
HAL Id: hal-02272338
https://hal.science/hal-02272338

Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Engineering of complex avionics systems simulations
using a model based approach

Patrice Thebault, Thierry Suquet, Michael Duffy, Benoit Viaud, Pascal Will,
Julien Codron, Sébastien Lamoliate

To cite this version:
Patrice Thebault, Thierry Suquet, Michael Duffy, Benoit Viaud, Pascal Will, et al.. Engineering of
complex avionics systems simulations using a model based approach. Embedded Real Time Software
and Systems (ERTS2014), Feb 2014, Toulouse, France. �hal-02272338�

https://hal.science/hal-02272338
https://hal.archives-ouvertes.fr

Engineering of complex avionics systems
simulations using a model based approach

Patrice THEBAULT
Thierry SUQUET
Michael DUFFY

Airbus Operation S.A.S

316, route de Bayonne
F-31060 Toulouse Cedex 3

Benoit VIAUD
Pascal WILL

Julien CODRON
ARTAL Technologies

227 Rue Pierre-Gilles de Gennes -
BP 38138

31681 LABEGE CEDEX

Sébastien LAMOLIATE
SOPRA group

1 Avenue André Marie Ampère
BP 10134 - 31772 Colomiers Cedex

Abstract

With avionics system complexity increasing rapidly,
the use of simulation throughout the system
development lifecycle is a key enabler to achieve
system maturity at Entry Into Service. However,
simulations themselves are also complex systems
whose development requires a high level of
collaboration between multiple skills (IT, Plant
modelling, Control, Embedded Software, etc).
Therefore, having a functional simulation with the
required level of fidelity and available at the right
moment is always a tough challenge.

To tackle these challenges, the INtegrated SImulation
into Design project (INSIDE) was initiated by Airbus
in 2009 to organize this collaboration at early
definition of simulation architectures and simulation
model components.

The approach is based on a Model Driven
Engineering using System Modelling Language
SysML to support architecture definition. The
introduction will describe the problem in detail and
then the paper will explain the proposed solution and
how it improves the performance of the simulation
development process. Finally, the feedback and
future improvements are presented.

1. Introduction

The following explains the engineering process of
simulation products which are enabling tools used to
perform verification and validation activities for a
system of interest. In this case, the system of interest
is considered to be an avionics system (cf. Figure 1).

Figure 1 – High level simulation entities

The objective of the simulation

The overall objective of the simulation is to verify and
validate the system of interest operating into
simulated but realistic environment conditions.

Simulation can be used for:

 Requirements validation to ensure that the
requirements for a product are sufficiently correct
and complete to satisfy the needs of the customer,
safety & program;

 Design Verification to provide evidence that the
design, during the descending part of the V diagram
is compliant with the requirements;

 Product Verification to ensure that the product
meets the requirements;

 Product Validation to demonstrate that the product
meets the needs of the customer.

The system of interest

In the simulation, the system of interest can be either
virtualized or real.

Figure 2 – V-cycle model

The system of interest is virtualized on the left hand
side of the V development cycle (cf. Figure 2), when
the system itself is under design. Simulation is then
used to perform validation of the specification and
verification of the design of the system of interest. At
this stage, the system of interest integrated with the
simulation product may be implemented by
prototypes, which partially or totally cover the system
of interest functional perimeter.

When the system of interest becomes a product, i.e.
on the right hand side of the V development cycle,
simulation is used to perform product verification and
validation, particularly to explore the system of
interest operational environment in extreme

(Source: Clarus Concept
 of Operations)

http://upload.wikimedia.org/wikipedia/commons/e/e8/Systems_Engineering_Process_II.svg

conditions (such as failure conditions, limits of the
domain of use, …).

The simulation product

A simulation product in Airbus is generally described
as a simulation application deployed on a simulation
platform, and interfaced with the system of interest.
When the System of Interest is virtualized, we
generally consider it as part of the simulation
application (cf. Figure 3).

Figure 3 –Simulation product architecture

To enable such architecture representation, it is
required to define a common understanding on how
the simulator platform shall execute the simulation
application. For a wide part of Airbus simulation
products, this is defined by an internal Airbus
standard.

The Airbus Simulation Model (ASM)

This standard was issued in early 2000 to support
exchange and reuse of simulation components
across Airbus simulation platforms. It defines the
concept of an “Airbus Simulation Model” and how it
shall be executed on a simulation platform.

The execution scheme of an ASM relies on a periodic
call of a main entry point by the simulation platform,
during which it processes outputs from given inputs.
Specifying who is providing the inputs and who is
using the outputs is the role of the simulation
application. How the outputs from one ASM are
provided to inputs of another one, is the role of the
simulation platform.

From the delivery point of view, although the Airbus
Procedure states that an ASM shall be provided as C
or Fortran source code, they are increasingly
delivered in tool specific modelling languages (such
as Simulink, SCADE, …), or sometimes directly as
binary executable files.

The simulation application

The role assigned to the simulation application is to
simulate the operational environment of the system of
interest.

The simulation application development is based on
the knowledge of the operational environment of the
system of interest, which is, in the avionics context,
composed of equipment whose behaviour is
governed by physical law (Aircraft motion, electrical,
hydraulic system) and other avionic systems.

The simulation application comprises a set of ASM
and associated configuration files which specify the
connections between ASMs, and their scheduling
properties.

The simulation platform

The simulation platform consists of an IT
infrastructure and the simulation software. Three
main objectives are assigned to the simulation
platform. Firstly, it schedules and monitors the
execution of the ASMs with respect to time
constraints of logical or real time simulation.
Secondly, it implements the communication between
ASMs. Thirdly, it provides the end user with control
and observation facilities to operate the simulation.

In addition, when system of interest is a real product,
specific facilities are also included in the simulation
platform to enable signal adaptation and
transportation from real world to simulated world.

Statement of problem

The simulation product is used during the design of a
system of interest. For this reason, it not only needs
to be updated continuously to follow each design
change, but also to offer to the simulation end user
(i.e. the developer of the system of interest) new
simulation capabilities required for V&V objectives.

It is mainly the simulation application which supports
this required agility. As mentioned before, the
simulation application relies on integration of ASMs. It
is the first foundation of a component model, but it
lacks certain aspects such as those concerning the
composition of models into a simulation application.

To work around these drawbacks, the simulation
application development process is performed by
Simulation platform teams, but they still need to
capture information from simulation component
developers, which hinders overall efficiency.

The objective of INSIDE is to provide a solution to
enable real autonomy to Simulation application
providers and independence from Simulation platform
teams.

Before presenting this proposed approach, Part 2 of
this paper presents in detail the simulation application
development process, and the challenges to make it
reactive.

Part 3 and 4 expose the proposed approach based
on MDE and SysML to capture the different aspects
of the simulation application.

Part 5 explains the difficulties encountered to deploy
this approach and the means to solve it using
adequate tools.

Part 6 presents the initial feedback and the
perspectives.

Part 7 concludes by considering potential extensions
to cover the overall documentation needs (through
models) of a simulation product.

2. Simulation application development

process

The simulation application development process is
the cornerstone of the simulation product
development process (cf. Figure 4).

Figure 4 – Simulation application development

process

The first objective of this process, “Design”, is to
specify the simulation content and to define which
simulation model can provide this content. This
includes the definition of the functional and
performance objectives of the simulation models and
also the specification of their interfaces.

The second objective, “Integrate”, is to ensure the
technical coherency between the simulation models
and the simulation platform on which they will be
deployed.

Many actors are involved in these processes and
efficient collaboration is a major key to achieve the
objective of reactivity required by the end user of the
simulation product.

Design simulation applications

Several activities are necessary for the design of a
simulation application. Firstly, end users must identify

their objectives of used. This enables the required
functions and performance of the simulation to be
specified. The simulation application architecture is
then defined as a set of ASMs connected together,
and all required functions can be allocated to the
ASMs.

A typical simulation application could contain up to
100 simulation models with a total of 200 000 inputs
and outputs connected together. These are the key
factors which lead to the complexity of the simulation
application. This complexity could never be managed
manually. It is therefore critical to structure
information so that the correct design subset can be
edited autonomously by the user.

Reuse simulation model

Obviously, each development of ASM takes time and
costs money, therefore the simulation application
designer should identify the reusable ones.

The reuse of ASM across simulation applications
reduces cost and time, but it also brings constraints
during the assembly phase when they have to be
connected together. Only the component specialists
have the knowledge to specify the connections, and
several specialists are required to integrate a whole
simulation application (Cf. Figure 5).

Figure 5 – Problem of connection specification

Furthermore, interfaces of models are not always
compatible, which requires signal adaptation (cf.
Figure 6).

Figure 6 – Problem of signal adaptation

ASM implementation

Once the simulation application is logically designed,
each ASM has to be developed within its own
lifecycle and its specific methods.

Therefore, each ASM has its own definition,
managed in a separated view from the one built
inside the simulation application.

Traditionally, these two aspects are covered by
separate documents: one is the Model Functional
and Performance Requirement to describe the ASM
from the simulation application designer point of view,
the second is the Model Specification to describe the
ASM from its developer point of view.

This distinction enables the acquirer of the ASM to
keep an abstract view on it, while the developer can
provides further details on its implementation, as for
example its packaging properties which depend on
the type of methodology and tools used during its
development. The ASM implementation can then be
delivered as a Simulink, Scade or C-Code model as
long as they comply with the Airbus procedure
execution semantics.

It is the simulation platform responsibility to finally
take into account each ASM with adequate
production and deployment procedures via model
transformations.

3. MDE approach to support

simulation application development

As mentioned above, many actors collaborate to
develop a simulation application. Therefore, we need
a shared language to support their communications.

SysML had been previously selected in another R&T
Airbus project

[2]
 as a language to support

specification and design activities, and it was decided
to adopt it. The contribution was then to demonstrate
that it can be used efficiently to capture the design of
complex simulation applications, and how we could
make a bridge with legacy formalisms.

Let’s first introduce the concepts that are needed for
the formalization of the complete design of a
simulation application architecture.

Simulation application domain model

In addition to “ASM” component, two other types of
components have been considered.

The “PackageOfModels” component was added to
support the architecture of the Simulation application,
and to introduce a level of encapsulation, into the
simulation application.

The concept of “SimulationDataBus” was added to
enable capture of the connexions between different
ASMs.

Figure 7– Type of simulation components

Each simulation component is characterized by a
definition and an implementation. The concept of
SimulationComponent was introduced to reuse these
properties throughout the development process (cf.
below).

Figure 8 – Simulation component types

Each SimulationComponent includes a SCDefinition
which contains the specification of the component
from two points of view: the logical definition and the
physical definition as already proposed in another
Airbus R&T project

[2]
 and following the EIA632

[9]

guidelines.

Figure 9 – Simulation Component definition

The logical definition is used to describe how the
Simulation Component is breakdown into several sub
simulation component and how they are connected
together.

The physical definition allows connection of the
definition of the component with its concrete
implementation. For instance, it is possible to
implement an ASM with Simulink, Scade or C Code
but whatever the final technical choice, it is
documented into the “PhysicalDefinition”.

Figure 10 – Implementation for ASMs

Method to describe Simulation component

It was decided to capture the SCDefinition within the
SysML model organized in several packages
including one for the “SCLogicalDefinition” and
another for the “SCPhysicalDefinition”.

Again, it is useful to present what concepts are
intended to be captured prior to presenting how they
are captured using SysML language.

At this stage of the project, capturing the structural
aspect of the simulation was the primary focus while
most of the behaviours are hidden inside the
simulation components. There are both external and
internal structures to capture.

External structure definition is used to describe the
three types of Simulation component (cf. Figure 1)
from a usage point of view. It provides the list of
“SCDataPort” which corresponds to the interaction
points of the simulation component. Each
“SCDataPort” is specified with a “SCDataInterface”
which provides the list of data that flows in or out of
the simulation component via the SCDataPort.

Internal structure is only used to describe the internal
organization of the PackageOfModels. It provides the
list of instances of simulation component which
composed the PackageOfModels, and how they are
connected together through their SCDataPort. Each
instance of simulation component is typed by a
SCDefinition which corresponds to the definition of a
required Simulation Component from the point of
view of the PackageOfModels designer.

Figure 11 – Concept to be captured in SysML

Since ASMs and SimulationDataBus internal
structure definition were already supported by
specific formalism and legacy tools, it was preferred
to integrate these specific formalisms behind the
SCLogicalDefinition.

As mentioned in previous section, the main difficulties
for the development of simulation applications relates
to the capture of the connections specification
between ASMs. For that, one of the critical elements
are the interfaces. Because interface definition is a
shared information between two connected
components, defined at architecture level but also
used also at implementation level, it cannot be
managed within the SCLogicalDefinition. Therefore, it
needs to be managed in a specific view which is
imported by the logical one : the
SCDataInterfaceView.

Mapping of concept with SysML language

In order to describe the simulation components within
the SysML model, only a subset of the language is
used.

First of all, it is required to support the organization of
the information into different views such as the
SCLogicalDefinition, SCPhysicalDefinition and
SCDataInterfaceView. This is provided by the
“uml::package” concept.

Then, for the description of the simulation
components itself, a profile was developed to
specialized the SysML language with the simulation
domain concept.

Figure 12 – SysML profile for simulation definition

The advantage of the profile solution was to be able
to develop a checker on design rules for the different
simulation components. For instance, an ASM
component has two FunctionalDataPort with specific
names.

While SCLogicalDefinition is a type definition, it has
been decided to represent it with a “sysml::block”.
Then, the Internal Block Diagram (IBD) is used to
define the internal structure of the PackageOfModel,

with “uml::part” used to represent the different
SCInstances. Inside the IBD, the “uml::connector” is
used to connect the port of the different instances of
SimulationComponent.

To specify the SCDataPort and SCInterface two
modelling solutions were available. Using atomic flow
ports or using flow ports typed by flow specification.

Both solutions require adding flow ports on the block
which represents the simulation model; however the
solution based on flow specification offers the major
advantage in our case to separate the list of
exchange flow from the structure of the simulation
model, and then was manageable in a separated
package. This package is then imported in the
different SCLogicalDefinition.

The content of the SCInterface is detailed with
SysML::FlowProperties which are typed by
predefined SysML::ValueType, corresponding to
primitive allowed type by the Airbus Procedure for
ASM.

4. MDE and life cycle management

The design process described above reaches
another level of complexity when it comes to
managing the simulation evolution with time. Each
component used in the simulation, starting with the
ASM, will evolve over its life-cycle in order to
integrate new functionalities, bug fixes, etc. There is
a real need and challenge in supporting the
simulation designer with the upgrade of components
when building a new version of the simulation
application.

Figure 13 – Basic component interactions

In the situation illustrated above, the designer has
started a simulation architecture definition involving
three identified components; from this specification,
the INSIDE framework is able to find and proposes
existing implementations for these components that
satisfy the versioned interface constraints. At some
point, the version of interface A1 needs to be
upgraded to version 2.4.0. In the example, INSIDE
finds a matching implementation for component A,
but not for component B: the implementation
compliant with the upgraded version of A1 also
provides an upgraded version 3.5 of its own interface
B1. INSIDE then proposes an implementation
solution to the simulation designer that implies
another change of interface, in addition to the initial
desired upgrade; the simulation designer has to
decide whether to go with the proposed solution or to
request the development of a new specific version of
B satisfying the interface constraints.

To support this use case, INSIDE relies on:

 A clear distinction between simulation

architecture needs and components

implementations through versioned interfaces;

 A common repository where all elements are

stored and referenced;

 A resolver function, triggered in the edition

environment, which can browse the repository to

find and propose the elements that satisfy the

constraints of the architecture definition.

To give more autonomy to the resolver and minimize

the number of requests to the designer during the

process, INSIDE proposes to define the interface

compliancy with a range of versions (e.g. [3.0.0;

4.0.0[). In the above example, the simulation

designer could express that the interface B1 between

B and C could be any version from V3.1 to V3.9.

Given that level of freedom, the resolver can directly

propose a matching solution.

More can also be done for the resolver by using

semantic versioning [4]: the resolver can then infer a

first level of compliancy between the elements from

the name of the version (e.g. component C using

version V3.1 of interface B1 shall also be able to use

any 3.X version). This track has not yet been fully

explored in INSIDE; considering the context, it will

probably require an automatic versioning mechanism

to support users when they publish their new

component definition.

5. Tooling to support simulation

application design

When the approach was experimented with real end
users, a certain resistance was initially encountered .

Two types of difficulties were raised. Firstly, SysML
was another language to learn and perceived as far
from the business domain language.

Secondly, SysML model edition was perceived as a
heavy process, with many operations required to
specify simple properties.

A part of the solution came with the Eclipse technical
framework [5] chosen to develop the project and
especially with the Eclipse Modeling Framework. On
one side there are existing implementations of SysML
[6] on top of EMF and on the other side, there are
several graphical technologies on top of EMF that
allow to view and edit an EMF model more simply.

Considering the context, we needed more than just
one graphical paradigm to view and edit our model:
boxes and lines are well adapted for the overall
architecture description, tabular editors are almost
mandatory when it comes to managing interfaces
with many thousands of signals and finally, mainly for
the purposes of improving ergonomics, the main
elements (ASMs, interfaces, …) shall be easily
browsed from the project view.

Following the proven Model-View-Controller pattern,
it is relatively easy with EMF to propose different
views on parts of the same model. Obeo Designer
Erreur ! Source du renvoi introuvable. was a first-
class candidate to build consistent, visually pleasant
and rich views; it was completed with lower level
rendering technologies for large signals tables and
management of the elements directly from the project
representation tree.

In the Airbus context, there were legacy tools that
could/should be used to edit some specific parts of
the model; in particular, the edition of the connections
between the signals in the databus was already
provided by an existing tool. Using EMF, it was
relatively easy to use Model-to-Text technologies
such as Acceleo [8] to generate the required inputs
for the legacy editors: e.g. the “edit databus” action in
INSIDE transparently generates the configuration

files and launches the external editor, allowing the
user to refine the SysML model started in INSIDE.

6. Experimentation feedback

The approach has been deployed on a lab test
environment only but experimentation was realized
on a fully representative application case
corresponding to a simulation product.

The simulation application deployed on this
simulation product is composed of 109 ASMs which
have more than 14 000 connections. The ASM
providers work in five different organizations,
belonging to the different Aircraft System design
domains.

The objective of this application case is to perform
multi system design validation, on Bleed, Engine and
Warning system. For such objective, it is required to
have high reactivity on the simulation application
update after each system design change.

To enable such reactivity, the best way is to let the
person who knows best, do what needs to be done:
that is, the system designer, who is behind the design
change.

But, when the changes are potentially originating
from several design teams, it is required to ensure
that on one hand they can collaborate together to
update the whole simulation when the change
impacts at a multi-system level and on the other hand
that they can quickly iterate on their own part of the
simulation when the change has no impact outside
their system.

This is the typical use case for which our approach
aim at providing a solution, and therefore, it was the
perfect setting for verification. Five major criteria were
chosen to assess the solution: autonomy, reactivity,
workload, quality, ergonomics.

In order to perform the assessment, the simulation
application was first designed (cf. Figure 14) by the
INSIDE team, and then during a workshops with end
users, realistic changes scenarios on the simulation
application were executed so that end users can first
understand the proposed principles, then project their
uses into a future process, and finally assess if the
project objectives were achieved.

Figure 14 –Application case overview

Globally, the feedbacks from end users were very
positive. They have assessed the added value of the
solution in terms of improved autonomy for updating
a simulation application.

On the side of reactivity, it was considered easy in
terms of ability to easily integrate the update of a
subset of the simulation application done by another
team. In the legacy approach, this operation is
always difficult, especially when there are concurrent
modifications of the simulation application, which
imply time consuming and error-prone merge
operations. With the proposed approach, thanks to
the ability to encapsulate ASM into
PackageOfModels and also to the capability provided
to easily collaborate on the definition of the
interfaces, end users have confirmed that the
operation would be far simpler.

For quality, we could not quantify objectively the level
of improvement. Nevertheless, it was widely admitted
that the autonomy given to the system designer, the
primary owner of the knowledge, to update the
simulation, would reduce the risk of introducing error.

Regarding ergonomics, since it was only a prototype
approach, all the possible “shortcuts” were not
implemented in the tool. But, there were no major
questions or concerns from end users regarding
possible difficulties to understand the key capabilities
of the tool. However, the need for some fairly
straightforward specific training has been identified.

Another very positive feedback was the ability to
increase reusability of simulation application
artefacts. Thank to the concept of PackageOfModel it
becomes possible to reuse a larger subset of
simulation applications, while before it was only
possible at the ASM level. This opportunity was
identified in particular for reuse from single-system
simulation platforms to multi system platforms.

7. Conclusion

This paper presents the results of a project aimed at
improving the global efficiency of a system simulation
design in a context where the simulation itself has
become a complex system, involving many different
teams. A Model Driven approach has been set up
which has enabled the formalization of the existing
organisations, processes, tools and simulation
models materials with a focus on:

 Collaboration: with a clear and formal separation
of the simulation components specifications from
their implementations, the simulation application
designer can work on the definition and
integration of the simulation components in a
relatively independent way while the component
providers can work with more formal
specifications.

 Reuse: with the ability to compose simulation
models into bigger models, it is possible to
capitalize the definition and integration work
related to these composite models.

Despite the fact that the project was built over the
Airbus Procedure for ASM that gives guidelines on
the structure and interfaces for an elementary
simulation model, we believe that what has been
designed to address the above mentioned issues is
not specific to the Airbus environment and could be
adapted to other contexts with the same benefits.

While the first steps in a transition towards more
Model Driven Engineering are not always obvious -
with a certain amount of energy spent just to describe
what already exists -, it is then a strong basis on top
of which it is possible to build high added-value
features easily. To achieve even greater benefits, the
framework started in this project should be extended
with two additional MDE approaches: firstly, before
the simulation design activities, to support capture of
simulation needs (functional and performance), and
secondly to specify the deployment of the simulation
application on a simulation platform.

The final objective is to have a seamless process that
enables rapid development of the simulation product,
with high reactivity on the provision of updated
simulation applications.

8. References

[1] OMG, Systems Modeling Language (OMG SysML),
Version 1.1, 2008-11-01

[2] Mise en œuvre de SysML pour l’ingénierie des
Produits Avioniques et de Simulation à Airbus -
16ème journée Thématique AFIS 27-09-2012

[3] Evaluation of Modeling Tools Adaptation, Amine El
Kouhen, Cédric Dumoulin, Sébastien Gérard, Pierre
Boulet, hal-00706701, version 2, http://hal.archives-
ouvertes.fr/hal-00706701

[4] Tom Preston-Werner, “Semantic Versioning”,
http://semver.org.

[5] Eclipse. http://www.eclipse.org

[6] TOPCASED: The Open Source Toolkit for Critical
systems http://topcased.org

[7] Obeo Designer, http://www.obeodesigner.com

[8] Acceleo. http://www.acceleo.org

[9] ANSI/EIA 632 2003. Processes for Engineering a
System. American National Standards Institute
(ANSI)/Electronic Industries Association (EIA).

http://hal.archives-ouvertes.fr/hal-00706701
http://hal.archives-ouvertes.fr/hal-00706701
http://semver.org/
http://www.eclipse.org/
http://topcased.org/
http://www.obeodesigner.com/
http://www.acceleo.org/

