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Abstract 

With avionics system complexity increasing rapidly, 
the use of simulation throughout the system 
development lifecycle is a key enabler to achieve 
system maturity at Entry Into Service. However, 
simulations themselves are also complex systems 
whose development requires a high level of 
collaboration between multiple skills (IT, Plant 
modelling, Control, Embedded Software, etc). 
Therefore, having a functional simulation with the 
required level of fidelity and available at the right 
moment is always a tough challenge. 

To tackle these challenges, the INtegrated SImulation 
into Design project (INSIDE) was initiated by Airbus 
in 2009 to organize this collaboration at early 
definition of simulation architectures and simulation 
model components.  

The approach is based on a Model Driven 
Engineering using System Modelling Language 
SysML to support architecture definition. The 
introduction will describe the problem in detail and 
then the paper will explain the proposed solution and 
how it improves the performance of the simulation 
development process. Finally, the feedback and 
future improvements  are presented. 

1. Introduction 

The following explains the engineering process of 
simulation products which are enabling tools used to 
perform verification and validation activities for a 
system of interest. In this case, the system of interest 
is considered to be an avionics system (cf. Figure 1).  

 
Figure 1 – High level simulation entities 

The objective of the simulation 

The overall objective of the simulation is to verify and 
validate the system of interest operating into 
simulated but realistic environment conditions. 

Simulation can be used for: 

 Requirements validation to ensure that the 
requirements for a product are sufficiently correct 
and complete to satisfy the needs of the customer, 
safety & program; 

 Design Verification to provide evidence that the 
design, during the descending part of the V diagram 
is compliant with the requirements; 

 Product Verification to ensure that the product 
meets the requirements;  

 Product Validation to demonstrate that the product 
meets the needs of the customer. 

The system of interest  

In the simulation, the system of interest can be either 
virtualized or real. 

 
Figure 2 – V-cycle model 

The system of interest is virtualized on the left hand 
side of the V development cycle (cf. Figure 2), when 
the system itself is under design. Simulation is then 
used to perform validation of the specification and 
verification of the design of the system of interest. At 
this stage, the system of interest integrated with the 
simulation product may be implemented by 
prototypes, which partially or totally cover the system 
of interest functional perimeter. 

When the system of interest becomes a product, i.e. 
on the right hand side of the V development cycle, 
simulation is used to perform product verification and 
validation, particularly to explore the system of 
interest operational environment in extreme 

(Source: Clarus Concept  
 of Operations) 

http://upload.wikimedia.org/wikipedia/commons/e/e8/Systems_Engineering_Process_II.svg


conditions (such as failure conditions, limits of the 
domain of use, …). 

The simulation product  

A simulation product in Airbus is generally described 
as a simulation application deployed on a simulation 
platform, and interfaced with the system of interest. 
When the System of Interest is virtualized, we 
generally consider it as part of the simulation 
application (cf. Figure 3). 

 
Figure 3 –Simulation product architecture 

To enable such architecture representation, it is 
required to define a common understanding on how 
the simulator platform shall execute the simulation 
application. For a wide part of Airbus simulation 
products, this is defined by an internal Airbus 
standard.  

The Airbus Simulation Model (ASM) 

This standard was issued in early 2000 to support 
exchange and reuse of simulation components 
across Airbus simulation platforms. It defines the 
concept of an “Airbus Simulation Model” and how it 
shall be executed on a simulation platform.  

The execution scheme of an ASM relies on a periodic 
call of a main entry point by the simulation platform, 
during which it processes outputs from given inputs. 
Specifying who is providing the inputs and who is 
using the outputs is the role of the simulation 
application. How the outputs from one ASM are 
provided to inputs of another one, is the role of the 
simulation platform. 

From the delivery point of view, although the  Airbus 
Procedure states that an ASM shall be provided as C 
or Fortran source code, they are increasingly 
delivered in tool specific modelling languages (such 
as Simulink, SCADE, …), or sometimes directly as 
binary executable files.  

The simulation application 

The role assigned to the simulation application is to 
simulate the operational environment of the system of 
interest.  

The simulation application development is based on 
the knowledge of the operational environment of the 
system of interest, which is, in the avionics context, 
composed of equipment whose behaviour is 
governed by  physical law (Aircraft motion, electrical, 
hydraulic system) and other avionic systems. 

The simulation application comprises a set of ASM 
and associated configuration files which specify the 
connections between ASMs, and their scheduling 
properties. 

The simulation platform 

The simulation platform consists of an IT 
infrastructure and the simulation software. Three 
main objectives are assigned to the simulation 
platform. Firstly, it schedules and monitors the 
execution of the ASMs with respect to time 
constraints of logical or real time simulation. 
Secondly, it implements the communication between 
ASMs. Thirdly, it provides the end user with control 
and observation facilities to operate the simulation. 

In addition, when system of interest is a real product, 
specific facilities are also included in the simulation 
platform to enable signal adaptation and 
transportation from real world to simulated world. 

Statement of problem 

The simulation product is used during the design of a 
system of interest. For this reason, it not only needs 
to be updated continuously to follow each design 
change, but also to offer to the simulation end user 
(i.e. the developer of the system of interest) new 
simulation capabilities required for V&V objectives. 

It is mainly the simulation application which supports 
this required agility. As mentioned before, the 
simulation application relies on integration of ASMs. It 
is the first foundation of a component model, but it 
lacks certain aspects such as those concerning the 
composition of models into a simulation application.  

To work around these drawbacks, the simulation 
application development process is performed by 
Simulation platform teams, but they still need to 
capture information from simulation component 
developers, which hinders overall efficiency.  

The objective of INSIDE is to provide a solution to 
enable real autonomy to Simulation application 
providers and independence from Simulation platform 
teams. 

Before presenting this proposed approach, Part 2 of 
this paper presents in detail the simulation application 
development process, and the challenges to make it 
reactive. 



Part 3 and 4 expose the proposed approach based 
on MDE and SysML to capture the different aspects 
of the simulation application. 

Part 5 explains the difficulties encountered to deploy 
this approach and the means to solve it using 
adequate tools. 

Part 6 presents the initial feedback and the 
perspectives.  

Part 7 concludes by considering potential extensions 
to cover the overall documentation needs (through 
models) of a simulation product. 

2. Simulation application development 

process 

The simulation application development process is 
the cornerstone of the simulation product 
development process (cf. Figure 4). 

 
Figure 4 – Simulation application development 

process 

The first objective of this process, “Design”, is to 
specify the simulation content and to define which 
simulation model can provide this content. This 
includes the definition of the functional and 
performance objectives of the simulation models and 
also the specification of their interfaces.  

The second objective, “Integrate”, is to ensure the 
technical coherency between the simulation models 
and the simulation platform on which they will be 
deployed. 

Many actors are involved in these processes and 
efficient collaboration is a major key to achieve the 
objective of reactivity required by the end user of the 
simulation product.  

Design simulation applications 

Several activities are necessary for the design of a 
simulation application. Firstly, end users must identify 

their objectives of used. This enables the required 
functions and performance of the simulation to be 
specified. The simulation application architecture is 
then defined as a set of ASMs connected together, 
and all required functions can be allocated to the 
ASMs.  

A typical simulation application could contain up to 
100 simulation models with a total of 200 000 inputs 
and outputs connected together. These are the key 
factors which lead to the complexity of the simulation 
application. This complexity could never be managed 
manually. It is therefore critical to structure 
information so that the correct design subset can be 
edited autonomously by the user.  

Reuse simulation model 

Obviously, each development of ASM takes time and 
costs money, therefore the simulation application 
designer should identify the reusable ones. 

The reuse of ASM across simulation applications 
reduces cost and time, but it also brings constraints 
during the assembly phase when they have to be 
connected together. Only the component specialists 
have the knowledge to specify the connections, and 
several specialists are required to integrate a whole 
simulation application (Cf. Figure 5).  

 
Figure 5 – Problem of connection specification 

Furthermore, interfaces of models are not always 
compatible, which requires signal adaptation (cf. 
Figure 6). 

 
Figure 6 – Problem of signal adaptation 

ASM implementation 

Once the simulation application is logically designed, 
each ASM has to be developed within its own 
lifecycle and its specific methods. 



Therefore, each ASM has its own definition, 
managed in a separated view from the one built 
inside the simulation application.  

Traditionally, these two aspects are covered by 
separate documents: one is the Model Functional 
and Performance Requirement to describe the ASM 
from the simulation application designer point of view, 
the second is the Model Specification to describe the 
ASM from its developer point of view. 

This distinction enables the acquirer of the ASM to 
keep an abstract view on it, while the developer can 
provides further details on its implementation, as for 
example its packaging properties which depend on 
the type of methodology and tools used during its 
development. The ASM  implementation can then be 
delivered as a Simulink, Scade or C-Code model as 
long as they comply with the Airbus procedure 
execution  semantics. 

It is the simulation platform responsibility to finally 
take into account each ASM  with adequate 
production and deployment procedures via model 
transformations. 

3. MDE approach to support 

simulation application development 

As mentioned above, many actors collaborate to 
develop a simulation application. Therefore, we need 
a shared language to support their communications. 

SysML had been previously selected in another R&T 
Airbus project

[2]
 as a language to support 

specification and design activities, and it was decided 
to adopt it. The contribution was then to demonstrate 
that it can be used efficiently to capture the design of 
complex simulation applications, and how we could 
make a bridge with legacy formalisms. 

Let’s first introduce the concepts that are needed for 
the formalization of the complete design of a 
simulation application architecture. 

Simulation application domain model 

In addition to “ASM” component, two other types of 
components have been considered.  

The “PackageOfModels” component was added to 
support the architecture of the Simulation application, 
and to introduce a level of encapsulation, into the 
simulation application.  

The concept of “SimulationDataBus” was added to 
enable capture of the connexions between different   
ASMs. 

  
Figure 7– Type of simulation components 

Each simulation component is characterized by a 
definition and an implementation. The concept of 
SimulationComponent was introduced to reuse these 
properties throughout the development process (cf. 
below).  

 
Figure 8 – Simulation component types 

Each SimulationComponent includes a SCDefinition 
which contains the specification of the component 
from two points of view: the logical definition and the 
physical definition as already proposed in another 
Airbus R&T project

[2]
 and following the EIA632

[9]
  

guidelines. 

 
Figure 9 – Simulation Component definition  

The logical definition is used to describe how the 
Simulation Component is breakdown into several sub 
simulation component and how they are connected 
together. 

The physical definition allows connection of the 
definition of the component with its concrete 
implementation. For instance, it is possible to 
implement an ASM with Simulink, Scade or C Code 
but whatever the final technical choice, it is 
documented into the “PhysicalDefinition”. 



 
Figure 10 – Implementation for ASMs 

Method to describe Simulation component 

It was decided to capture the SCDefinition within the 
SysML model organized in several packages 
including one for the “SCLogicalDefinition” and 
another for the “SCPhysicalDefinition”.  

Again, it is useful to present what concepts are 
intended to be captured prior to presenting how they 
are captured using SysML language.  

At this stage of the project, capturing the structural 
aspect of the simulation was the primary focus while 
most of the behaviours are hidden inside the 
simulation components. There are both external and 
internal structures to capture.  

External structure definition is used to describe the 
three types of Simulation component (cf. Figure 1)  
from a usage point of view. It provides the list of 
“SCDataPort” which corresponds to the interaction 
points of the simulation component. Each 
“SCDataPort” is specified with a “SCDataInterface” 
which provides the list of data that flows in or out of 
the simulation component via the SCDataPort. 

Internal structure is only used to describe the internal 
organization of the PackageOfModels. It provides the 
list of instances of simulation component which 
composed the PackageOfModels, and how they are 
connected together through their SCDataPort. Each 
instance of simulation component is typed by a 
SCDefinition which corresponds to the definition of a 
required Simulation Component from the point of 
view of the PackageOfModels designer. 

  
Figure 11 – Concept to be captured in SysML 

Since ASMs and SimulationDataBus internal 
structure definition were already supported by 
specific formalism and legacy tools, it was preferred 
to integrate these specific formalisms behind the 
SCLogicalDefinition.  

As mentioned in previous section, the main difficulties 
for the development of simulation applications relates 
to the capture of the connections specification 
between ASMs. For that, one of the critical elements 
are the interfaces. Because interface definition is  a 
shared information between two connected 
components, defined at architecture level but also 
used also at implementation level, it cannot be 
managed within the SCLogicalDefinition. Therefore, it 
needs  to be managed in a specific view which is 
imported by the logical one : the 
SCDataInterfaceView. 

Mapping of concept with SysML language 

In order to describe the simulation components within 
the SysML model, only a subset of the language is 
used.  

First of all, it is required to support the organization of 
the information into different views such as the 
SCLogicalDefinition, SCPhysicalDefinition and 
SCDataInterfaceView. This is provided by the 
“uml::package” concept.  

Then, for the description of the simulation 
components itself, a profile was developed to 
specialized the SysML language with the simulation 
domain concept. 

 

Figure 12 – SysML profile for simulation definition 

The advantage of the profile solution was to be able 
to develop a checker on design rules for the different 
simulation components. For instance, an ASM 
component has two FunctionalDataPort with specific 
names.  

While SCLogicalDefinition is a type definition, it has 
been decided to represent it with a “sysml::block”. 
Then, the Internal Block Diagram (IBD) is used to 
define the internal structure of the PackageOfModel, 



with “uml::part” used to represent the different 
SCInstances. Inside the IBD,  the “uml::connector” is 
used to connect the port of the different instances of 
SimulationComponent. 

To specify the SCDataPort and SCInterface two 
modelling solutions were available. Using atomic flow 
ports or using flow ports typed by flow specification.  

Both solutions require adding flow ports on the block 
which represents the simulation model; however the 
solution based on flow specification offers the major 
advantage in our case to separate the list of 
exchange flow from the structure of the simulation 
model, and then was manageable in a separated 
package. This package  is then imported in the 
different SCLogicalDefinition. 

The content of the SCInterface is detailed with 
SysML::FlowProperties which are typed by 
predefined SysML::ValueType, corresponding to 
primitive allowed type by the Airbus Procedure for 
ASM. 

4. MDE and life cycle management 

The design process described above reaches 
another level of complexity when it comes to 
managing the simulation evolution with time. Each 
component used in the simulation, starting with the 
ASM, will evolve over its life-cycle in order to 
integrate new functionalities, bug fixes, etc. There is 
a real need and challenge in supporting the 
simulation designer with the upgrade of components 
when building a new version of the simulation 
application. 

 

 
Figure 13 – Basic component interactions 

In the situation illustrated above, the designer has 
started a simulation architecture definition involving 
three identified components; from this specification, 
the INSIDE framework is able to find and proposes 
existing implementations for these components that 
satisfy the versioned interface constraints. At some 
point, the version of interface A1 needs to be 
upgraded to version 2.4.0. In the example, INSIDE 
finds a matching implementation for component A, 
but not for component B: the implementation 
compliant with the upgraded version of A1 also 
provides an upgraded version 3.5 of its own interface 
B1. INSIDE then proposes an implementation 
solution to the simulation designer that implies 
another change of interface, in addition to the initial 
desired upgrade; the simulation designer has to 
decide whether to go with the proposed solution or to 
request the development of a new specific version of 
B satisfying the interface constraints. 

To support this use case, INSIDE relies on: 

 A clear distinction between simulation 

architecture needs and components 

implementations through versioned interfaces; 

 A common repository where all elements are 

stored and referenced; 

 A resolver function, triggered in the edition 

environment, which can browse the repository to 

find and propose the elements that satisfy the 

constraints of the architecture definition. 

To give more autonomy to the resolver and minimize 

the number of requests to the designer during the 

process, INSIDE proposes to define the interface 

compliancy with a range of versions (e.g. [3.0.0; 

4.0.0[). In the above example, the simulation 

designer could express that the interface B1 between 

B and C could be any version from V3.1 to V3.9. 

Given that level of freedom, the resolver can directly 

propose a matching solution. 

More can also be done for the resolver by using 

semantic versioning [4]: the resolver can then infer a 



first level of compliancy between the elements from 

the name of the version (e.g. component C using 

version V3.1 of interface B1 shall also be able to use 

any 3.X version). This track has not yet been fully 

explored in INSIDE; considering the context, it will 

probably require an automatic versioning mechanism 

to support users when they publish their new 

component definition. 

5. Tooling to support simulation 

application design 

When the approach was experimented with real end 
users, a certain resistance was initially encountered . 

Two types of difficulties were raised. Firstly, SysML 
was another language to learn and perceived as far 
from the business domain language.  

Secondly, SysML model edition was perceived as a 
heavy process, with many operations required to 
specify simple properties. 

A part of the solution came with the Eclipse technical 
framework [5] chosen to develop the project and 
especially with the Eclipse Modeling Framework. On 
one side there are existing implementations of SysML 
[6] on top of EMF and on the other side, there are 
several graphical technologies on top of EMF that 
allow to view and edit an EMF model more simply. 

Considering the context, we needed more than just 
one graphical paradigm to view and edit our model: 
boxes and lines are well adapted for the overall 
architecture description, tabular editors are almost 
mandatory when it comes to managing interfaces 
with many thousands of signals and finally, mainly for 
the purposes of improving ergonomics, the main 
elements (ASMs, interfaces, …) shall be easily 
browsed from the project view. 

Following the proven Model-View-Controller pattern, 
it is relatively easy with EMF to propose different 
views on parts of the same model. Obeo Designer 
Erreur ! Source du renvoi introuvable. was a first-
class candidate to build consistent, visually pleasant 
and rich views; it was completed with lower level 
rendering technologies for large signals tables and 
management of the elements directly from the project 
representation tree. 

In the Airbus context, there were legacy tools that 
could/should be used to edit some specific parts of 
the model; in particular, the edition of the connections 
between the signals in the databus was already 
provided by an existing tool. Using EMF, it was 
relatively easy to use Model-to-Text technologies 
such as Acceleo [8] to generate the required inputs 
for the legacy editors: e.g. the “edit databus” action in 
INSIDE transparently generates the configuration 

files and launches the external editor, allowing the 
user to refine the SysML model started in INSIDE. 

6. Experimentation feedback 

The approach has been deployed on a lab test 
environment only but experimentation was realized 
on a fully representative application case 
corresponding to a simulation product. 

The simulation application deployed on this 
simulation product is composed of 109 ASMs which 
have more than 14 000 connections. The ASM 
providers work in five different organizations, 
belonging to the different Aircraft System design 
domains. 

The objective of this application case is to perform 
multi system design validation, on Bleed, Engine and 
Warning system. For such objective, it is required to 
have high reactivity on the simulation application 
update after each system design change.  

To enable such reactivity, the best way is to let the 
person who knows best, do what needs to be done: 
that is, the system designer, who is behind the design 
change.  

But, when the changes are potentially originating 
from several design teams, it is required to ensure 
that on one hand they can collaborate together to 
update the whole simulation when the change 
impacts at a multi-system level and on the other hand 
that they can quickly iterate on their own part of the 
simulation when the change has no impact outside 
their system. 

This is the typical use case for which our approach 
aim at providing a solution, and therefore, it was the 
perfect setting for verification. Five major criteria were 
chosen to assess the solution: autonomy, reactivity, 
workload, quality, ergonomics.  

In order to perform the assessment, the simulation 
application was first designed (cf. Figure 14)   by the 
INSIDE team, and then during a workshops with end 
users, realistic changes scenarios on the simulation 
application were executed so that end users can first 
understand the proposed principles, then project their 
uses into a future process, and finally assess if the 
project objectives were achieved. 

 
Figure 14 –Application case overview 



Globally, the feedbacks from end users were very 
positive. They have assessed the added value of the 
solution in terms of improved autonomy for updating 
a simulation application.  

On the side of reactivity, it was considered easy in 
terms of ability to easily integrate the update of a 
subset of the simulation application done by another 
team. In the legacy approach, this operation is 
always difficult, especially when there are concurrent 
modifications of the simulation application, which 
imply time consuming and error-prone merge 
operations. With the proposed approach, thanks to 
the ability to encapsulate ASM into 
PackageOfModels and also to the capability provided 
to easily collaborate on the definition of the 
interfaces, end users have confirmed that the 
operation  would be far simpler.  

For quality, we could not quantify objectively the level 
of improvement. Nevertheless, it was widely admitted 
that the autonomy given to the system designer, the 
primary owner of the knowledge, to update the 
simulation, would reduce the risk of introducing error. 

Regarding ergonomics, since it was only a prototype 
approach, all the possible “shortcuts” were not 
implemented in the tool. But, there were no major 
questions or concerns from end users regarding 
possible difficulties to understand the key capabilities 
of the tool. However, the need for some fairly 
straightforward specific training has been identified. 

Another very positive feedback was the ability to 
increase reusability of simulation application 
artefacts. Thank to the concept of PackageOfModel it 
becomes possible to reuse a larger subset of 
simulation applications, while before it was only 
possible at the ASM level. This opportunity was 
identified in particular for reuse from single-system 
simulation platforms to multi system platforms.  

7. Conclusion 

This paper presents the results of a project aimed at 
improving the global efficiency of a system simulation 
design in a context where the simulation itself has 
become a complex system, involving many different 
teams. A Model Driven approach has been set up 
which has enabled the formalization of the existing 
organisations, processes, tools and simulation 
models materials with a focus on: 

 Collaboration: with a clear and formal separation 
of the simulation components specifications from 
their implementations, the simulation application 
designer can work on the definition and 
integration of the simulation components in a 
relatively independent way while the component 
providers can work with more formal 
specifications. 

 Reuse: with the ability to compose simulation 
models into bigger models, it is possible to 
capitalize the definition and integration work 
related to these composite models. 

Despite the fact that the project was built over the 
Airbus Procedure  for ASM that gives guidelines on 
the structure and interfaces for an elementary 
simulation model, we believe that what has been 
designed to address the above mentioned issues is 
not specific to the Airbus environment and could be 
adapted to other contexts with the same benefits. 

While the first steps in a transition towards more 
Model Driven Engineering are not always obvious  - 
with a certain amount of energy spent just to describe 
what already exists -, it is then a strong basis on top 
of which it is possible to build high added-value 
features easily. To achieve even greater benefits, the 
framework started in this project should be extended 
with two additional MDE approaches: firstly, before 
the simulation design activities, to support capture of 
simulation needs (functional and performance), and 
secondly to specify the deployment of the simulation 
application on a simulation platform.  

The final objective is to have a seamless process that 
enables rapid development of the simulation product, 
with high reactivity on the provision of updated 
simulation applications.  
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