classical spectrofluorimeter 

(Photon Technology International) which does not allow for time-resolution but is corrected 

for gain efficiency of the detector. Data are also presented as R612/589, the ratio of the intensity 

of the 
5
D0 → 

7
F2 transition (around 612 nm) over that of the 

5
D0 → 

7
F1 transition (around 589 

nm) for an excitation at exc = 394 nm. The uncertainty on the value of R612/589 is in the range 

of ± 10%. The time-resolved emission spectroscopy (TRES) apparatus has been described in 

details elsewhere.
28, 29

 Briefly, for decay measurements, the excitation wavelength was set to 

266 nm. As is usual for time-resolved experiments of this kind, the data analysis was performed by 

systematically excluding the first 10 microseconds of each decay, in which the intense short-lived 

luminescence of the pure BumimTf2N is dominating and thus precludes any detection of the long-lived 

europium species. Therefore, in the following, the discussion on the decay behavior only corresponds 

the lifetime ascribable to Eu(III). The importance of the decay behavior (either mono- or multi-

exponential) has been stressed in other papers
26, 30

 and the quality of the fits was assessed both 
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by the usual χ
2
 test and the shape of the residuals (experimental minus calculated values). The 

error on the lifetime values was on the order of ± 3 %. Although the measurements of the 

luminescence spectra and decays are easy to perform under the experimental conditions of 

this work, they cannot be conducted under optimum conditions for europium assays: for most 

of the feasible excitation wavelengths, the absorption of the sample was way above the usual 

0.05 limit, for which a linear relationship holds between concentration and emission intensity, 

because of solvent absorption. All experiments were performed at a controlled temperature of 

294 K. The data presented in Figs. 5-8 have been recorded immediately after the end of the 

degassing procedure. 

Purification and Characterization 

The purification procedure previously used for BumimPF6
4
 was also applied to 

BumimTf2N. However, the absorption band in the range 250–300 nm, observed for non-

purified BumimPF6,
4
 is still present in the absorption spectrum of the purified BumimTf2N 

(Fig. 1). It is probable that some organic impurities still remain. To our knowledge, the 

absorption spectrum of ultra-pure BumimTf2N is not known, so that comparison with our 

batch is impossible. On the other hand, repeated recording of the absorption spectrum showed 

that the BumimTf2N batch used in this work is stable for more than four months. 

Due to the synthetic procedure, BumimTf2N contains water, even after purification on 

an alumina column. The presence of water is a common feature of room-temperature ionic 

liquids
1, 5-7

 and numerous works have pinpointed the large influence of water on various 

physico-chemical properties of RTILs.
8, 9

 This very important point will be addressed in this 

work. 

Water Contents and Dissolution of Salts in BumimTf2N  

A previous study
8
 has focused on the effect of water onto the properties of various 

RTILs, such as BumimBF4 or BumimPF6. In particular, it was shown that above a given water 

content (around a molar fraction of 0.5), the viscosity and the density of the resulting mixtures 

become water-like, so that these samples have to be considered as aqueous solutions of RTILs 

and not as hydrated RTILs. Another study has shown that water absorption by BumimTf2N 

may be rapid and important.
10

 For the BumimTf2N batch used in this work, the amount of 

water was equal to (5000 ± 50) ppm (i.e. 0.4 M or 0.5 % w/w) after purification. This is a 

consequence of the numerous water washes at the end of the synthesis and the subsequent 

purification on the alumina column. This batch is thus not water-saturated, as compared to 

values up to 14000 ppm reported in the literature for BumimTf2N,
1
 but nevertheless contains a 

substantial amount of water. After several months of storage, the water content did not change 
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as shown by a new determination leading to (5100 ± 500) ppm. In order to control the water 

content of the samples, we have degassed them according to two different methods. In 

procedure I, batches of 5 mL were pumped at room temperature during 18 h and, additionally, 

at 50 °C during 10 h (residual pressure: 1.8 mbar); the resulting water content was below 100 

ppm (i.e. 8x10
-3

 M or 0.01 % w/w). In few cases (see below), samples have been further 

degassed during 48 h at 70 °C (procedure II). Finally, a solution of europium triflate has been 

degassed (procedure I) directly in a quartz cuvette connected to the degassing setup by a 

quartz-glass tube. In this case, by use of a tap, the solution in the cuvette is air- and water-

tight but, due to the bulkiness of the setup, only lifetime measurements could be performed. 

Europium(III) triflate (Aldrich), tetrabutylammonium chloride (Aldrich) and triflate 

(Aldrich), and NaCl (Prolabo) were used as received. Hygroscopic salts were kept in a 

dessicator with P4O10. Unless otherwise specified, the europium concentration was 510
-3

 M . 

Possible changes in density from one sample to another due to different water contents have 

not been considered for the determination of the concentration. A common value d = 1.43 for 

the density (non-degassed BumimTf2N) has been considered for all the BumimTf2N samples 

of this work. Even considering that the europium triflate salt contains 4 water molecules per 

europium unit, the amount of water introduced with the salt is negligible compared with the 

water already present in the non-degassed solvent. 

Upon addition of europium triflate to BumimTf2N, a slightly cloudy solution was 

obtained, which indicates either an incomplete dissolution or, more probably, the formation of 

inhomogeneous clusters. As a matter of fact, these samples strongly diffuse the red light of a 

He:Ne laser. On the other hand, light diffusion is no more observed after degassing the 

samples using procedure I (solutions become clear) or II, so that these samples may be 

considered as being homogeneous (see also discussion below). 

Various amounts of tetrabutylammonium chloride together with europium triflate ( r = 

[TBACl]/[Eu(III)] = 3 to 9) have been introduced in BumimTf2N. Due to the very slow 

kinetics of dissolution, a small amount of CH3CN (on the order of 0.5 mL), which is totally 

miscible in BumimTf2N, has been added to the BumimTf2N solutions, prior to degassing, in 

order to speed up the process. Considering the vapor pressure of CH3CN, it can be safely 

assessed that all of it is removed at the end of the degassing procedure. Despite this modified 

dissolution procedure, not all the salts dissolve for r < 4.5, even after degassing (procedure I). 

No attempts were made to determine the exact composition of the un-dissolved residue. For r 

≥ 4.5, the dissolution is fully achieved after degassing. Finally, a single solution of europium 



08/06/21 09:06 

 6 

triflate with tetrabutylammonium triflate (TBA-triflate, r = 6) has been prepared and 

degassed. 

Effect of Water on the Spectroscopic Characteristics of Eu(III) 

Results: Europium triflate 510
-3

 M in BumimTf2N turns to a slight brownish color after 

degassing (procedure II) and a very weak absorption band located at 394 nm can be observed, 

which corresponds to the transition with the largest oscillator strength in the Eu
III

 spectrum, 

5
L6  

7
F0,1. The spectrum of a more concentrated and degassed solution (410

-2
 M) is 

displayed on Figure 2, from which a molar absorption coefficient of 0.8 M
-1

 cm
-1

 ( = 394 nm) 

could be estimated. This value is of the same order of magnitude than the one reported for 

Eu
III

(aq): 2.4 M
-1

 cm
-1

.
11

 In two previous works,
12, 13

 some lanthanide triflates have been 

dissolved in RTILs, in particular in BumimPF6, at concentrations far below the maximum 

concentration obtained by us. This may be due in part to the use, in these studies, of 

anhydrous lanthanide salts. 

RTILs are known to be hygroscopic
1, 7, 8

 and previous studies have given insight into 

the dependence of the kinetics of water absorption by RTILs upon experimental conditions.
7, 8, 

10
 In order to get a deeper understanding of the influence of water on europium luminescence 

in BumimTf2N, a solution has been submitted to cycles combining degassing procedures and 

storage durations during which solutions were kept in the quartz cuvette, with a teflon cap. 

Table I summarizes this cycle and displays the decay behavior (either mono- or bi-

exponential), the corresponding lifetimes and relative intensities during the cycle. In this 

Table, t = 0 corresponds to the end of the first degassing procedure and positive t values 

indicate the time elapsed since t = 0, at which the data (decay profile and emission/excitation 

spectra) have been recorded. By definition, the notation t = -1 means that the measurement 

has been performed before this first degassing procedure, when the ionic liquid water content 

was constant whith time (see section “water contents”). Note that a lifetime decay could be 

obtained for the non-degassed (probably heterogeneous) sample, as no fluctuations of the 

luminescence intensity were observed. Fig. 3 presents the excitation spectra obtained at times 

equal to -1, 0, and 13 days of the cycle, while emission spectra are displayed on two separate 

figures (Figs. 4a, b) in view of the large differences in emission intensities. For t = 25 days, 

the excitation and emission spectra are very similar to those for t = 13 days and are therefore 

not shown. 

For all samples, the excitation spectra essentially display f-f transitions, indicating no 

antenna effect from the ionic liquid: Réponse 3 ème referee sur effet d’antenne quand même 
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un peu présent ? The energy of these transitions does not vary, contrary to their intensities 

which substantially decrease over time after the first degassing procedure. A similar behavior 

is observed for the emission spectra and lifetimes. Through excitation at other wavelengths 

(data not shown), the emission is similar in shape and the intensity change reflects the relative 

intensities observed in the excitation spectra. Lifetimes exhibit a peculiar behaviour: a single 

exponential decay is measured for the non-degassed solution, with a short lifetime of 0.159 

ms, which becomes bi-exponential upon degassing, with much longer lifetimes of 0.64 and 

1.6 ms. After six days of storage, the decay is again characterized by a single exponential, but 

turns again bi-exponential after the second degassing, and so on. For the air- and water- tight 

solution, a bi-exponential behavior is still observed more than twelve days after degassing and 

the lifetime values are perfectly stable. 

Discussion: The intense diffusion of the He:Ne laser light in the non-degassed europium 

solution, while diffusion is almost zero for pure non-degassed BumimTf2N, points to the 

presence of large aggregates (clusters) in this solution, so that the non-degassed europium 

solution, which contains approximately 80 H2O molecules per Eu
III

 ion, should be better 

considered as being an emulsion. The emission spectrum of the non-degassed sample (Fig. 4a) 

is very similar to the one obtained for Eu
3+

aq in slightly acidic aqueous solution,
11,14

 although 

the corresponding lifetime is larger (0.159 ms compared with 0.111 ms for Eu
3+

aq, see Table 

I). The presence of high-energy O-H oscillators in the inner coordination sphere of Eu
III

 is 

known to induce a severe quenching of the luminescence.
15

 The short lifetime measured for 

the ionic liquid solution suggests that Eu
III

 is heavily hydrated, possibly as much as in water. 

Indeed, triflate is only slightly more coordinating than perchlorate
16

 and should not bind to the 

Eu
III

 ion in water. On the other hand, no data are available on the coordinating strength of 

Tf2N
-
 but since it is present in large excess in the solutions, inner-sphere coordination cannot 

be excluded. The longer lifetime measured in the RTIL can be due to the limited amount of 

water in BumimTf2N leading to (i) a decreased inner-sphere hydration number n and/or a 

decreased outer sphere hydration number m in the {[Eu(A
-
)x(H2O)n]

(3-x)+
(H2O)m(A

-
)(3-x)} 

aggregates (A
-
 stands for an anion). In water, n is fractional (and x is essentially equal to 

zero), reflecting a fast equilibrium between 8- and 9-coordinated species,
17

 and hexahydrated 

Ln
III

 ions have been evidenced in the solid state. The contribution of second-sphere oscillators 

to the luminescence decay is not well known, but in the case of Eu
III

 complexes with cyclen 

derivative, it has been estimated to be 0.25 ms
-1

.
18

 

By contrast, the degassed sample at the beginning of the cycle (t = 0 day) presents 

completely different Eu
III

 spectroscopic properties, indicating a large loss of inner-sphere 
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water molecules. This is illustrated by the increased intensity of the hypersensitive transition 

(
5
D0 → 

7
F2) at ca. 613 nm by a factor >3 (see Fig. 4b). The relative broadness of the bands 

and their lack of crystal-field fine structure may indicate that Eu
III

 is imbedded into a medium 

with properties comparable to those of a glass. The degassing procedure drastically decreases 

the total water amount but some water remains: a water content of 50 ppm still corresponds to 

one molecule of water per Eu
III

 ion. 

No information can be gained on which type of water, either already accommodated in 

the solvent prior solution preparation or introduced with the europium salt is better extracted 

in the degassing procedure.
10

 As a matter of fact, the absence of laser light diffusion after 

degassing is evidence for an homogeneous solution and the changes in the emission spectra 

show that europium is now solvated in the RTIL and no more in "water clusters". The bi-

exponential behavior of the luminescence decay either in the air and water tight cuvette or at 

the beginning of the storage can be considered as reflecting the presence of two different Eu
III

 

species in solution. One explanation could be the formation of inner-sphere complexes with 

the counterions: 

{[Eu(H2O)n]
3+

(H2O)m}  [Eu(H2O)n]
3+

 + mH2O    [Eu(H2O)x]
3+

 + (m+n-x)H2O (1) 

[Eu(H2O)x]
3+

 + y A
-
   [Eu(A)y(H2O)x-y]

3+
 + yH2O      (2) 

In equation (2), A
-
 has been taken as being a monodentate anion, but the triflate could also be 

bidentate or even acts as bridging moiety. The latter assumption is, however, not too probable 

in view of the relatively high dilution of the solutions. In water, phenomenological calibration 

curves have been reported which relate the number of inner-sphere water molecules to the 

lifetimes measured in water and deuterated water.
15, 19

 In absence of structural information on 

the solvated species in RTIL, and because these phenomenological correlations cannot be 

easily transposed from one solvent to another, no such relationship is available, therefore an 

estimate of x is not within reach with the present lifetime data. We note, however, that 1.6 ms 

is a rather long lifetime (compare: 2.10 ms for Eu(ClO4) in anhydrous acetonitrile)
21

 and as 

the RTIL medium is not dielectrically too different from an organic solvent, the associated 

species probably contains, on average, less than one water molecule. The subsequent 

transformation of the decay into a single exponential curve, with a concomitant decrease in 

lifetime, after few days of storage, reflects a re-hydration of the Eu
III

 ion, although not 

completely, since both the lifetime and the R612/589 ratio remain substantially larger than in the 

non-degassed solution. We interpret this in terms of several different hydrated species being 

in equilibrium: when several water molecules are coordinated in the inner sphere their 

lifetimes become comparable, rendering difficult a mathematical resolution of the decays. 
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Moreover, fast water exchange reactions lead to an averaging of the species on the time scale 

of the luminescence experiment (ms). 

After applying degassing procedure II, the solution contains again two Eu
III

 species, 

one having a relatively short lifetime (which corresponds to the short lifetime measured after 

procedure I was applied), while the other features a much longer lifetime than the long 

lifetime of the previous sample. This clearly demonstrates that further dehydration has 

occurred. The value of this lifetime, 2.56 ms, probably implies that a anhydrous species has 

been formed, but again, this statement will have to be checked by determining the exact 

nature of the species in solution. When re-hydration occurs, the decay turns again into a single 

exponential curve with a lifetime intermediate between the ones obtained after the first and 

the second degassing procedure.  

The results presented above are of great practical interest and show that, for 

luminescence measurements, caution should be paid to the degassing procedure and to the 

water intake by the sample. However, it should be stressed that luminescence measurements 

can be performed with reasonable confidence (i. e. results are reproducible) because, as can be 

seen from Table I, the absorption of water under our experimental conditions is slow. This 

slow kinetics, as compared to that observed by Seddon and co-workers,
8
 or by Tran and co-

workers
10

 is mainly due to the absence of vigorous stirring and to the use of a cap for the 

cuvettes in our case. 

Spectroscopy in the Presence of Tetrabutylammonium Chloride (TBACl) 

Results: Figures 5 and 6 display the excitation and emission spectra for ratios r = 

[TBACl]/[Eu] equal to 4.5, 6 and 9. As compared to Figures 3 and 4, the main difference is 

the strong band centered around 330 nm seen in the excitation spectra and the well-defined 

structure in the Eu emission spectra. As a comparison, a solution containing only TBACl in 

BumimTf2N displays a single very broad band of very low intensity centred at 375 nm. 

The total excitation intensity decreases as a function of r, as the total emission 

intensity does. For all the samples, in contrast to what is obtained without TBACl, the 

luminescence decays are single exponential curves, even after the degassing procedure. The 

Eu
III

 lifetime values as a function of the total TBACl amount are displayed in Table II. 

Although incomplete dissolution occurs for r < 4.5, a lifetime value could be obtained. 

The excitation and emission spectra of the Eu(III)/TBA-triflate/BumimTf2N solution 

(r = 6) are displayed on Figures. 7 and 8, together with the data for TBACl, for the sake of 

comparison. Compared to the addition of chloride, the emission intensity is lower when the 

triflate is added and the bands are much broader. 
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The effect of progressive water absorption by BumimTf2N as a function of time has 

also been studied. In the case of TBACl, and by contrast with the solutions to which no TBA 

salt is added, the increasing amount of water has no effect at all on the Eu
III

 lifetime and decay 

behavior for r = 9, even after 22 days of storage: the lifetime changed by less than 10 µs. On 

the other hand, the lifetime of the solution to which TBA triflate has been added decreases as 

a function of time (from  = 1180 µs after degassing to 492 µs after three days of storage).  

Discussion: There is no physical reason to state that the introduction of TBACl strongly 

modifies the course of the degassing procedure. Therefore, the single exponential behavior of 

the decays after the degassing procedure shows that the Eu
III

 coordination sphere is strongly 

modified as compared with the solution without TBACl. This is also illustrated by the 

changes observed in the excitation and emission spectra as a function of r. In comparison with 

what is known on europium luminescence in other solvents,
20-22

 these changes are ascribed to 

a complexation process. Slight changes can be observed in the emission spectra at r = 3 and r 

= 9, especially in the value of R612/589. This experimental fact, together with the reduced 

solubility observed for r < 4.5 would indicate that at least two different complexes are present 

in solution, depending on the r ratio. TBACl is a 1:1 electrolyte, but it is not clear from our 

experiments whether it is entirely dissociated in BumimTf2N. Although a detailed symmetry 

analysis is not possible due to the relative broadness of the emission bands, we note that 

5
D0

7
F1 generates one symmetrical band while 2-3 components are seen for the 

5
D0

7
F2 

transition, indicating a relatively high symmetry around the Eu
III

 ion. Trivalent europium is 

known to form a stable hexachloride with elpasolite structure and Oh symmetry.
23

 In solution 

in ethanol, this species either dissociates or reacts with the solvent to give a species with D2 

symmetry.
24

 It is noteworthy that the 
5
D0

7
F2 spectrum reported for the latter species is very 

similar to the one reported in Figure 6 for r = 6 and so are the spectra for [Cl
-
]/[Eu] = 26 (in 

ethanol)
24

 and r = 9 (Fig. 6). Therefore we may safely conclude that upon addition of TBACl, 

polychloro species form in RTIL solution. 

The implications of a single exponential behavior of the decays, while the emission 

spectra and the lifetime values are changing as a function of the ligand concentration (TBACl 

case), have been discussed long ago
25

 and have been revisited recently.
26

 Both papers agree 

that such experimental facts point to a photochemically induced complexation reaction 

occurring in the solution. It is also agreed that the excitation and emission data collected for r 

= 9 (lifetime plateau value, see Table II) are those of the higher complex obtained with a 

lifetime of 2760 µs.  
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The luminescence enhancement observed could be explained in two ways. (i) the 

interaction of chloride ions in the inner coordination sphere results in a ligand-to-metal 

transfer state reflected in the excitation spectrum (Fig. 7) and energy transfer takes place 

between this state and Eu
III

. Such a state is observed around 33 000 cm
-1

 
27

 for [EuCl6]
3-

 in the 

solid state and excitation in such states may result in metal-centered luminescence when they 

lie at relatively high energy, which is the case here. Moreover, the spectrum displayed on Fig. 

8 (top) matches perfectly well the one published earlier for [EuCl6]
3-

 in ethanol 
24

. (ii) The 

inner-sphere chloride ions act as relay between the metal ion and the Bumim
+
 or TBA

+
 

cations in the second solvation shell, allowing a through-bond energy transfer.  

Finally, the quite different spectroscopic properties observed upon addition of TBA 

triflate, in particular the absence of luminescence enhancement, point to a much weaker 

interaction between the added anions and the metal ion so that competition with water 

molecules easily leads to hydrated species with quenched luminescence. 

 

Conclusion 

 

For the first time, a spectroscopic investigation of Eu(III) dissolved in BumimTf2N has 

been conducted, particularly with respect to the effect of water and added TBA chloride. The 

results pinpoint the importance of degassing procedures and storage conditions, in view of the 

highly hygroscopic nature of the solvent. A complexation process between Eu(III) and the 

added TBA salts has been evidenced and some insight into the species in equilibrium and the 

composition of the inner coordination sphere of Eu(III) have been obtained. A first conclusion 

is that the behaviour of the Eu(III) ion in degassed BumimTf2N displays trends similar to the 

ones exhibited in other organic hygroscopic solvents (e.g. acetonitrile or ethanol), with respect 

to both its coordination and spectroscopic properties. On the other hand, non-degassed 

solutions present a highly inhomogeneous nature. In view of the evaluation of RTIL’s for use 

in future lanthanide/actinide extraction processes it is essential that basic data on the solvation 

of metal ions in these liquids be at hand. From this standpoint, the results presented here are 

very encouraging since they demonstrate that complexation processes analogous to those in 

common solvents take place in the investigated RTIL, and that they can be monitored by a 

highly sensitive technique such as time-resolved luminescence. However, some differences 

have also been unraveled and we are now concentrating our efforts to gather structural data on 
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these solutions in order to get a much deeper understanding of the nature of the solvated and 

complexed species in equilibrium. 
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Captions 

Table I : Decay behavior, lifetime values (µs), relative intensities (%) and R612/589 values for 

the Eu
III

-triflate salt in BumimTf2N along the degassing/storage cycle (see text).  

 

Table II : Lifetime values for the solutions of the Eu
III

-triflate salt containing added TBACl. 

 

Figure 1 : Absorption spectrum of the BumimTf2N batch used in this work (non degassed). 

 

Figure 2 : absorption spectrum of the Eu
III

 triflate salt 410
-2

 M in BumimTf2N. 

 

Fig. 3 : Excitation spectra of the Eu
III

 triflate salt 510
-3

 M in BumimTf2N during the 

degassing cycle. Emission wavelength :  = 609 nm. Solid line : t = -1 day ; (-□-) : t = 0 day 

(procedure I) ; (-+-) : t = 13 days (procedure II). 

 

Figure 4a : Emission of the Eu
III

 triflate salt 510
-3

 M in BumimTf2N at t = -1 day (see text 

and Table I). Excitation wavelength :  = 394 nm. 

 

Figure 4b : Emission of the Eu
III

 triflate salt 510
-3

 M in BumimTf2N in function of the 

degassing procedure (see text and Table I). Excitation wavelength :  = 393 nm. Solid line :t 

= 0 day (procedure I) ; (o) : t = 13 days (procedure II). 

 



08/06/21 09:06 

 13 

Figure 5 : Excitation of the Eu
III

 triflate salt 510
-3

 M in BumimTf2N containing TBACl. 

Emission at  = 608 nm. Solid line : r = 9 ; (-+-) : r = 6 ; (○) : r = 4.5. 

 

Figure 6 : Emission of Eu
III

 triflate salt 510
-3

 M in BumimTf2N containing TBACl. 

Excitation wavelength :  = 464 nm. Solid line : r = 9 ; (-+-) : r = 6 ; (-○-) : r = 4.5. 

 

Fig. 7 : Excitation spectra of solutions of the Eu
III

 triflate salt 510
-3

 M in BumimTf2N (em= 

608 nm). (       ) : with TBACl, r = 6 ; (   ○   ) : with TBA-triflate, r = 6. The sharp peak at 304 

nm is due to the excitation light (608 nm is the second harmonic). 

 

Fig. 8 : Emission spectra of solutions of the Eu
III

 triflate salt 510
-3

 M in BumimTf2N (ex= 

464 nm). (       ) : with TBACl, r = 6 ; (   ○   ) : with TBA-triflate, r = 6. 

 

 

Tables, scheme and figures: 

NN
CH2CH2CH2CH3

CH3

(1)(2)(3)(4)
(5)

(6)

(7) (8)

 

anion: Bumim 

cation: (CF3SO2)2N
-
 (Tf2N) 

scheme 1 

Table I : Decay behavior, lifetime values (µs), relative intensities (%) and R612/589 values for 

the Eu
III

-triflate salt in BumimTf2N along the degassing/storage cycle (see text).  

t 

(days) 

procedure decay characteristics R612/589 

-1 no degassing monoexponential 

 = 159 µs 

<1 

 0 degassing (I) bi-exponential 

1 = 643 µs (19 %)  

2 = 1596 µs (81 %) 

3.4 

6 storage monoexponential n. d. 
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 = 350 µs 

13 degassing (II) bi-exponential 

1 = 689 µs (85%) 

2 = 2556 µs (15%) 

3.4 

20 storage monoexponential 

 = 681 µs 

n. d. 

25 storage monoexponential 

 = 545 µs 

3.4 

 

Table II : Lifetime values for the solutions of the Eu
III

-triflate salt containing added TBACl. 

r =[TBACl]/[Eu]  (µs) 

3.5 2038 

4.5 2060 

6 2560 

9 2760 
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Figure 1 : Absorption spectrum of the BumimTf2N batch used in this work (non degassed). 
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Figure 2 : absorption spectrum of the Eu
III

 triflate salt 410
-2

 M in BumimTf2N. 
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Fig. 3 : Excitation spectra of the Eu
III

 triflate salt 510
-3

 M in BumimTf2N during the 

degassing cycle. Emission wavelength :  = 609 nm. Solid line : t = -1 day ; (-□-) : t = 0 day 

(procedure I) ; (-+-) : t = 13 days (procedure II). 
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Figure 4a : Emission of the Eu
III

 triflate salt 510
-3

 M in BumimTf2N at t = -1 day (see text 

and Table I). Excitation wavelength :  = 394 nm. 
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Figure 4b : Emission of the Eu
III

 triflate salt 510
-3

 M in BumimTf2N in function of the 

degassing procedure (see text and Table I). Excitation wavelength :  = 393 nm. Solid line :t 

= 0 day (procedure I) ; (o) : t = 13 days (procedure II). 
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Figure 5 : Excitation of the Eu
III

 triflate salt 510
-3

 M in BumimTf2N containing TBACl. 

Emission at  = 608 nm. Solid line : r = 9 ; (-+-) : r = 6 ; (○) : r = 4.5. 
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Figure 6 : Emission of Eu
III

 triflate salt 510
-3

 M in BumimTf2N containing TBACl. 

Excitation wavelength :  = 464 nm. Solid line : r = 9 ; (-+-) : r = 6 ; (-○-) : r = 4.5. 
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Fig. 7 : Excitation spectra of solutions of the Eu
III

 triflate salt 510
-3

 M in BumimTf2N (em= 

608 nm). (       ) : with TBACl, r = 6 ; (   ○   ) : with TBA-triflate, r = 6. The sharp peak at 304 

nm is due to the excitation light (608 nm is the second harmonic). 
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Fig. 8 : Emission spectra of solutions of the Eu
III

 triflate salt 510
-3

 M in BumimTf2N (ex= 

464 nm). (       ) : with TBACl, r = 6 ; (   ○   ) : with TBA-triflate, r = 6. 
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