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55, 5230 Odense M, Denmark
(2) Institut Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS, 7 rue
René Descartes, 67084 Strasbourg cedex, France

Abstract

In the context of bivariate random variables (Y(l)7 Y(Q))7 the marginal expected shortfall,
defined as E(Y(M|Y?) > Q4(1 — p)) for p small, where Qo denotes the quantile function of
Y is an important risk measure, which finds applications in areas like, e.g., finance and
environmental science. We consider estimation of the marginal expected shortfall when the
random variables of main interest (Y1), Y(?)) are observed together with a random covariate
X, leading to the concept of the conditional marginal expected shortfall. The asymptotic
behavior of an estimator for this conditional marginal expected shortfall is studied for a wide
class of conditional bivariate distributions, with heavy-tailed marginal conditional distribu-
tions, and where p tends to zero at an intermediate rate. The finite sample performance
is evaluated on a small simulation experiment. The practical applicability of the proposed
estimator is illustrated on flood claim data.

1 Introduction

In the past years, many risk measures have been introduced in the literature, and these have
been used to determine the amount of an asset to be kept in reserve in the financial framework.
The most famous of these are the Value-At-Risk (VaR) defined for a random variable X as the
p—quantile

Q(p) :=inf{z > 0: P(X < z) > p}, for pe (0,1),

and the Conditional Tail Expectation (CTE) defined as
CTE,[X] =E(X|X > Q(p)), for pe (0,1).

The latter risk measure is more conservative than the VaR for a same level of degree of confi-
dence (see Landsman and Valdez, 2003) and it also satisfies the desirable property of being a
coherent risk measure as defined by Artzner et al. (1999). For all these reasons, the CTE has
been extensively studied and also it has been generalized to the multivariate framework, see,
e.g., Cai and Li (2005), Cai et al. (2015), and Di Bernardino and Prieur (2018). More precisely,
if (YD, Y®?) denotes a pair of risk factors, the CTE can be extended into E(Y D[y ) > Qy(p)),
where Qo(p) is the p—quantile of the risk Y(?). In such a multivariate context, this risk measure
is well-known as the Marginal Expected Shortfall (MES). It was introduced by Acharya et al.
(2010), and used to measure the contribution of a financial institution to an overall systemic risk.
The ongoing global credit crisis and other former financial crises have demonstrated the vital



aspect of adequate risk measurement. For a financial firm, the MES is defined as its short-run
expected equity loss conditional on the market taking a loss greater than its VaR. The MES is
very simple to compute and therefore easy for regulators to consider. When estimating this risk
measure, one often has the availability of additional information given by covariates, and these
are important to take into account in order to obtain more precise estimates. This leads to the
concept of conditional marginal expected shortfall.

In this paper, we will consider the estimation of the conditional marginal expected shortfall
when the random variables of main interest (Y)Y () are recorded together with a random
covariate X € R%. We will denote by Fj(.|x) the continuous conditional distribution function of
Y@, j =1,2, given X = z, and use the notation Fj(.|z) for the conditional survival function and
U;(.]x) for the associated tail quantile function defined as Uj(.|x) = inf{y : Fj(y|z) =1 —1/.}.
Also, we will denote by fx the density function of the covariate X and by x( a reference position
such that xo € Int(Sx), the interior of the support Sx = R? of fx, which is assumed to be non-
empty. Our aim will be to estimate the conditional marginal expected shortfall, given X = x,

and defined as .
«9p =K [Y(l)‘Y(Q) = U2 (}.ﬁo) ;1‘0} y
p

where p is small.

The remainder of the paper is organized as follows. In Section 2, we introduce our estimator
for the conditional marginal expected shortfall and we establish its main asymptotic properties.
Simulations are provided in Section 3 to illustrate the efficiency of our estimator, while in Section
4 the method is applied to a dataset of flood insurance claims. All the proofs of the results are
postponed to Section 5.

2 Estimator and asymptotic properties

We assume that Y1) and Y® follow a conditional Pareto-type model.

Assumption (D) For all x € Sx, the conditional survival functions of YW, j=1,2, satisfy
Fille) = 4 (14 b)),
i ()
where Aj(z) > 0, vj(x) > 0, and |§;(.|z)| is normalised reqularly varying with index —pB;(x),
5](.%) > 0, i.e.,

Si(yle) = Bj(x)exp <Jy€j(u|x)du),

1 u

with Bj(xz) € R and €;(y|lz) — —p;(x) as y — 0. Moreover, we assume y — €;(y|z) to be a
continuous function.

Under Assumption (D), Fi(.|z) and Fy(.|x) have density functions. Indeed, straightforward
differentiation gives

(ulz) = Aj(x) —1/7;(x)—1
i) = 2o

1 o
50 alle)| = 1.2 o)
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Now, let (Yi(l), YZ-(Q),XZ-), i =1,...,n, be independent copies of (Y(l), Y(2),X). We consider
estimating the conditional marginal expected shortfall when p — 0 at an intermediate rate, i.e.,

p = k/n, where k,n — oo such that k/n — 0. A natural idea is then to study
n

1 (1)
en = % izZlKhn (‘/EO - X’L)Y; ]1{1’;(2>>02(n//€|$0)}’

where (72(.|x0) is an estimator for Us(.|zg), to be introduced later, and Kp, (.) := K(./h,)/he,
with K a joint density function on R¢, h,, a positive non-random sequence of bandwidths with
hy, — 0if n — o0, and 14 the indicator function on the event A.

To simplify the situation, let us assume for the moment that Us(.|z¢) is known and consider

~

IS (1)
On = %Z w20 = XY iy @2 1 ko))

Clearly, assuming F(y|zg) is strictly increasing in y, we have

0 q n
Op = f k Z; K (@0 = Xy 02 3 Ly 212 7 gy 29
Cly X;)1

- % Z w0 — Xi) {3/1-(1)2S,f2(3/i(2)\ﬁo)gk/n}ds

_ [(Pis X))l d

_ % Z o — @) {Fl(Yim\xo)é(k/n)[(”/k)Fl(SlmO)]’F2(Yi<2)‘$0)<k/n} S

o —71(0)
= —Ui(n/kl|zo) f ZK'M KU E, (D gy <mysn (), Fov Py <im0

where sy, (u) := % Fy (w1 @)U (n/k|zo)|x0). Note that under (D), we have s, (u) — u as n — .

The key statistic to consider is thus, for 2y € Int(Sx),

w\)—l

n
T (yhyQ‘mo Z ]l{F (Y(l)‘x‘o)<k‘/n yl,Fz(Y( )|x0)<k/n y2}7

where y1,y2 > 0.

As a first main result we study the weak convergence of the process

{ Lhd Tn(y17y2|x0) _E(Tn(ylva‘:UO))
n n
Y1

y Y1,Y2 € (OaT]} ) (22)

for any T > 0, finite, and 0 < n < 1/2 — x, where x > 0 small. This will require some further
assumptions.

In order to deal with the regression context, fx and the functions appearing in Fj(y|z) and
Fy(y|z) are assumed to satisfy the following Holder conditions. Let ||| denote some norm on



RY.

Assumption (H) There exist positive constants My, , Ma;, M., Mp., M., Ny, 14,5 M,
np; and ne;, where j = 1,2, such that for all x,z € Sx:

[fx(@) = fx(2)] < Myl —2["x,
[4j(x) = A;(2)] < MaJlz — 2™,

i(@) =)l < My fe— 2™,
|Bj(x) = Bj(2)| < Mp,|z— 2",

sup [ej(ylz) —&;(yl2)] < M|z — 2™

y=1

We also impose a condition on the kernel function K, which is a standard condition in local
estimation.

Assumption (K) K is a bounded density function on R?, with support Sx included in the
unit ball in RY.

Next, a uniform convergence result is needed for the joint conditional distribution of (YD, y @),
Let Ri(y1, y2lz) := tP(F1(YW|z) < yi/t, Fo(YP|z) < yo/t|X = ).

Assumption (R) For all x € Sx we have
JLim Ri(y1,y2lz) = R(y1, y2|),
uniformly in y1,y2 € (0,T], for any T > 0, and x € B(xg, hy).

The weak convergence of (2.2) is then established in the following theorem. Throughout the
paper weak convergence is denoted by ‘~~’.

Theorem 2.1. Assume (D), (H), (K), (R) with v — R(y1,y2|x) being a continuous function,
xo € Int(Sx) with fx(zo) > 0, and y — Fj(y|zo), j = 1,2, are strictly increasing. Consider
sequences k — o0 and h, — 0 as n — o0, in such a way that k/n — 0, kh% — oo and
Bt M2 M N2 1y ke 5 0. Then for n € [0,1/2 — x), where x > 0, small, we have,

/ Tn(y1, y2|ro) — E(T (y1, y2|70 W (y1,y2
1 1

in D((0,T1?), for any T > 0, where W (y1,y2) is a zero centered Gaussian process with covariance
function

E(W (y1,y2)W (71, 52)) = | K[3fx(z0)R(y1 A T1,y2 A Jo|zo).

We also introduce the following weak convergence result for a related process. This process
will be useful in establishing the asymptotic properties of the quantile estimator Us(n/k|zo).
Let fn(zo) :=1/n>)" | Kp,(xo — X;) be a classical kernel density estimator.



Theorem 2.2. Assume (D), (H), (K), and xo € Int(Sx) with fx(xo) > 0. Consider sequences
k — o and h, — 0 as n — o0, in such a way that k/n — 0, kh¢ — oo, h,? Inn/k — 0,
VERE B X "2 0\ JkRd b2 Inn/k — 0, A/khd|62(Us(n/k|xo)|zo)|hn 2 — 0, and

A/ khd|53(Us(n/k|zo)|z0)| A2 Inn/k — 0. Then, we have

Tn(OO,y2|SU0) . — W(OO792)
\/k»hg< Fo(0) y2> fx (z0)

in D((0,T71), for any T > 0, where W (0, y2) is a zero centered Gaussian process with covariance
function

E(W (00, y2)W (0, 72)) = [ K3 fx (z0) (32 A F2)-

The joint weak convergence of the above two processes can be established by showing the
joint finite dimensional weak convergence of them, combined with joint tightness. The joint
finite dimensional convergence can be established by using the Cramér-Wold device (van der
Vaart, 1998, p. 16). This is a standard, but tedious, calculation which is for brevity omitted
from the paper. Note that the joint tightness follows from the individual tightness (similarly to
Lemma 1 in Bai and Taqqu, 2013).

Now, generalize 0, to 0, (y2), defined as

$ B 1)
Z (7o Y H{Y@))Uz (n/(ky2)|xo)}”

mu

Assuming Fi(y|xo) strictly increasing in y, we have

~ n o0
Oum) = Us (fpho) | (o), elaa)du 740

Proposition 2.1. Assume (D), (H), (K), (R) with x — R(y1, y2|z) being a continuous function,
xg € Int(Sx) with fx(xo) > 0, and y — Fj(ylxo), j = 1,2, are strictly increasing. Consider
sequences k — o and h, — 0 as n — o0, in such a way that k/n — 0, khfl — o0 and
Ryt M2 ML 1y e — 0. Then, for v1(zo) < 1/2 — k, with & > 0 small, we have

VEhE ~ * _ P
sup | VT (B, () ~ B@ )| + [ W gm)du )| Lo,
EESTES) Ui (n/k|o) " " 0
The main result of this paper is the asymptotic normality of 6, := an/fn(go), which is
an estimator for the conditional marginal expected shortfall 6,,. Note that 6, = 0,(ey),

where €, := 2 Fa(UnUsz(%|0)|z0) with @y := ﬁg(%|x0)/U2(%\xo). To estimate Us(.|zg) we use
Us(.|zo) := inf{y : F}, 2(y|xo) = 1 —1/.} with
Byl = 200~ Xy
n To) = n . s
2o 21 Ky, (x0 — Xi)

the empirical kernel estimator of the unknown conditional distribution function of Y2 given
X = zp. See for instance Daouia et al. (2011).




In order to obtain the weak convergence of 0,,, we need to introduce the following second
order condition.

Assumption (S). There ezist B > v1(zo) and T < 0 such that, as t — ©

sup sup |Ri(y1, y2|x) — R(y1, y2|zo)| _ o),

B
zeB(z0,hn) 0<y1<oo,2\y2<2 A 1

Theorem 2.3. Assume (D), (H), (K), (S) with x — R(y1,y2|z) being a continuous function,
and y — Fj(y|zo), j = 1,2, are strictly increasing. Let xg € Int(Sx) such that fx(xzg) > 0.
Consider sequences k: = [ afl( )| and h, = n=2ls(n), where £1 and ly are slowly varying
functions at infinity, with o € (0,1) and

()] (0]
max 5 )
(d + 271(@0) (M, A Myy)  d42(1 = 71(20)) (MAg A Ty A NBy A Ny A Npy)

a 21— ahf(@o)Bi(ro) a—2(1—a)(vi(zo) A (Ba(z0)r2(0)) A (—T))> ALY
d d+d(Bi(x) +&)v1(zo)’ d d’
Then, for vy1(xg) < 1/2 — k, with k > 0 small, we have
R (1) DL G Wl
ki (Qk/n 1) —(1=m(20)) fx(zo0) + SO (s, 1|zg)ds—1 (o)

The conditions on k and h,, in Theorem 2.3 are due to the method of proof of the auxiliary
result given in Lemma 5.4. Also in Cai et al. (2015) one needed a condition on the growth of k,
but in the context without covariates. Note that due to the conditions k,n — oo with k/n — 0,
the Y quantile is intermediate, and the estimator 6,, cannot be used for extrapolation outside
the Y data range. The situation where p < 1/n will be investigated in future work.

3 Simulation experiment

In this section we evaluate the finite sample behavior of the proposed estimator with a simula-
tion experiment. We simulate from the following models:

Model 1. We consider the logistic copula model

1/x

Cluy, ug|z) = e = mu)*+(=nuw)? V% 2y o e [0,1], 2 = 2. (3.1)

We take X ~ U[2,10], and combine this copula model with Fréchet distributions for ¥*) and
Y@

=1/

Filyy=e? 7, y>0,

j = 1,2. We set 73 = 0.25 and 2 = 0.5. This model satisfies (S) with R(y1,y2|z) =
y1 +y2 — (y7 + y%)l/x, 7=—1and 8 =1 — ¢ for some small € > 0.



Model 2. The conditional distribution of (Y1), Y(?)) given X = z is that of
(|1Z1®) | Z5| 2 @)y,

where (Z1, Z3) follow a bivariate standard Cauchy distribution with density function

1
—(1+ 22+ 22732, (21,2) e R%

f(zh ZQ) o

We take X ~ U[0,1], and set
y(z) = 0.4[0.1 + sin(rz)] [1_1 0. 56764@70,5)2] |
v(z) = 0.1+0.1x.

This model satisfies (S) with R(y1, y2|z) = y1 +y2 —/¥% + y3, 7 = —1 and 8 = 2 (see, e.g., Cai
et al., 2015, in the context without covariates).

Model 3. We consider the logistic copula model from (3.1), with X ~ U[2,10], combined
with conditional Burr distributions for Y (1) and Y 3):

B; A
W> 7y>0;6j’>\j’7—j(x)>0’

j=12 Weset 1 =Fs=1, Ay =1, Ay = 0.5, and

Fi) =1~ (

i (z) = 2927, To(z) = 8/sin(0.3x).
Similarly to Model 1, this model satisfies (S).

The marginal conditional distributions in the above models are standard heavy-tailed distri-
butions that satisfy (D), see, e.g., Beirlant, Joossens and Segers (2009), Table 1.

Concerning the kernel function K, we take the bi-quadratic function

15

K(z) = T

— (1= 2 Ngpe-1.1))-

To compute our estimator 8,,, the bandwidth h,, need to be chosen. To this aim, we use the cross
validation criterion introduced by Yao (1999), and used in an extreme value context by Daouia
et al. (2011), Daouia, Gardes and Girard (2013) and Escobar-Bach, Goegebeur and Guillou
(2018):

2
hey 1= argmmZ Z < Y(2)<Y(2) — Fuo i (Yj(z)‘Xi>> ;

hn€H i=1j5=1
where H is the grid of values defined as Rx x {0.05,0.10,...,0.30}, with Rx the range of the
covariate X, and
n
De=1,hi K, (2 — Xip) ]l{yk(mgy}

Fhoi ylz) =
n2=i (Ul7) et ki K (2 — Xi)

7



The boxplots of the ratios between the estimates 6,, and the true values 6, /m based on 500 repli-
cations are given in Figure 1, for three different values of the covariate, zo = 3 (first row), 9 = 5
(second row), xg = 7 (third row), two different sample sizes, n = 500 (left) and n = 1000 (right),
and some specific values of k, in case of Model 1. Figures 2 and 3 are constructed similarly
but for Model 2 and Model 3, respectively. The values of 6/, are computed with numerical
integration.

From these figures we can draw the following conclusions:

e Overall the estimator #,, performs quite well, but obviously the performance depends
on the model and also on the position zg. The best results are obtained for Model 1,
where the dependence structure depends on x but the marginal distributions are covariate
independent. Model 2 has covariate dependent marginal distributions, but R(yi, y2|x) does
not depend on x, and for Model 3 both the margins and R(y1,y2|x) depend on x. These
models are more challenging than Model 1, but the estimator continues to perform well.

e The estimator behaves as expected in k and n, namely, for a fixed n the variance decreases
with & and for a fixed sample fraction (as percentage of n) the variance decreases with n.

e The estimator seems to be not too much sensitive on the value of the covariate xg in case
of Model 1. On the contrary, for Model 2, it depends a lot on the value of the covariate,
the estimation being the best for xg = 0.8, with almost no bias. Model 3 is in between,
with some improvement in the variability of the estimates when the covariate increases,
which may be explained by the fact that v, (z) decreases in x.

Next, in Figure 4 we provide some normal quantile plots of v/kh,, In6,,/0;, /n, With k taken
as 5% of n and h,, obtained from the above mentioned cross-validation criterion. The rows of
Figure 4 correspond with Models 1-3, respectively, while the columns represent the sample sizes,
n = 500 and n = 1000, respectively. For all models and sample sizes, the normal quantile plots
show a quite linear pattern, confirming the validity of the normal approximation. Moreover,
with increasing n the normal approximation improves slightly.

4 Application to flood insurance claim data

In this section we illustrate the practical applicability of the method on a dataset of flood insur-
ance claims. Recently, the Federal Emergency Management Agency (FEMA) has released mil-
lions of records from the National Flood Insurance Program (NFIP). In particular, this database
contains approximately 2.4 million damage claims dating back to 1978, where for each claim one
has information on the date of the flood, location of the property (latitude and longitude), claim
amount, and on insurance policy and building characteristics. As such, it provides important
information for policymakers, researchers, insurers and prospective homebuyers. The dataset
is publicly available on https://www.fema.gov/media-library/assets/documents/180374.
For our purposes we consider the data from the year 2000 on, and define Y7 as the sum of
the amount paid on the building claim, the content claim and the increased cost of compli-
ance claim, Y5 is taken as the sum of the insured amount for the building and content, while
the covariate X consists of X; : latitude, X5 : longitude and X3 : date of loss. Interest is in
estimating the expected claim amount conditional on an insured capital that exceeds a high
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Figure 1: Model 1, boxplots of ?n/Ok/n for 500 simulations of size n = 500 (left) and n = 1000
(right), at xg = 3 (first row), g = 5 (second row) and z¢ = 7 (third row). The values of k are
taken as 2%, 5%, 10% and 20% of n. 9
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Figure 4: Normal quantile plots of v/kh, ln@n/ﬂk/n. Top: Model 1, zg = 3, middle: Model 2,
zo = 0.3, and bottom: Model 3, g = 5. The quantile plots are constructed with k taken as 5%
of n, with n = 500 (left) and n = 1000 (right).12



quantile, and for a given location and time. The estimation method was implemented with the
same cross-validation criterion as in the simulation section, including the same choice for H,
after standardizing the covariates to the interval [0,1]. As for the kernel function, we used the
bi-quadratic kernel, generalized to the case d = 3, as follows

1 z
i) = 5 ().

n

where x € R3, and |.| denotes the Euclidean norm. In order to verify the Pareto-type behavior
of YU and Y@, we constructed the local Hill plots of the Y1) and Y® data, respectively, for
which the X coordinate is in a neighborhood of (latitude, longitude)=(33.84,-84.45), and date of
loss equal to 2018, July, see Figure 5. The location under consideration is in the city of Atlanta.

: : ) — k () v (7)
In these plots we show theNI(?Cal Hill estimates H,g] (z0) ==+ D1 In Yéio St ey T Yn(io—k,nzo
as a function of k, where Yi(j ) .4 =1,...,ny,, are the order statistics of the Y () data for which

N,
the X coordinate belongs to B (o, hy), and ng, is the number of observations in B(xg, hy,). For
both Y and Y@ the Hill estimate is clearly positive for the smaller k values supporting the
assumption of underlying conditional Pareto-type distributions. For YW, total claim amount,
the Hill plot shows a stable estimate for v;i(z¢) of about 0.3 when £ is in the range 50-200.
This satisfies the theoretical requirement that v;(z¢) < 0.5 — k, with £ > 0, small. For Y®),
capital insured, the Hill plot shows some systematic pattern beyond k& = 150, which is due to
the occurrence of repeated values for this variable. Despite this, the local Hill plot also suggests
an underlying conditional Pareto-type distribution. Similar local Hill plots were obtained at
other locations and for other time points. Next we illustrate the estimation of the conditional
marginal expected shortfall at the above mentioned location, for the period 2008 till present,
and using k = 1% (solid line) and k = 10% (dashed-dotted line) of n, respectively, see Figure
6. As expected, the conditional marginal expected shortfall at quantile level k/n = 0.01 shows
more variability than the one at level k/n = 0.10, due to the smaller amount of data available
to estimate the former, but otherwise they show the same pattern. The plot shows clearly
the catastrophic Atlanta flood in 2009, September, resulting from multiple days of prolonged
rainfall. The height of the event was on September 20-21 where 10 to 20 inches of rain occurred
in less than 24 hours, which led to flash flooding, with flooded river basins remaining swollen
for weeks. For this period, the difference between the two levels of the conditional marginal
expected shortfall is larger than at other time points included in the analysis, which can be
probably explained by the increased frequency of very large damage claims.

5 Appendix

Lemma 5.1. Assume (D) and (H) and x¢ € Int(Sx). Let (tp)n=1 and (hp)n=1 be arbitrary

sequences satisfying t, — o and h,, — 0 such that thj " th, > 0,asn —>00,and 0 <n<1.

Then

tnFj(Uj(tn/ylzo)|z)
y77

— " =0, asn — o,

uniformly in y € (0,T] and x € B(zo, hy).
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Figure 5: FEMA claim data: local Hill plots for Y1, total claim amount (left), and Y@, capital

insured (right).
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Proof

First note that, by continuity of y — F}(y|z),

F (Ui (tn/ylo) )
F;(Uj(tn/ylzo)|wo)

Then, from condition (D), and a straightforward decomposition,

tnF' (Uj(tn/ylao)|z) =y

tn (U (tn/ylzo)|z) e
y"?

_ Aj(x) ) —1 /v
1-n J _ . 1/vj(zo)—=1/7 (w)
<y {‘Aj@o) 1 Otk ;

I

@03 Uj(tn/ylxo)|2)

i(tn/ylTo)|To)

51

J

d;(
1+ 15( (n/ylrco)lrc)
A 1/7;(x0)=1/7;(z) _ () I
+ (Ut /y120)) | .

1+ 50305 (Uj (tn/ylzo) o)
L+ 2% Ut /ylwo)lz) 1‘} |

L+ 505 (Uj (tn/ylz0) o)

+

Each of the absolute differences in the right-hand side of the above display can be handled by
condition (H). Obviously, for some constant C,

—1‘ < ChyY, for x € B(xo, hn).

Next, using the inequality |e* — 1| < el?l|z|, we have, for some constant C' (not necessarily equal
to the one introduced above), and x € B(xq, hy,),

N )
(U (b yl0)) 15000 7115(0) — 1] < O™ WUt/ sha0) C 0 1 Uty ).
For distributions satisfying (D), one easily verifies that
Uj(talo) = (A;(x0)) " (1 + aj(taleo)) (5.1)

where |a;(.|zo)| is regularly varying with index equal to —v;(x0)B;j(zo). Hence, for some con-
stants C7 and Cs, not depending on y, one gets for x € B(xg, hy,) and n large,

’(Uj(tn/y|x0)>1/’yj(xo)—1/'yj(w) B 1‘ < Cltgth“/j y_CthWj (hZVj Int, — A" In y) .

Finally, for n large,

1+ %%x)éj(Uj(tn/me”x)
1+ yj(lfco)%(Uj(tn/y!fBo)!xo)

< Ot ool {

1 1

() (o)

0;(Uj(tn/ylzo)|z)
85 (Uj(tn/ylz0)|T0)

_1|+

b
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By the assumptions on d; we obtain

eSiJj(tn/y\xo) 5]‘(“|1)—:j(“|$0)du B

8;(Uj(tn/y|xo)|z) _1‘ - ‘Bj(iﬂ) _1‘egfﬂ'(t"/”°’ 757"“'”‘:1(“”0)du+
8;(Uj(tn/ylzo)|w0) Bij(xo)

and, hence, using (H), for x € B(zo, hy,) and n large,

1+ _lm 5(U(tn/y|x0)|x) CADR. ne ne . .
%1( ) 7 1<y {hfﬁf 5 + thh”]y_CQh"J (h:’ﬁ Int, — hZJ lny)} .
1+ =595 (Uj(tn/y|x0) | o)
75 (wo)
Combining the above results establishes the lemma. |

Lemma 5.2. Assume (D), (H), (K) and (R) with x — R(y1, y2|z) being a continuous function,
and xg € Int(Sx) such that fx(xg) > 0. Consider sequences k — o0 and h, — 0 as n — o in
such a way that k/n — 0 and hy* """ 1" 2 Inn/k — 0. Then, as n — ©

E(Tn(y1,y2|0)) —  fx(zo)R(y1,y2|z0),
khiVar(T,(y1,y2070)) — [ K3 fx (z0)R(y1, y2|zo).

Proof
We have
n
E(Tn(yl’ y2|$0)) - EE [Kh" (:CO a X)]l{fl(y(l)\xo)<k/n y1, Fo(Y @zo)<k/n y2}]
= % K(@)P(F1(YWlzg) < k/ny1, Fo(Y®|2) < k/n y2|X = z0 — hnv)
Sk
X fx(zo — hpv)dv
= K(v)R(y1,y2|z0 — hnv) fx (zo — hpv)dv
Sk
n_— _
+] K [%P(Fl(Y(l)lxo) <k/nyr, Fo(YP|xo) < k/nya| X = 20 — hyv)
Sk
—R(y1,y2|z0 — hnv)]fx(xo — hpv)dv
= Tl,n + TQ,n-

Concerning T ,,, by the continuity of fx(z) and R(y1,y2|x) at zo, we have that fx and R are
bounded in a neighborhood of zy, and hence, by Lebesgue’s dominated convergence theorem

Tin — fx(zo)R(y1,y2|z0), as n — 0.
As for Ts

n — _
|Ton| < sup E]P’(Fl(Y(l)mo) <k/nyi, Fo(YPz0) < k/nys| X = 20 — hnv)

’UESK

~R(yn, palzo — )| L K@) fx(o ~ huv)dv,
K

16




and note that
P(FL (YW zo) < k/ny1, Fo(YP|zo) < k/n y2]| X = 20 — hnv)
_ k n—
= P <F1(Y(1)]:1:0 — hpv) < - %Fl(Ul(n/(kyl)]xo)]xo — hpv),

Fo(Y @)z — hpv) <

3|
>3

Fo(Us(n/(kys)|To)|zo — hpv)| X = 20 — h,ﬂ)) .

Then, by the result of Lemma 5.1 and the uniformity of the convergence in Assumption (R), we
have that 75 ,, — 0 as n — 0.

Now, consider the variance. We have

nhiVar(Kn, (20 = X)L, (v ) jag)<k/n g1, Fa(y® [zo)<k/n y2})

khgVar (T, (y1, y2le)) =

k
= IKlzE {h%IIK H%K ( B > L (v ) o)</ g, Fa (Y @ o) <h/n yQ}}
khd (n 2
T n {EE [Khn (@0 = X)UE, (v s0)<h/m y, Fa(y @ [o0)<h/n yz}]} ’
from which the result follows. |

5.1 Proof of Theorem 2.1

To prove the result we will make use of empirical process theory with changing function classes,
see for instance van der Vaart and Wellner (1996). To this aim we start by introducing some
notation. Let P be the distribution measure of (Y (), Y2 X). and denote the expected value
under P, the empirical version and empirical process as follows

Pf:ZdeP, Pnf:Zianf<Y;(l)7}/;(2)7Xi)7 Guf := v/n(Pn — P)f,
=1

for any real-valued measurable function f : R2xR? — R. For a function class F, let N (e F, L2(P)),
denote the minimal number of e—brackets needed to cover F. The bracketing integral is then
defined as

)
J0(6, F, La(P)) = L /I Ny(e. F. La(P))de.

We introduce our sequence of classes F,, on R? x R? as

Fn = {(u,z) — foy(u,2), ye (O,T]Q}

where

d I ul|x nyt. Foluolx n
fry(u, 2) = ﬁKhn(xo —2) {F1(u1lzo)<k/ny1, Fa(uslzo)<k/ y2}'

yi

17



Denote also by F,, an envelope function of the class F,,. Now, according to Theorem 19.28
in van der Vaart (1998), the weak convergence of the stochastic process (2.3) follows from the
following four conditions. Let p,, be a semimetric, possibly depending on zg, making (0, 7>
totally bounded. We have to prove that

sup  P(fny — fn,g)2 —> 0 for every d, \, 0, (5.2)
Pag (Y,7)<0n

PE? = 0(1), (5.3)

PFr%]l{Fn>s\/ﬁ} — 0 for every ¢ > 0, (5.4)

J(6ny Fny L2(P)) — 0 for every 6, \, 0, (5.5)

along with the pointwise convergence of the covariance function.

We start with verifying condition (5.2), with py(y,9) = [y1 — #1] + |y2 — 2| Denote
Apy = {F1(YW|x0) < k/ny1, Fa(YP|zg) < k/n y2}. We have then

nhd 1y, Li, )2
P(fuy = fag)® = —"E [K;an(mo ~ X) ( ny _ nw)
Y1 Y1
nh’VdL ]lAn ]lA'n _ 2
Tk E [K}%” (o — X)E [ ( yﬂyy - —n’y> X1|- (5.6)
1 Yi

We consider now three cases.

Case 1: y1 A 1 < 0. Assume without loss of generality that y1 < 7. By expanding the
square in the above conditional expectation and using the fact that, e.g., A, , C (F1(YW|zg) <
k/n y1}, we obtain the following inequality

E (ﬂAn,y B ﬂAn,y>2 o < 3PEY Wz < kjnyi|X = x)
7 =1 = 2n
% Y1 Y1
+P(F1(Y(1)|x0) <k/nij|X =x)
,27’] ?
Y1

which, after substituting in (5.6) leads to

n P(F1(YD|z) < k/n 1| X = 2o — hpv
P(fny — fn,z?)2 < 3% K*(v) (1 z0) /277 il 0 )fx(l‘o — hpv)dv
Sk yl
P(F (YD) < k/n | X = 20 — hn
b2 g P S MR IXZ S0 ) p oo
k Sk gln

Now note that

P(FL(YW|z0) < k/n 1| X = 20 — hnv) = F1 (Ur(n/(ky1)|zo)|zo — hnv)

18



which, together with the result of Lemma 5.1, motivates the following decomposition

P(foy—fog)? < 3y 2| K2(v)fx(zo — hnv)dv
Sk

=1 K2(v)[ i s (U1 (o) — ) — 9™ ] Fx (@0 — hav)du

gl j K(0) fx (0 — hnvo)do
K

1 n
+ K2(U) [an k 1 (Ur(n/(ky1)|zo)|zo — hyv) — yi 277] fx(zo — hpv)dv.
1
Using Lemma 5.1 and the fact that p,(y,y) < d, which implies g1 < 24, we get
P(fny = fag)® < 58,7 | K*(v)fx (w0 = hnv)dv + o(1),

Sk

where the o(1) term does not depend on y; and ;.

Case 2: y1 A g1 > 6n and yo A Yo < 0,. Assume without loss of generality that yo < 7s.
Similarly to the approach followed in Case 1, we obtain

gl (M B\’ _ | o 3PEFAYPlno) < k/nypolX = 2)
yi gl b (y1 A 71)2"
P(FQ(Y(2)|$O) < k‘/n g2|X = $)
+ — o :
(1 A7)
and thus
3y2
P ny — Jng 2 T — N9y K €T —hn’l} dv
(f Y f ,y) (yl A y1)2’7 S ( )fX( 0 )
Syg77 9 1 n—
ROV (v) Bk 2 (Ua(n/(kys)|o)|z0 — hnv) =y~ " | fx (w0 — hyv)dv
Y2 2
+— K= (v zo — hpv)dv
(yl /\yl)gn Sk ( )fX( 0 )
,277
Y2 2 1
+— K=(v FUnk xo)|lxo — hpv) — To — hpv)dv.
A s, ( )[ — 7 12 (Ua(n/ (kg2) o) |zo )= ]fx( 0 )

Again by Lemma 5.1 and using that g» < 26,, we have that

P(fn,y - fn,z?)Q < 5(5711—277 KQ(U)fX(xO - h,n?})d?} + 0(1)7
Sk

where the o(1) term does not depend on y and ¥s.
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Case 3: y1 A1 > 0p and ys A o > 0,. Let y v i denote the vector with the component-wise
maxima of y and g, and similarly y A ¥ is the vector with the component-wise mimima of y and

9. Then
X” |
Note that

y1 AT (Y v o) (THTH Y1 A U1

h llA 7 ]lA _ 2
P ny — Jn,gy 2 S n —=n E K xTro — X E ( mYyvy _ n,YAY )

which leads to

P(fn,y fny
< y1 _yé J K2(0)P (F1(YWlxg) < k/n 3/1/\ﬂl,FQ(Y(Z)WO)<k’/ny2Ag2‘X:$0_hn“)
(o) k
X fx(zg — hpv)dv
1

n _ _
+W% L Kz(v) [P (Fl(Y(l)\mo) <k/my v yl,Fg(Y(Q)]xo) <k/nys v QQ‘X =x0 — hnv>

-P <F1(Y(1)|m0) <k/ny A gl,FQ(Y(2)|$0) <k/nys Age|X =x0— hm;)] fx(xo — hpv)dv
=: Ql,n + QQ,n-
As for Q1 p, we easily obtain
?J1 ) 2
Qi< A J K2 () 2Ty (U (n/(k 1 7 1)) 0 — hu) fxc (w0 — o).

Now, by the mean value theorem, applied to (y] — gj?)Q, and a decomposition motivated by
Lemma 5.1,

Ql,n

< (nAg) Uy —m)? . K2(v) fx(x0 — hpv)dv
K

+(y A ) 2y — )’ . K*(v) {Wzﬂ (Ul(n/(k Y1 A 171)\560)‘160 - hn”) — (A )" 2"]
X fx(xg — hypv)dv.

This then gives

Qi < 647 K2(v) fx(zo — hpv)dv + o(1),
Sk

where the o(1) term does not depend on y; and ;.
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Concerning ()2 ,, we have the following inequality

QZ,n
< %QJ K?(v)P (k/n Y1 A Y1 < Fl(Y(1)|x0) <k/my v gjl‘X =10 — hnv) fx(xg — hpv)dv
(y1 A§1)*1 k g,
1 n 2 _ — 2) B ‘
—— T < < =xg— hy — hp .
(y1 A1) k JSK K*(v)P (k/n y2 A2 < Fo(Yxo) < k/nys v 52| X =29 — h v) fx(zo — hpv)dv
= Q21n+ Q22n-

We only give details about Q2,1,, the term (22, can be handled analogously. Direct
computations give

1 n
= K2
@, (y1 A §1)*1k LK ®)

and, after substituting u = (n/k)F1(y|zo), we have

Ui (n/(k(y1 Ag1))|zo)
J £1 ()0 — huv)dy fx (w0 — hyv)do,

Ur(n/(k(y1vi))lzo)

QQ,L” _ 1 K2(1}) Jylvyl fl(Ul(n/(ku)’xO)’xO - hnv) d’u,fx(.%'o - hnv)dv.

(Y1 A 1)%7 Jsyc wrg NUL(/(ku)|zo)|zo)

Using (2.1) and arguments similar to those used in the proof of Lemma 5.1 one obtains for n
large and some small x > 0,

f1(UL(n/ (ku)|zo)|x0 — hnv)
SiUr(n/ (ku)|zo) o)

where C does not depend on u. Then, for n large enough,

< Cu™ 7,

@i < o [ w0 e b
210 S — u "du v) fx(xg — hpv)dv
" (yl A y1)277 Y1 Y1 Sk "
C o _ i
S GianE (e A5) (Y1 v i1 — 1 A 1)

< CslER,
Combining all the above we have verified (5.2).
Now, we move to the proof of (5.3). A natural envelope function of the class F,, is

nhd LeF, (uy o) <k}

P, 2) s= A K (@0 = 2) 5 S
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This yields

1-2 L, (v W ag)<kT/n}

(F1(YDlag))?7

PF? =

il

X =x9— hnv] fx(xo — hpv)dv

"hiE (K,%n (20 — X)E [
B f K2(v)E
Sk
H"f Kz()foo ! APy (y]wo — hnt) fx (0 — hav)d
v = 1\WY[To — NpV) Jx(To — Npv)av
Sk U (n/(kT)|w0) (F'1(ylmo — hyv))?
1-2 0
O
k Sk Uy (/T feo) (F1 (Y70 — hyp)) 21
. 2
F _
X {( 1(ylzo hnv)> — 1} dFy (y|zo — hpv) fx (o — hpv)dv

Fi(ylzo)
= QS,n(T) + Q4,n(T)'

Concerning @3, (1) we obtain by direct integration and a slight adjustment of Lemma 5.1, for
large n

1-2n L, (v W zo)<kT/n}

(F1(Y o))

Il
S VS VS
>3 =3 > 3
N—— N— N—

Qsn(T) = 1 —12?7 (%)1_277 Sk K2 ()[F1 (Ui (n/(KT)|xo)|wo — hnv)]' ™ fx (20 — hyv)dov
1-2
- ?_ 2:77 LK K*(v) fx (w0 — hnv)dv
-, 5 ), K [(ZFl(Ul (n/ (kD)oo — hov)) T12”] Fx (0 — hyv)d
= o (5.8)
for k < 1—2n.

Concerning Q4.,(T), combining (D) with (#) gives the following bound, for n large and
y = Ur(n/(KT)|zo0),

(Bt~ )"
Fi(ylzo)

n
< O (B O Iy + 8yl 2

Ne
101 (ylo) [y i ) (5.9)

Each of the terms in the right-hand side of the above inequality needs now be used in Q4 (T"),
leading to the terms Q4 ;,(T), j = 1,...,4, studied below. First

Quin(T) = BN (n>12nf 2( )joo 1 dF (y| hnv) fx( hyv)d
, 1,1 = n - l( v — y o — ’T'LU ro — an V.
" F Sk Us 0/ (kD) o) (F1(ylzo — hav))21 0 X0

This term is clearly of smaller order than @3 ,(T") studied above and hence Q4,1,(T) = O(1).
For the second term in the right-hand side of (5.9) we need to study

Quan® = (1) [ o) [ e L ARyl — o) (o — by
aanl)i=tn ) s, ey’ Frlyle — b)) Y0 T I IR0 T B



where t,(T) := Uy(n/(kT)|zo) and &, = Cohp*. Let pu(y) := & nysn ny + ysinl,
Applying integration by parts on the inner integral gives, for n large enough,

=20 b In(t, (T)) [t (T) 610 -
Quan(r) = ()" DI [ o) [ ()0 = )] it = i
ny\1-2n hm e s
(E) 1—-2n J‘SK KQ(U) Jtn(T) pn(y) Fl (y|ZL’0 - hnv)] K dny(Jfo — hnv)dv

=1 Qu212(T) + Qa22,(T).

We obtain, for n large enough

Qu21n(T) < Ch In(t, (T)) [t (T)] S T 205
o),

by (5.1) and the fact that k" In(n/k) — 0 as n — o.
Now consider Q422,(T). We have

1 1—2n o0 nl . 1-29 al 1-2n
Q122n(T) i T g hn“)> <Fl(y|$0))> dy

- 2 v " - j—
1-2n Jg, K )Jn(T)p ) ( Fi(y|xo) F1(ta(T)|zo
X fx(xo — hpv)dv.

For n large and y > ¢,(T"), with &, = Chi¥t,

(Fl (y|xo — hnv)
F1(ylxo)

Substituting u = y/t,(T) we get

1-2n
) < Cyfim (1 + yf2nht 1ny> :

Quoon(T) < CHIT 211, (T)]"ein | K2(v) J " pulta(T )y (14 (M) bk n(tn(T)u))
Sk 1

o (BaltaL o)

1-2n
— dufx(xg — hpv)dv.
D) dulxta =

Since F'1(.|zg) is regularly varying, we can apply the Potter bound (see, e.g., de Haan and
Ferreira, 2006, Proposition B.1.9), and obtain, for n large enough

Quo2.(T) < Cha' TV 21, (T)]?0 | K2 () fx (w0 — hpv)dv
Sk

o0

X f (é‘lﬂlufl,n*l hl(tn(T)) + é‘lm‘ugl,n*l lnu + ugl,n*1> ugl,nf(l/'}/l(xo)f(s)(lfzr])

1
x (1 + (tn(T)u)s2m B ln(tn(T)u)> du,

where 0 < § < 1/7y1(x0). After tedious computations one gets

Qip2n(T) < CT''hy" [tn(T)]%l»”{lJth“ In(tn(T)) + [tn(T)]>" hin 1n(tn(T))}
= 0(1)7
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by (5.1) and the fact that hn* "™ In(n/k) — 0 as n — 0. Hence, Q2. (T) = O(1).

Finally, the two last terms Q43 (7) and Q4,4,,(T") can be dealt with similarly as the two
previous ones since

 gmy (ML 2 OO |61 (yl|zo)| _ _
Quan(@) = i (7) LKK(U) Lm Frtuloe = hooyyar A l20 = ) fx (0 = hy)do

1-2n
( sup |51<y|xo>|) m (%)

y=tn(T)

N

@ 1

X 2 v —
s X )Jtnm Fr(glro — o))

o= dF (y|zg — hpv) fx (xo — hpv)dv (5.10)

and

Q) = 0 () [ e

0

101 (y|z0)|y*2" In
(1) (F1(ylzo — hnv))

e, (M 1727
< ( sup |61<y|xo>|) mit ()

y=tn (T)

32/77 dF1 (ylzo — hav) fx (20 — hnv)dv

0

f?,n
> K2(U)J _ Y lny :
Sk ta(T) (F1(ylwo — hnv))
This yields Q4,3,(T) = O(1) and Q4,4,,(T) = O(1). Combining all these results, we get (5.3).

dFy (ylwo — hyv) fx (20 — hpo)dv. (5.11)

Now, we want to show (5.4). To this aim, for any « € (0,1/n — 2), we have

1 2+a
can/2 PF”

- - | —n E K2+Oc X i 20)< n
]1 _
2+a {F1(YD)|zo)<kT/n} _ B
R ([Fl(Y(l)\xo)]"(2+a) X =m0 hnv)
X fx(xg — hpv)dv

PE g oom <

B i 1 <ﬁ>1_n(2+a)
e (khd)al2 \k

Sk

i 1 (E) 1-n(2+a)
e (khdyo/2 \

0

1

X K2+O‘UJ — dF1(y|lxo — hpv) fx (o — hpv)dv
{ s,y Pyl — hpoyyreea W0 = Pnt) (o = )

24 * 1
| ke f _
S ta(r) (F1(ylzo — hyv))n2+e)

<F1 (y|zo — hnv)>n(2+a) 1
F1(y|xo)

The terms into brackets can be studied similarly as Q;,(T),j7 = 3,4, and thus (5.4) is estab-
lished since kh¢ — co.

dFy(ylxg — hpv) fx(xo — hnv)dv} .
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Finally we verify (5.5). Without loss of generality assume 7' = 1 and consider, for a, 0,0 <1,
the classes

‘7:7&1)(@) = {fn,ye-rn N <a},
Fa) = {fayeFniy > a5 <a},
fn(gvm) = {fn,y €Fn: 9£+1 <Y1 < 9670m+1 S Y2 < Hm}a

where £ = 0,...,|lna/Inf] and m = 0,..., lln a/ln 0~J We start by showing that ]-",(11)(@) is an
e—bracket, for n sufficiently large. Clearly

nhd LT, s o) <h/n y1)

0< fay(u,2) < TnKh" (z0 =) [(n/k) F1(u1|zo)]

H{Fl(uﬂfo)ék/n a}

< hR(n/k) 2K, (20 — 2) 1 (ur]0))7 = Uy (u, 2).
Then
n\ 1-2n * 1
Pu? n = |- KQ(U) f ——————dF (y|zo — hav) fx(zo — hpv)dv
b <k> Sk tn(a) (F1(ylz0))?" G

= QB,n(a) + Q4,n(a>a

using the same decomposition as for PF2. Thus, one can obtain the result from the above anal-
ysis of Q3. (T) and Q4 (T"), taking into account that the various constants involved in these
will not depend on a.

Concerning Q3 ,(a), according to (5.8), for n large
Qsn(a) < Ca'?77",
where C does not depend on a. Now, taking a = ¢%(1=27) for n large enough and e small we

have |Q3,(a)| < €2

Concerning Q4 (a), we use the same decomposition as for Q4,(T") based on (5.9), which
entails that, for n large enough, € small and some small ¢ > 0

Qain(a) < &,
Quz1n(a) < Chp* In(tn(a))[ta(a)] e =217"
< C(1+ |Ina|)aSal 217"
< Ca172n72n

with C' a constant not depending on a, since from (5.1) and for n large,
ha* Int,(a) < CO(1 + |Inal).

Also, for n large, and some small { > 0

Qu22n(a) < Cal'~21p,m [tn(a)]%l’" {1 + hym In(t,(a)) + [tn(a)]@vnhza1 ln(tn(a))}
< Ca'" ™y a¢(1 4 |Ina| + a¢(1 + |Inal))
< Ca1—27]—/-c’
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where C' does not depend on a. Hence, for n large and e small we obtain Q422 (a) < 2. Using
(5.10) and (5.11), we have also Q4,3n(a) < £2 and Quan(a) < £2. Combining all the terms we
get Pu%yn < €2 for n large.

Next consider F\? (a). Then

nhg ﬂf us|zo)<k/n a
0< fny(u,z) < TKhn(fEO —2) {F2( 2'@2)< /map _. ug (U, 2),
and
1n —_— n
Puan = CLT”E JSK K2(U)F2 (UQ (E’QTQ)‘IL’O - hnv) fX(fEO — hnu)du
< 62,

when n is large enough and for ¢ small.

Finally, we consider F,, (¢, m). We obtain the following bounds

hd Iz U |T n Fo(uzlx n Gm
(1, 2) 1= [T K, (g — ) LRSI RIS <y, 2) <

0
nhd LF, us o) <k/n 08, Faualeo) <hfm 6}
TKhn(xO_z) {F1 (u1|zo) /9(£+1)37( 2lz0)<hk/n 67} _ . Un (u, 2).
Then
d 1+ 7 7
_ 2 nhs, 2 {F1(YDlzo)<k/n 64, Fo (Y |zo)<k/n 07}
P(un - un) - T]E [Khn ($O - X) ( 9(Z+1)77

2
H{E (YD |zg)<k/n 6841, Fo(Y ) |zo)<k/n Gm+1}
o

The difference of the indicator functions can be decomposed as in (5.7), and subsequent calcula-
tions follow arguments similar to those used in the verification of (5.2), Case 3. Taking ¢ = 1 -3

and 6 = 1 — a, gives for n large enough and ¢ small that P(u, — u,)? < £°.

Combining the above, for n large and ¢ small one obtains that the cover number by brack-
eting is of the order e=4~3/(1=21) and hence (5.5) is satisfied.

To conclude the proof, we comment on the pointwise convergence of the covariance function,
which is given by Pf, , fng — P fayP fny. We have

1K n [ | 2<xo—x> ]
Pflfoyfng = —= _E K 1 .
ot = =S RE | TRER ) Mnaes

R(y1 A 91,92 A §2|0)
— | K3 fx(zo) .
Kz (y151)"

9
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as n — 00, by the arguments used in the proof of Lemma 5.2. Also
khi 1 n
an7y = T;?EE [Khn(ﬂfo _X)]lAn,y]
— 0,
as n — 0. |

5.2 Proof of Theorem 2.2

Recall that

T (0, y2|m0) = Z H{F ¥ P|zo)<Eya})

w\»a

We follow the lines of proof of Theorem 2.1. We introduce the sequence of classes ]T"n on R x R4
as

Foi={(u,2) = fry(u,2),y € (0,T]}

fn,y Uu, Z \/7Khn .7}0 {Fg(u|zo) y}'

We have to verify the conditions (5.2)-(5.5) in the proof of Theorem 2.1 for the new functions
fmya and with p., (y,9) := |y — gy|. Without loss of generality, we may assume that y > 7. Thus,
we have

where

p (fn,y - fn,@)2 = HZZIE [Kh (zo — X) (ﬂ{fg(y@nxo)ggy} — LF, (v @ )< %y})]

= 3L e [P (0 G o) < (e (G o)
X fx(xo — hpv)dv

= (y—7) ; K2(0) fx (w0 — hnv)do

" Sk Ko@) [k <U2 (ky’ 0> ‘xo - hn”) - y] fx (zo — hpv)dv
- K*(v) {:Fz (Uz (:y’xo> ‘xo - hnv> - y] Fx(0 — hnv)dv

< 6n | K*(v)fx(zo — hav)dv + o(1),
Sk

with a o(1)—term which is uniform in y and y by Lemma 5.1. This yields (5.2).

Now, concerning (5.3) we can use the following envelope function of the class Fn

~ nhd
Fn(uv Z) = k Khn( Z)]I{F2(u|$0)<%T}
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from which we deduce that
=2 n 2 =1 n
PF; = — K=(v)Fy <U2 <—‘x0) ‘xo — hnv) fx(zo — hpv)dv = O(1).
kJs, kT
Next condition (5.4) is also a direct consequence of the definition of the envelope since

- 1 -
27 . 2+a
PE, H{Fn>5\/ﬁ} < cana/2 Fn
1 n

eo(khd)e? k

< LK K> (v)Fy <U2 (%’xo) ‘xo — h,w) fx(zo — hpv)dv = o(1)
as soon as kh? — co.

Finally, concerning (5.5), again without loss of generality we assume T' = 1 and divide [0, 1]
into m intervals of length 1/m. Then, for y € [(i — 1)/m,i/m] we have the bounds

nhd ~ nhd _
Uy (U, 2) 1= TKhn(xO = g, (ufag)<k iy S Fay(u,2) < % Knn (20 = 2 )z, (ujagy<k £y =5 Un(u; 2)
from which we deduce that
a2 - L 2
Py, —uy)* = K=(v) fx(xg — hypv)dv

ki
| K% {ZFQ <U2 (”m(m) ‘xo - hnv> - Zr_nl] Fx (o — hnv)do

S ki—1

m Sk
# [ 2|17 (02 (22 ) 0 — ) = | i = B

< & K2(v) fx(zo — hpv)dv + 23
Sk
when m = [%]. If ¢ is small and n large, then P(u, — u,)? < 2.

3

The pointwise convergence of the covariance function can be verified with arguments similar
to those used in the proof of Theorem 2.1.

Consequently

A\ kR [T (00, y2|20) — E(Tn (00, y2|0))] ~ W (00, y2),
in D((0,T]).

Now, remark that
E(Tu(0,92ke0)) = yafx(wo) + O (hi'~)
n— n
+fx (o) K(v) [sz <U2 <k‘ﬂfo> ‘Io - hnv> - yz] dv
Sk Y2

n

+ . K(v) {ZFQ <U2 <ky2‘x0> ‘xo - hnv> - yg] [fx(zo — hnv) — fx (20)] dv.
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Following the lines of proof of Lemma 5.1, we deduce that

n—= nA My n nB e n
— - _ _ < 2 2 _ 2 2 -
’kFg <U2 <k) I .7}0> ’.1‘0 hn’U> y2’ < C{hn + h,? In A + \52(U2(n/k|x0)|x0)| (hn + hp?1n k>}
from which we obtain
Mfx NMAg Mo n NBy
E(To(o0,2l20)) = 12fx(@o) + O (hi"") + 0 (ki In 2 ) + O (102(Ua(n/klao) o) 1™
. n
+0 (|(52(Ug(n/k|$o)|$o)|hz 21ln E)

with O—terms which are uniform in yo € (0,7]. This implies that, under the assumptions of
Theorem 2.2, we have

A\ ER [Tn (o0, ya|z0) — Y2 fx (20)] ~ W (0, y2), (5.12)
in D((0,TY).

Finally,

\/@ (W —y2> W <(fO;(ZZ’)xO) y2> _ (00, y2|z0) \/7 nhd fn x0) fX(xO))

fn x0) fx (o)

from which Theorem 2.2 follows. |

5.3 Proof of Proposition 2.1

We use the decomposition

N . * !
sup TR, On Y2 _E(en Y2 +J W u7y2)du_“(x°) <Il(T)+ Ii,n(T>7
l<yp<2 Ul(“/kVQTO)[ (v2) ( ))] 0 ( 1_22
where
L(T) = sup f W (u, yo)du~ " (#0)|
$<y2<2
In(T) = sup j W T (s0(1), y2|70) — B (Ty (s (w), y2|20))] du~ 10|
$<ya<2
T
BalT) = sup ||l T (50, gefo0) — B (T (on), lo))] = W (5 () ) f 409
%<y2<2 0
T
Lin(T) = sup f [W (50 (w), y2) — W (u, yo)] du~1 0|
’ L<ys<2 Vo

Similarly to the proof of Proposition 2 in Cai et al. (2015), it is sufficient to show that for any
e > 0, there exists Ty = Tp(e) such that

P(I1(Ty) > €) < e, (5.13)
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and ng = ng(Ty) such that, for any n > ng
P(I;n(Ty) > €) <e¢, for j =2,3 and 4.

Clearly
L(T)<  sup W (u, y2) | T~ 71 70),

u>T,3 3 SY2<2

Since a rescaled version of our Gaussian process W(.,.) gives the one in Cai et al. (2015),
according to their Lemma 2, we have sup,_, Lcyy<2 |W (u,y2)| < oo with probability one.
This implies that there exists 77 = T7(¢) such that

P sup W (u,y2)| > le(:co)g <e,
0<u<00,%<y2<2
from which we deduce that, for any T' > T}

P(I(T) >¢) <P ( sup  |W(u,y0)| > Tfl(“)a) <e.

0<u<00, 3 <y2<2

Consequently (5.13) holds for Ty > T7.

We continue with the term Iy ,(7"). We have

(IQn T) >€

A

P sup

y1>T,2<y2<2

P sup
>T,1 5 SY2<2
o — X 5T71(x0)\/7d
E(,\mo@( h, )H{Fl(Y“)xo)<§sn(y1),F2(Y<2>|wo)<ﬁy2}>}‘> 1K oo khiy

Moy BT (noyy o
el IO)\/khd T L<yp<2 |01 [ K| oo I {Fr(Y; |wo)<Esn(y1), Fa(Y; " [z0)<Ey2}

E K .CC()—X 1
N {F1(YW]20) < sn (y1), Fa(Y Do) < by} :

Consider the class of functions

khg [T (sn(y1), y2|20) — E(Tn(sn(yl),y2|x0))]‘ > ET‘Yl(on))

K Tog — X, 1
H Kl \ P (P10 o)< fsn (1), F2(Y, o)< v2)

o K Ty — 2 1
gn,y(u, z) = HKHOO o {F1(u1lzo)<Esn(y1), Fa(uz|zo)<Eya}

E K $0—X 1
UKo \ ha (Fr(Y M]a0)<Esn (1), Fa(Y @ao) <k yz)

with y; > T and 1/2 < yo < 2, and with envelope function

. K To — 2 K xo— X
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This class of functions satisfies the conditions of Theorem 7.3 in Wellner (2005) with o2 =
O(khd/n) and PG? = O(kh&/n) for n large, and thus, for some constant C,

C

P(Igm(T) > E) < W

for n large enough. We have then that for every e there is a T' = T'(¢) such that for n large
enough

P(I3,(T) >¢) <e.

Now, to study I3,(T), remark that for any 7' > 0,3n; = ni(T) : Yn > ny : s,(T) < T + 1.
Hence for n > ny and any 79 € (71(x0),1/2 — k) :

vV khd[ n(y1, y2lz0) — E(Th(y1, y2]20))] — WYL, y2)

Yy’
g> .

T
f [5n ()] du™" (zo)| <

0

P(I3,(T)>¢e) < P ( sup.

0<y1 <T+1,1 5 SY2<2

X

According to Lemma 3 in Cai et al. (2015)

MTW—%(%),

T
sn(uw)]"0du~ 0|
j[ (w) 10 — 71(0)

0

which, combining with our Theorem 2.1, entails that there exists na(7) > ni(T) such that
Vn > no(T), P(I34(T) > ¢) <e.

Finally, concerning Iy ,(T"), we first remark that according to Lemma 2 in Cai et al. (2015),
we have for ng € (y1(zp),1/2) and any T > 0, with probability one,

w
Wl
0<y1<T,%<y2<2 9

Then, applying Lemma 3 in Cai et al. (2015) with S =T,S) =T + 1 and g = W, we deduce
that there exists n3(T") such that for n > n3(T") we have P(I4,(T) > ¢) < e.
This achieves the proof of Proposition 2.1. |

In order to prove Theorem 2.3 we need some auxiliary results. Define for « > 0 and v € Sk

Sn(u) Fi (u_“(x(’)Ul (%‘a}0> ’:Uo — hnv) ,

n
k
n
E <U2 (kz 1:0> ‘xo — h,ﬂ)) .

Lemma 5.3. Assume (D) and (H) and xg € Int(Sx). Consider sequences k — o and h,, — 0 as
n — o, in such a way that k/n — 0 and hp """ In 2 — 0. Then, we have, for any u < T, — o

tn(y2)
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such that kTp,/n — 0 and 0 < e < 51(:):0), that
’gn(u) - u‘ < Cu {hZAl + ha In > ’ hn71|1nu|u+0h "
‘51 <U1 ( )} )‘ [1 oy EChn hml|lnu|]
X [u”l(xo )B1(zo) < + yEm (@) ) <hZB1 +u~Chn? hat <\ Inu| +In %))
te

L @) (81 (a0) u(m*“ml(xo 1”}

where ut® means u® if u is greater than 1, and u™* if u is smaller than 1.

Proof

Using Assumption (D), we have

) = (w0 (oo o — o)
(i)

1 1 -
A1($0 — hn’U) U n F1(®0) 71 (@g—hnv) 1 (zg—hnv) (’11(_(})7‘) )
_— 1|+ 1’0 u 1o n
Ai(xo) k

1+

mél (u_ﬁ(xo)Ul (%‘xo) ‘$0 — hnU)

1+ 71(:1:0)51 <U1 (%‘xo)’wo>

This implies that

v1(zg) 71 (20) L L
gn(u) — um(@zg—hnv) < um@o—hnv) —Al(lio hnv) -1 (U1 (B‘x())) "1(=0) 71{Ep"hnv)
A1 (1‘0) k
1 _
1 + mdl <u 'yl(xO)Ul <% 1’0) ‘.’IJ() — hnU>

)l

¢ Gy
1+m51< 71(960(]1(’ )300* >

st (U (o) o)

m(ﬁ (u n(@o)r, ( ‘xo) ‘$0 — hnv)

1+ 71(x0)51 (U1 (%‘xo> ‘a:o>
71 (a0)

=: unGo-r) {T) + Ty + T3}.

X

1+

v —1

Using Assumption (#) and the inequality |e® — 1| < |z|el*l, we deduce that, for n large,
A1(zg — hpo)
Ay (zo)

1 1
‘(Ul (%’x0)>v1(m) ’Yl(ﬂiohn’b')_l’ < Chzﬂ ln%. (5.15)

—1’ < ChyM (5.14)
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Now, direct computations yield, for n large,

u N IOU n To — hpv
< o Gl ik -
0 () ) (5 )

Oy CETe () P Y Y

Using the assumed form for 01 (y|z), (H), and the uniform bound from Proposition B.1.10 in de
Haan and Ferreira (2006) with 0 < ¢ < f1(x), we obtain, for n large, that

3 < C ‘51 <U1 (%‘mo)‘m) {h?ﬂl + (@)1 (@o) (1 + uJ—Wl(“’"O)S)

x [hZBl O e (\ Inu| + 1n%>] + um @) Br(zo)te) 4 ‘u“(m)ﬂl(“) - 1”(5-16)

+

Since
- - 71 (z0) 71 (zg) =1 (@g—hnv)
Sn(u) — U‘ < Sp(u) —un@o—re) | 4 yly mEo—hnv)  — 1‘
71 (z0)
< gn(u) — ul@o—hno) | 4 Oy 1+Ch,) hZ’Yl | lnu|, (5‘17)
combining (5.14), (5.15), (5.16) with (5.17), Lemma 5.3 is established. [

Lemma 5.4. Assume (D), (H), v1(xo) < 1 and xo € Int(Sx). For sequences k = |n*¢1(n)| and
hy = n~20a(n), where 1 and loy are slowly varying functions at infinity, with o € (0,1) and

o & 2(1 — )i (o) A1 (o)

8]
max 5 s 71 T 9
(d+2nWMWmAnm)d+2ﬂ—vﬂm»@@AnwAn&An@)d d + d(B1(wo) + )71 (z0)

a—2(1 — a)y(wo) a
d )<A<?

one has that

oe]
Sup sup M f [R (3 (u), tn(y2)|0) — R(u, yalao)] du= ") — 0
VESK 1<ys<2 0
and .
sup 4/khg J [R (sn(w), y2|70) — R(u, yalzo)] du~ 7)) — 0.
1<y<2 0
Proof

We use the following decomposition along with the Lipschitz property of the function R:
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JOOO [R (3(w0), tn(y2)|0) — R(u,ya|wo)] du="(%0)

On
< khsﬁj [R (3 (u), tn(y2)l0) — R(u, yalo)] du71@0)
0
T
14k f [R (30 (), tn(y2)l0) — R(u, yalo)] du 71
.
1y/khd f (R (Ba(0), () 20) — R(u yalr0)] 1)
On
< khd f R (3o (u), tn(y2)|zo) du="0)
NC R ICAORATAIE
On
+ khgj R(u,ygl:):o)du_“(xo)
0

T
—Jkhd L (130 00) — ] + [t (g2) — o] du 1)

+2 sup R(u, ya|wo)y/ kb T, 7 (0)

u=0,2 —(<y2<2+¢

=: T1-i-Tg-i—Tg-i—T47

for ¢ > 0 small and where §,, — 0 and T,, — ©, as n — 0.

Now, since R(y1,y2|z0) < y1 A y2, using Lemma 5.3, and assuming At """ [Ind,| — 0, we
obtain after tedious calculations, for n large,

On On,
T +Ty < —24/khgf w du~ @) — q/khﬁf 13 (u) — u| du™71(@0)
0 0

< Cy/khdgl—n@o), (5.18)

As for T3, using again Lemma 5.3 and following the lines of proof of Lemma 5.1, we have, for n
large,

Th T
Ty < —/khd f 3 (u) — | du=11@0) — \ [khd L £ (y2) — | du~ (@)
0 n

< COyRhg T i i In 2+ bt In T, + o1 (0 (%‘xo) a0 )| T o ez |
+ Ok 6,710 LBtz 4 b ln% + o2 (U2 (%‘xo> ‘xo)‘ [+ b2 In %]} (5.19)
assuming ' " In T, — 0.
Finally
Ty < Cr/khdT;71@0), (5.20)

Take §,, = RS, and T, = n®, with £ and k positive numbers, and 0 < & < (1(z¢). Combining
(5.18), (5.19) and (5.20), the first part of Lemma 5.4 follows if the sequences d,, and T,, are
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chosen such that

—A [d 2571 (xﬂ) + 2(5 ANTMAy ANTNBy A Tyg A 7752)

a — Ad — 2k (g

a— Ad+26(1 —y1(z0)) — 2A(Na, A Ny,

a—Ad—2(1 - a)y1(x0)B1(xo) + 26[1 + (B1(x0) + &)v1(z0) — Y1 (z0)

A AN ANA
oo o2

]
)
)
]

Note that this is possible if we proceed as follows:
e o and A are chosen as stated in Lemma 5.4;
e k is chosen such that

a— Ad
271 (o)

o ¢ is chosen such that

< K < min <1 —a, 2A(MNA, A1My) — (@ —Ad) 2(1 — a)yi(2o)B1(z0) — (o — Ad) > .

2(1 = 71(x0)) "2[1 = (x0) + (Bi(0) + &)y (wo)]

a—Ad <e<
-_— A A A Neo-
2A(1 — 1 (o)) NAy N TNyy A TIBy A Tley
Note that the choices of k and £ only depend on those of o and A.
The second part of Lemma 5.4 is similar, although simpler. Indeed, a decomposition of the
quantity of interest this time into two parts yields
e}
N f [R (s (), y2lw0) — R(u, yalo)] du~ 1)
0
< A/khd

khd

Th
f [R (sn(u), y2|xo) — R(u, yo|zo)] du™ " (zo)
0

0
f [R (sn(u), y2|z0) — R(u, y2|x0)] du 71 (o)
Ty

Tn
—r/khd J |sp(u) —uldu=1@) +2 sup  R(u, yo|zo)r/khd T, 71(%0)
0

u>0,%<y2<2

< _ / |(51 U1 |£C0 |£C0 Tn (51 U ’Yl(xo)Ul( ‘1‘0)‘1‘0) _
”Yl wo) + 61(Ur(F|zo)|wo)| Jo o1(Ur(%lwo)|zo)

< CW ‘51 (Ul (E‘m) ‘%)‘Tﬁﬂl(%)“ﬂl(IO)“)“(’:O) + O/ khd T (@),

This achieves the proof of Lemma 5.4. |

A

1| du="(0) 4 Oy [ khd T, 7 (®0)

Lemma 5.5. Assume (D), (H), (K), w0 € Int(Sx) with fx(zo) > 0 and y — Fy(y|zo) is
strictly increasing. Consider sequences k — o0 and h, — 0 as n — o, in such a way
that k/n — 0, kh? — oo, ha?Inn/k — 0, /khih/x" "2 = 0, \/khd b2 Inn/k — 0,
ERL |82 (Us (n/k|zo)| o) |ha — 0, and ~/khd|65(Us(n/k|zo)|zo)|he? Inn/k — 0. Then, for
any sequence U, satisfying

()
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as n — o0, we have

A~

= Fnyg(unkco) B - W (o0, 1)
i Fa (unfo) ( Fa(un|wo) ! fx (o)
Proof

First remark that

1 n

n 2ic1 Ko (20 = X)Ly, _ Fay(Us(n/k|)|0) n—
— Tn (OO, *FQ(’ILM.Z‘Q)’J?()) , a.S. .
Fa (up o) Fa(unlzo) K

Since, with r,, := A/nhd Fa(uy|xg),

Tn [FQ((;?Q(?U/ZZ?)wa T, (oo, %FQ(UTL|$0)‘$0> - fx(xo)] — W(eo, 1)|

‘W o0, F2 (un|zo) ‘360) kfz(un\fCo)fX(iCo)] -W (00, ZF2(un\$o)>’

d F2(un|x0) .
s \/ FalUan/klzo)ee)
+ ‘W (oo, %Fz(unm)) — W (e, 1)‘

P (Us(n/klzo)|0) " "p
e [T (oo paunbao)) — FFa(unlao) fx (o)

we have by (5.12) combined with the Skorohod construction that

LS Ky (20— X;)1

n Zai=1 D hp A0 7 {Y.(2)>un}
— t — ~ W00, 1).
Ty (un0) Ix (o) (00,1)

(200 % Pa(unlao) 20) = 2 Fa(unlao) fx (o)

+7n

—1

Tn

Then

{Yi(2)>un} _
Fy(un|o) fx (x0)

= 1
Fra(unlzo) 1\ _ w 2ic1 K, (w0 — Xi)1
"\ Fa(un|zo) n

Fx(xo) — fa(o) 20y K, (w0 — X4)1

Fx(20) fu (o) Fy(un|zo)
W (o0, 1)

fx(zo)

(2)
Y ' >up
- {Y; }

Lemma 5.6. Assume (D), (H), (K), zo € Int(Sx) with fx(xo) > 0 and y — Fa(y|zo) is
strictly increasing. Consider sequences k — o and h, — 0 as n — ©, in such a way

that k/n — 0, kh? — oo, he?Inn/k — 0, \/khdhy'X "2 0, \/khd h)? Inn/k — 0,
v khé|6o(Ua(n/k|xo)|zo)| — 0. Then, as n — o0, we have

Vih (@, = 1) - 2D
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Proof

To prove the lemma we will use the idea of Wretman (1978), applied to our situation. We
have, for z € R, and u, from Lemma 5.5 taken as Us(n/k|xo)(1 + z/4/khd), that

P (4/khg (U — 1) < z)

We have that in the present context

— F k
an 1= A/nhd Fa(up|zo) ( 2([12(71/ [zo)lwo) 1> S
Fa(unlzo) Y2(0)
Let H,, denote the distribution function of «/nhgfg(unkvo)(%nyg(unmo)/Fg(unuo) —1),and H

is the distribution function of W (o0, 1)/fx (x¢). Then by Lemma 5.5 and by continuity of H one
has that H,(a,) — H(z/v2(x¢)), as n — o0, hence the result of the lemma. [ |

5.4 Proof of Theorem 2.3
Let E,(y) := E(6,(y)/U1(n/k|z0)). We have the following decomposition:

b _ Ui(n/k|wo) \/khd b

khg(fmo)ek/n 1) T 0 Fx() <U1<n/k|xo> E"(”>
U1(7”L/k‘|l’0) \/k‘hg _ fX(x0>6k/n
T B Tx(o) (20~ Tt
U (n/k|zo) /khd O, () B,

Ok/m  fx(wo) \Ur(n/klzg) "
+U1(n/k}‘$0) \/k‘hg (En(é\n) *En(l))

Ok fx(wo)
Ui(n/k|xg) v/khd  Ix(@0)Okm
T B Tx(o) IO
= T+ 15+ T5.

First, remark that the common factor of the three terms, Uy (n/k|xo)/0y/, can be handled in a
similar way as in Proposition 1 in Cai et al. (2015), i.e., as n — o0
Ul(n/k|x0) N -1
Ok /m §o R(s,1|zo)dsm(x0)”

Thus the three terms without this factor need to be studied.
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We start with 7T7. Note that

_ _ _ fal@nUs(n/k|xo) |0)Ua(n/k|x0) i _
VR En = 1) = Fo(Us(n/k[0) o) b=,

where 4, is a random value between u, and 1. By the continuous mapping theorem we have
then

fa(unUs(n/k|zo)|x0)Us(n/klxo) 1

Fo(Ua(n/k|zo)|z0) Yo(xo)’
and hence by Lemma 5.6
A ERE (@ — 1) ~ =W (90, 1)/ fx (20). (5.21)

This implies that
P (\an 1> (khg)*/‘*) - 0.

Hence, with probability tending to one,

d N oA o0
v ki, <U9”(€") )—En(én)> b J W (s, 1)ds— (@)
1 0

fx (o) (n/klzo fx (@o)

VER (Bl o
< - Ln , d v1(zo
< |y_1|§(l]1€5%)71/4 fX(fEQ) Ul(n/k’.l‘o) (y) + ( ) s

1 )
- ds— (o) |
+fX($0) ly_1|<s(111€57d1)71/4 j [W(S,y) W(S,l)] S

The first term of the right-hand side tends to 0 in probability by our Proposition 2.1, whereas
the second term can be handled similarly as in the proof of Proposition 3 in Cai et al. (2015).
Consequently

1
§o R(s,1|zo)dsm(w0) fX o)

Ty ~» f W (s, 1)ds™ 7 @0), (5.22)

Next step consists to look at Ty. To this aim, remark that for y equal either to 1 or €,, we
have
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J:O E (Tn(Sn (U,), y|x0)) du~" (z0)

o0
[] )R Gated,taleo — ) fx (oo — b=
Sk

J‘Oo . K ()R (55,(u), tn(y)|zo) fx (o — hpv)dvdu™ " (o)
+ foo K(v) [R% (8n(u), tn(y)|zo — hnv) — R (Sp(u), tn(y)|x0)] fx(xo — hpv)dvdu™ " (o)
Sk

o0
- j R (u,yleo) du @) [ K (0) fx (w0 — hnv)do
0 Sk

+] K(v) JOO [R (3n(w), tn(y)|z0) — Rlu, ylwo)] du= ") fx(zg — hyv)dv
Sk 0

* f | orw | R (Bulw), ta(9) 20 — ) = R (5 (w), ta(9)|0) | Fx (w0 = o) dvdu= )
0 Sk

= To1+Too+Tn3.

By Lemma 5.4, Assumptions (S) and (#) we obtain

o0
Thy = fX(aco)J R (u,y|zo) du~71(0) 4 Op (hfo) ,
0

~ 1
T = o ,
2,2 P (\/@)

| Ry (y1, y2|m) — R(y1, y2|0)]

[ Tos] < — sup sup 5
xEB(mO»hn) 0<y1<00,%§y2<2 yl A 1
00
X K(v)j ([gn(u)]ﬁ A 1) du~ ) f3 (2 — hyo)do
Sk 0

- o ((2)):

Note that the integral appearing in the bound for |C/~’273| is finite for n large, as 3, (u) < Cu'~¢
for w € (0,1/2],€ € (0, (8 — 71(x0))/B) and n large. Consequently, under our assumptions and
using the homogeneity of the R—function and the mean value theorem combining with (5.21),
we have

khd R
N (En(€n) — En(1))
khd ([ .
- 5 <J E (Tn<sn(u>’ 1‘1‘0)) du_’h(xO) B f E (Tn(sn(u)a é\n‘xO)) d’U,_'Yl(IO)>
fx(zo) \Jo .

@ 0
- M <J‘ R (u7 1|$0) d’UJ—/Yl(Z‘O) _ R (u’ €n|$0) du_,yl(l,o)> + OP(l)

0 0
= VHkh (1 B galfvl(%)) J R (u, 1|zo) du~7®0) 4+ op(1)

0

~ — i (x W(e,1) [ w. 1lza) du="1 (o)
(1 —~1(x0)) (@) JO R (u, 1|zq) du=7(70),
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This implies that
W(0,1)

Ty~ —(1- ’Yl(l’o))m- (5.23)
Finally, for T3 we have,
khd B fx(xo)Hk/n>
oy (B0~ s

d 0 . n
_ /knd <_ JO (T (sn (1), 1)20))du"1 () — m >

fx (o)
— y/khd ) [Rojk(sn(w), 1z0) — R(u, 1|zo)] du"E0) 4 o(1)
= i [ ). o) = R (), )] =0
+1/khd f B [R(sn(u), 1|zo) — R(u, 1|z0)] du="(0) 4 (1)

=: T’371 + Tg,g + 0(1),

where
~ R, sy2|l) — R(y1, ye|x 0
T51] < W sup sup [ R (91 y2|ﬂ) (y1, y2| O)IJ ([Sn(u)]ﬁ/\1> @)
2€B(0,hn) 0<y1<o0,3 <ya<2 y; A1 0
= o(ym(3)),
(Vi (i
f372 = 0(1).

Overall, we have then

T3 = o(1). (5.24)
Combining (5.22), (5.23) and (5.24), and following the argument as at the end of the proof of
Theorem 2.2, we can establish the result of Theorem 2.3. |
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