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Abstract

The classification with reject option consists to train a classifier that re-
jects the examples when the confidence in its prediction is low. The objective
is to improve the accuracy of the non-rejected examples and the reliability of
the prediction. The performances of the reject classifiers depend on both the
error rate and rejection rate. Since these two values are in opposition, we have
to make a trade-off between them. This paper is focused on the visualization
spaces the performances of the classifiers with rejection option. We analyze
two common spaces, the ROC space and the error-rejection (ER) space, then
we propose a new space: the cost-reject (CR) space. We show that the ROC
space is the less convenient space to represent the performances of the reject
classifier. However, it can be recommended for classification problems where
the importance of the two classes is different. For the ER space, we point
out that the linear interpolation that is commonly used to draw the error-
reject curve is not correct and leads to an overestimation of the classifier
performances. From the definition of the condition error and rejection rate,
we propose a new interpolation of the error-rejection curve that is unbiased.
We introduce a new visualization space called the cost reject space. The CR
space plots the normalized classification cost in function on the normalized
rejection cost. The performance of a classifier is represented in this space by
a line. The three visualization spaces are compared on problems of classifica-
tion algorithms comparison. The advantages and drawbacks of each spaces
are discussed and some recommendations are provided in the conclusion.
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1. Introduction

The classification with reject option consists to train a model, called re-
ject classifier, that is able to answer “I do not know” when the confidence in
its prediction is low [2] [19]. Also called abstaining classifier [22], selective
classification [8] or reject classification [25], this type of model receives an
increasing interest in the machine learning community because of its appli-
cation in many real world classification tasks. The classification with reject
option is especially useful when a high level of confidence in the predictions
are required. For example in medicine, classification based on genomics data
is used to differentiate the types of tumors with different outcomes and thus
assist the physician in the selection of more suitable therapeutic treatment
[27]. In this application, an error of prediction may lead to a tragic conse-
quence. The classifier should be able to reject a prediction, i.e. answer ”I
do not know” when the confidence in the prediction is low [14]. Notes that
this mimics the behavior of the physician that does not take a decision when
he has not enough information about a patient. Another application of the
reject option is the problem of classification under budget constraint. Models
based on a cascade of classifiers with reject option are used to both maximize
the accuracy and minimize the ”use cost” of the model [26] [15].

There are two different approaches to add a reject option in a classifier:
the plug-in methods and the embedded methods. The principle of the plug-in
methods is to add a rejection rule once the classifier has been fitted on the
training set. This consists to compute a rejection area on the output of the
classifier. There are many methods to compute this rejection area, some are
based on the estimation of posterior probabilities [6] , ROC curve analysis
[23][24] [7] or intensive empirical testing [20]. Jiang et al. proposed a trust
score to measure the reliability of a prediction that we can use to reject some
predictions [18]. In the embedded methods the rejection option is not added
but included in the classifier. The rejection area is computed during the
learning procedure. For example Cortes et al. proposes new loss function
including the cost of a rejection [5]. Many works have been published on
support vector machine with rejection in including the notion of reject in the
Hinge loss function [13] [1]. Another approach is based on multi-classifier
systems where the reject option is defined by the interaction of each classifier
[16]. Recent works have proposed to include the rejection option in the
boosting [4] or deep neural networks [12]. In both approaches, the objective
of the classification with reject option is the minimization of both the error
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rate and rejection rate. However these two values are in opposition i.e. the
lower the error rate, the higher the rejection rate. It is therefore necessary to
do a trade-off between the error rate and the rejection rate [17]. It is possible
to set penalty values for rejection and an error in order to find the optimal
trade-off between the two measures. However, in real world applications, we
do not know which penalties to use. It is generally helpful to explore all trade-
offs between the error rate and rejection rate to find a reject classifier with
performances adapted to the problem. To perform this exploration we use
different methods to visualize the performance of reject classifier in function
the trade-off. The most used methods are the ROC space and the error-
reject space also called ARC for accuracy rejection curve [21]. Condessa et
al. have recently proposed a set of three performance measures for classifier
with rejection [3].

In this paper, we present several tools to visualize and interpret the perfor-
mances of the reject classifiers. In section two we formalize the classification
with reject option and its different performance measures. In section three,
we analyze the reject error space that is the most common tools to visualize
the performances of reject classifier. We show how to interpret this space and
point out the very common error of curve interpolation. In section four we
introduce a new performance visualization space for the classification with
rejection option, called the cost reject space. In section five, we show how to
use the ROC space to visualize the error rate, the rejection rate, and their
trade-offs. We conclude by a discussion on the advantages and drawbacks of
these three different spaces and we provide some recommendations.

2. Classification with reject option

Let’s consider a classification problem with d classes: {c1, ..., cd}. We
denote a training set of N examples Tr = {(x1, y1), ..., (xN , yN)} and a clas-
sifier Ψ. The classifier computes a set of continuous values, one for each class
ωi(x), representing the probabilities to assign x to the corresponding class.
In non-reject classification, the classifier is a function Ψ : Rm → {c1, ..., cd}
returning the class with the maximum ωi(x). In classification with reject
option, the classifier is a function Ψ : Rm → {c1, ..., cd, r} where r represents
the rejection decision. A rejection threshold t is fixed, if all of the ωi(x)
values are less than t then the example is rejected, otherwise a prediction is
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returned.

Ψ(x) =

{
r if ωi(x) < t ∀i
ci = argmaxi{ωi(x)} otherwise

(1)

Different rejection thresholds can be fixed for each class if the seriousness
of the different types of error is not equal [11]. This case has no impact
on the two first visualization spaces presented in the section three and four.
For the moment, we simplify the notations in considering that the rejection
threshold t is the same for each class. Note that this formulation describes
the plug-in methods and all following work is applied to the plug-in methods.
However, this work can also be applied to embedding methods. The embed-
ding methods generally include a hyper-parameter controlling the trade-off
between the error rate and rejection rate. This hype-parameter is equivalent
to the rejection threshold of the plug-in methods. The error-reject, cost-
reject and ROC space, presented in the following sections, can also be used
for the embedding methods.

The performance measures for the classification with reject option are
more complex than the measures for the classification without reject option.
For a given example (x, y), three cases are possible: the example can be well-
classified, miss-classified or rejected. The probability of these three cases are
represented respectively by the accuracy A, the error rate E and the rejection
rate R:

A = p(Ψ(x) = y,Ψ(x) 6= r)

E = p(Ψ(x) 6= y,Ψ(x) 6= r)

R = p(Ψ(x) = r)

(2)

We are also interested by the probability of good classifications and miss-
classifications for the non-rejected examples. We define the conditional ac-
curacy A′ and conditional error rate E ′ as:

A = p(Ψ(x) = y|Ψ(x) 6= r) = (1−R)A′

E = p(Ψ(x) 6= y|Ψ(x) 6= r) = (1−R)E ′
(3)

We have the following equalities:

A+R + E = 1 A′ + E ′ = 1 (4)

Note that in practice all of these probabilities cannot be computed di-
rectly, they are estimated from a set of test examples.
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Each of these measures gives a view on the performances of the reject
classifier. They can be combined in an unique value, the classification cost
L, that represents the final performance of the classifier:

L = λAA+ λEE + λRR = (1−R)(λAA
′ + λEE

′) + λRR (5)

L is a value to minimize that represents the cost to pay in making a pre-
diction with the classifier. The value of L for a given classifier is depending
on the rejection threshold t defined in equation (1). λA, λE and λR repre-
sent respectively the cost of a good classification, a miss-classification, and
a rejection. There is generally no reason to penalize a good classification so
we set λA = 0 and to simplify the notation we set λE = 1. The classification
cost becomes:

L = E + λRR = (1−R)E ′ + λRR (6)

The trade-off between the error and rejection rate is controlled by the
λR. We can define an interval of λR. A rejection must always be penalized,
λR is therefore strictly positive. The cost of rejection must be lower than
the cost of a random prediction, so we have 0 < λR < 1 − 1

d
. In real

world applications, it is very difficult to set a precise value of λR for a given
classification problem. It is generally helpful to test different values of λR
and explore the performances of the reject classifier through different trade-
offs between the error rate and rejection rate. In the three next sections, we
present different tools in order to visualize these performances.

3. The error reject (ER) space

The most popular tool to visualize the performances of a reject classifier is
the error reject (ER) space [21]. This space represents in x-axis the rejection
rate R and in the y-axis the conditional error rate E ′. The advantage of the
ER space is to show explicitly the tradeoff between the rejection rate and the
error rate. The figure 1 illustrates some interesting properties of the error
reject space. The point (0,0) represents the performances of the best classifier
i.e. all examples are well-classified with no rejection. The worst performances
are produced by the random classifiers i.e. classifiers making predictions at
random. The random classifiers have their conditional error rate equal to
1− 1

d
whatever the rejection rate, they are represented by the horizontal line

(E ′ = 1− 1
d
), in the figure 1 we set d = 2 the horizontal line is therefore at E ′ =
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Figure 1: Visualisation of a reject classifier in the error reject space with λR = 0.3.

0.5. All points above this line (gray area) represents classifiers worst than a
random classifier. This part of the space is therefore not interesting. We focus
only on the white area on this graph that we call the area of interest of the ER
space. The performances of a reject classifier are represented by a point (black
dot) at the coordinate (R,E ′). The unconditional accuracy A and error rate
E of the classifier can be obtained by a simple construction. The red line from
(0, E ′) to (1, 0) is crossing the vertical line that is passing through the black
dot (R,E) and this crossing is denoted with the white dot at the coordinate
(R,E). This vertical line gives the value of the unconditional performances,
E is represented by the distance between the x-axis and the white dot, A by
the distance between the white dot and the red diagonal (E ′ = 1 − R) and
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R by the distance between the red diagonal (E ′ = 1−R) and the horizontal
line E ′ = 1. The gray lines represent the iso-cost lines. The iso-cost lines
represent all points in the ER space with the same classification cost. The
iso-cost lines depends only on the value of λR (in the figure 1 we set λR = 0.3).
These iso-cost lines show the evolution of the classification cost in function
on E ′ and R.

Generally, we plot the performances in the ER space of classifiers with
different trade-offs between the error and rejection rate. To explore different
trade-offs, several rejection thresholds t are tested. When t changes, the re-
jection rate R and conditional error rate E ′ also change. The performances
of the reject classifier without fixed rejection threshold t, can be therefore
represented by a curve on the ER space. In theory, the number of possi-
ble values for the rejection threshold t is infinite. However, in practice, the
number of test examples is finite. The number of relevant values for t to
be tested is also finite. We therefore do not have a curve but only a set of
points in the ER space. The question is how to interpolate a curve from
this set of point. The widely used solution is to do a linear interpolation.
We show that the linear interpolation is not appropriate to the ER curve
and may lead to wrong conclusions in classifier comparison or error-rejection
trade-off selection problems. Let’s Ψ0 and ΨX two reject classifiers based
on the same classifier output but with different rejection thresholds. The
performances of Ψ0 and Ψx are represented on the ER space respectively by
the point (R0, E

′
0) and (RX , E

′
X). We want to compute the interpolation be-

tween these two points. Let’s call r0 and e0 the number of rejected examples
and miss-classifications of Ψ0. Assume that we increase the reject area of
Ψ0 in rejecting one more example, the performances of this new classifier are
(R0+1, E

′
0+1). The rejection rate increases :

R0+1 =
r0 + 1

N
= R0 +

1

N

For the error rate, there are two cases. In the first one, the newly rejected
example was a good classification for Ψ0, the conditional error rate increases
:

E ′0+1 =
e0

N − r0 − 1
= E ′0

N − r0
(N)− r0 − 1

In the second case, the newly rejected example was a miss-classification for
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Ψ0, the conditional error rate decreases :

E ′0+1 =
e0 − 1

N − r0 − 1
= E ′0

N − r0
N − r0 − 1

− 1

N − r0 − 1

Let’s denote X as the number of examples rejected by ΨX and classified
by Ψ0. Within these X examples, M are miss-classified and G well-classified
by Ψ0:

X = N(RX −R0) M = N(E ′X − E ′0) G = X −M

The curve between Ψ0 and Ψx on the ER space depends only on the
sequence of good-classifications and miss-classifications, it can be computed
directly from the previous formulas. We denote R0+x the rejection rate when
we improve the number of rejected examples of Ψ0 by x. We denote E ′0+(g,m)

the conditional error rate when we improve the number of rejected examples
of Ψ0 by g well-classified and m miss-classified examples.{

R0+x = r0+1
N

= R0 + x
N

E ′0+(g,m) = E ′0
N−r0

N−r0−g−m −
m

N−r0−g−m

We call the pessimistic interpolation the highest conditional error rate
for a given rejection rate. It is defined when the G well-classified examples
are rejected before any miss-classified example is rejected. In the first step,
we reject the well-classified examples, the conditional error rate is therefore
E ′0+(g,0) for 0 ≤ g ≤ G. Once all G well-classified examples have been
rejected, we reject the M miss-classified examples. The conditional error rate
becomes E ′0+(G,m) for 0 ≤ m ≤ M . The curve representing the pessimistic
interpolation is defined in the ER space by the following set of points :{

(Rg, E
′
0+(g,0)) ∀g 0 ≤ g ≤ G

(RG+m, E
′
0+(G,m)) ∀m 0 ≤ m ≤M

In the same way, we define the optimistic interpolation representing the
lowest conditional error rate for a given rejection rate. It happens when the
M miss-classified examples are rejected before any good-classified example
is rejected. The curve representing the optimistic interpolation is defined in
the ER space by the following set of points :{

(Rm, E
′
0+(0,m)) ∀m 0 ≤ m ≤M

(Rg+M , E
′
0+(g,M)) ∀g 0 ≤ g ≤ G
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We note E ′0+x the conditional error when we improve the number of re-
jected examples of x whatever the proportion of well-classified and miss-
classified examples. It is a random variable depending on the number of
rejected good-classifications and miss-classifications. The probability that
these x examples are composed of g good-classifications andmmiss-classifications
is binomial :

p(g,m) =

(
x

g

)(
G

X

)g (
M

X

)(x−g)

The expected error E[E ′0+x] is therefore :

E[E ′0+x] =
x∑
g=0

p(g, x− g)E ′0+(g,x−g)

We recommend using this interpolation to draw the error-reject curve of
a given classifier. The method is to vary the rejection threshold t, and for
each value t computing the corresponding conditional error rate and rejection
rate. We obtain a set of points {(E ′i, Ri)} in the ER space. This set of points
is used to interpolate the error-reject curve in using algorithm 1.

Algorithm 1 Compute the interpolation of the ER curve

InterpolationER {(E ′i, Ri), i = 1..p}
// {(E ′i, Ri)} are the set of conditional error rates and rejection rates rep-
resenting the points to interpolate in the ER space.
Inter ← { }
for i = 0 to (p-1) do

Inter ← Inter + (Ri, E
′
i)

compute g and m the number of respectively well-classified and miss-
classified examples that are not rejected in Ri and rejected in Ri+1

for j = 1 to (g+m) do
Inter ← Inter + (Ri+j,E[E ′0+x])

end for
end for
Inter ← Inter + (Rp, E

′
p)

return Inter

To check that our interpolation is correct, we test it on simulations based
on artificial datasets with two classes. Each class is defined in a 10-dimension
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Figure 2: Interpolation in the error reject space.

space by a Gaussian distribution with a diagonal covariance matrix. We
generate 100 training examples and 100 test examples for each class. A LDA
classifier is fitted on the training set and the rejection option is defined by
fixing a rejection threshold on the posterior probabilities estimated by the
classifier. We test the performances with different rejection thresholds from 0
to 1 and plot the corresponding points on the ER space. The figure 2 shows
two of these points (Ψ0 and ΨX) and the different interpolations between
them. The pessimistic and optimistic interpolations are represented by the
gray lines, linear by the dotted line and our interpolation by the bold gray
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line. We generate another very large set of test examples and used them to
compute the true performance of the classifier between Ψ0 and ΨX . This true
performance is represented by the black curve. We see that our interpolation
and true performance curve are identical. This validates our interpolation
method.

We see that the true performance curve is very different from the widely
used linear interpolation. The figure 3 illustrates the consequences of this
problem. On the same artificial dataset defined previously, we construct two
classifiers and plot their performances (black and gray points) on the ER
space. We see that with the linear interpolation the black curve is always
below than the gray curve. This means that the ”black” classifier is absolutely
better than the ”gray” classifier. However, this conclusion is wrong. The true
performance curves ( or our interpolation) tell us that the gray classifier is the
best for some ranges of rejection rate. The use of linear interpolation may,
therefore, lead to wrong conclusions in comparative studies or error-rejection
trade-off selection.

4. The cost reject (CR) space

We propose a new tool, called the Cost Reject (CR) space, in order to
visualize the performances of the reject classifiers in function of the rejection
cost. The x-axis and y-axis represent respectively the normalized rejection
cost λ̃ and the normalized classification cost L̃. L̃ is a normalization of the
classification cost such that it becomes a convex combination of the error
rate and the rejection rate:

L̃ =
L

1 + λR
=

1

1 + λR
E +

λR
1 + λR

R = (1− λ̃R)E + λ̃RR (7)

The normalized rejection cost λ̃ is the coefficient of this convex combination.
λ̃ is in the interval [0, 1] and is defined by : λ̃R = λR

1+λR
. Note that in the

normalized classification cost, the trade-off between the error and rejection
is equivalent to the trade-off in the classification cost since the rates of the

error cost on the rejection cost is the same 1
λR

= 1−λ̃R
λ̃R

.

The performances of a classifier are represented on this space by a segment
defined by the points [(0, E), (1, R)]. The figure 4 shows the performances
of a classifier with E = 0.23 and R = 0.44 in the CR space. When λ̃R = 0
(resp. λ̃R = 1) we have L̃ = E (resp. L̃ = R). We can read the error rate
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Figure 3: Comparison of two reject classifier in the ER space with different interpolation
methods.

and rejection rate of the classifier at the extremities of the segment. The
red segment [(0, 0), (1, 0)] represents the best classifier making no errors and
no rejections. We point out some relations between the ER and CR space.
There is a bijection between the points in the ER space and the segments on
the CR space. The is another bijection between the point in the CR space
and the iso-cost curve in the ER space. These two bijections are defined by
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the following formulas :

L̃ = (1−R)E ′ + (R− (1−R)E ′)λ̃R E ′ =
L̃− λ̃R

(1−R)(1− λ̃R)
(8)

The segment [(0, 0), (1, 1)] represents the classifier rejecting all examples.
All points above this line represent classifier performances worse than the
trivial classifier that reject all examples. The red segment

[
(0, 1− 1

d
), (1, 0))

]
corresponds to the classifier assigning a random class to all examples, in this
example we set d = 5, so E = 0.8 for a random classifier. All points above this
line represent classifier performances worse than a trivial classifier that makes
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random predictions. In the section two, we showed that the cost of rejection
has to be lower than the cost of random guessing, we have therefore the
constraint λR < 1−1/d, this is represented by the vertical line at λ̃maxR = 0.44.
The gray area defined by these lines represents cases where the classification
with reject option is trivial or not possible. The area of interest in the CR
space is therefore defined by the triangle (0, 0)(λ̃maxR , 0)(λ̃maxR , λ̃maxR ).

The conditional error rate can be easily constructed. Let X the point at
the intersection of the segment representing the performances of the classifier
and the segment [(0, 0), (1, 1)]. The line passing through (1, 0) and X cut the
y-axis at E ′. This can be proven in applying the Thales’s theorem twice and
showing that E

1−R = |X(0,0)|
|X(1,1)| = E′

1
.

We use the normalized rejection cost to define the CR space whose scale
increases linearly from 0 to 1. However, it is more practical for performance
visualization to plot the rejection cost on the x-axis whose scale increases
exponentially from 0 to + inf. In the figure 4 the two scales are plotted on
the x-axis.

We showed in the previous section that the performances of a classifier
can be represented by a curve in the ER space if the rejection threshold is
not fixed. The same principle can be applied in the CR space. The different
performances produced by the different values of the rejection threshold are
represented by a set of segments as illustrated in the figure 5. We clearly see
on the extremities of the figure that the rejection rate goes from 0 to 1 and
the error rate goes from E to 0. For each value of the rejection cost, we want
to keep the best classifier i.e. the one minimizing the classification cost. The
lower envelope of this set of segments (bold curve), that we call the CR curve,
represents the best performances for any rejection cost. For λR ≤ 0.12 the
CR curve is confused with the segment [(0, 0), (1, 1))]. This means that below
this rejection cost the best solution is to reject all examples. For λR ≥ 0.44
the CR curve is confused with the segment representing the classifier with
no rejection. These two values give the interval of rejection cost where the
rejection is not trivial. In the ER space, it is difficult to identify a similar
interval. We can not know which part of the ER curve is relevant because it
depends on the rejection cost.

The CR space is particularly useful for the classifier comparison. We
illustrate this in an example where we compare the performances of two clas-
sifiers in a two-classes problem. We use the same type of artificial dataset
described in section 4. We compare the performances of a LDA classifier
and SVM with a radial kernel. The posterior probabilities of each class are

14



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cost of rejection

N
or

m
al

iz
ed

 C
la

ss
ifi

ca
tio

n 
co

st

0 0.1 0.2 0.3 0.5 0.7 0.9 2 4 10 inf

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0
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estimated from the classifiers and a rejection threshold is applied. Differ-
ent trade-offs between rejection and error are tested in varying the value of
threshold from 0 to 1. The figure 6 shows the ER (left) and CR (right) curves
of both classifiers (SVM in black and LDA in gray). A natural interpretation
of the ER space on the figure 6 is that no classifier is absolutely better than
the other. The gray classifier is better with low rejection rate and the black
classifier is better for high rejection rate. The choice of the best classifier
depends on the trade-off between error and rejection rate that we want. The
CR space tells something very different. The black curve is always below the
gray curve on the area of interest this lead to the conclusion that the black
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Figure 6: Comparison of two classifiers in the ER (left) and CR (right) space.

classifier is absolutely better than the gray classifier. For λR ≤ 0.08 the best
solution is to reject all examples for both classifiers, so their performances
are equal. For 0.08 < λR ≤ 0.17 it becomes useful for the black classifier to
reject some examples, the cost of the black classifier becomes lower than gray
classifier. For 0.17 < λR < 0.5 both classifiers improve their performances in
rejecting examples but the black classifier is still the better. For λR ≥ 0.5 the
rejection becomes too costly, it is better to classify randomly the examples
than to reject them. The gray classifier becomes better than the black clas-
sifier only when the best solution is to use a random classifier. Actually, the
ER space is misleading, it gives the impression that the gray classifier can
be interesting in some cases. The problem that the area of interest does not
take into account all constraints on λR and especially the constraints induced
by the assumption that the cost of rejection should be lower than the cost
of random guessing. Some points in the area of interest in the ER space are
irrelevant for classifier comparison or error-rejection trade-off selection.
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5. The ROC space

Now we consider the specific problem of classification with two classes
(d = 2): positive (p) and negative (n). For two classes problems, a very
useful tool to visualize the performances of non-reject classifiers is the ROC
space [9]. The ROC space represents the true positive rate (TPR) in function
of the false positive rate (FPR). In varying the decision threshold, the
performances of the classifier are represented by the ROC curve. In this
section, we show how to use the ROC space to visualize the performances of
reject classifiers.

In two classes problem, the classifier returns only one continuous value
of ω(x) representing the estimated probability that the example belongs to
the positive class. The rejection area is depending on two decision thresholds
{tN , tP} (with the constraint tN ≤ tP ) and the reject classifier is defined by :

Ψ(x) =


n if ω(x) ≤ tN
p if ω(x) ≥ tP
r if tN < ω(x) < tP

(9)

The performances of the reject classifier are measured by the following
values: the rate of true negative (TNR), true positive (TPR), false nega-
tive (FNR), false positive (FPR), positive rejection (RPR) and negative
rejection (RNR).

TPR = p(Ψ(x) = p,Ψ(x) 6= r|y = p) TNR = p(Ψ(x) = n,Ψ(x) 6= r|y = n)

FNR = p(Ψ(x) = n,Ψ(x) 6= r|y = p) FPR = p(Ψ(x) = p,Ψ(x) 6= r|y = n)

RPR = p(Ψ(x) = r, |y = p) RNR = p(Ψ(x) = r, |y = n)

(10)

The rate of true negative (TNR′), true positive (TPR′), false negative
(FNR′), false positive (FPR′) represent the performances of classification
for the non-rejected examples :

TPR′ = p(Ψ(x) = p|Ψ(x) 6= r, y = p) TNR′ = p(Ψ(x) = n|Ψ(x) 6= r, y = n)

FNR′ = p(Ψ(x) = n|Ψ(x) 6= r, y = p) FPR′ = p(Ψ(x) = p|Ψ(x) 6= r, y = n)

(11)

17



We have the following properties on these values:

TPR = (1−RPR)TPR′ TNR = (1−RNR)TNR′

FNR = (1−RPR)FNR′ FPR = (1−RNR)FPR′

TPR + FNR +RPR = 1 TNR + FPR +RNR = 1

TPR′ + FNR′ = 1 TNR′ + FPR′ = 1

(12)

A reject classifier should be viewed as the combination of two non-reject
classifiers. Let’s called ΨP and ΨN the two non-reject classifiers based on the
classifier output ω(x) and using respectively the decision threshold tP and
tN . The vote of these two classifiers defines a reject classifier. If ΨP andΨN

agree then we assign the class returned by the classifiers if ΨP and ΨN are
disagree the example is rejected:

Ψ(x) =


n if ΨP (x) = ΨN(x) = n
p if ΨP (x) = ΨN(x) = p
r if ΨP (x) 6= ΨN(x)

(13)

The performances of a reject classifier can be decomposed into the com-
bination of the performances of the two corresponding non-reject classifiers.
Let’s TPRP , TNRP , FPRP , FNRP (resp. TPRN , TNRN , FPRN , FNRN)
the performances of the classifier ΨP (resp. ΨN), we can express the perfor-
mances of the reject classifier by :

TPR = TPRP FNR = FNRN RPR = TPRN − TPRP

TNR = TNRN FPR = FPRP RNR = FPRN − FPRP

(14)

These performances can be represented in the ROC space as illustrated
in the figure 7. The performances of ΨP and ΨN are represented by the two
black dots. The white dot represents is the upper left corner of the rectangle
defined by the black points, so its coordinates are (FPRP , TPRN). This
point is useful to visualize the performances of the reject classifier. On the
vertical line passing through this point, we visualize the performances on the
positive examples TPR + RPR + FNR = 1. On the horizontal line, we
visualize the performances on the negative examples FPR+RNR+TNR =
1. The triangle represents the conditional TPR′ and FPR′ of the reject
classifier. Note that if we have RPR = RNR we can construct this point
in plotting the line ((0, 0),ΨP ) and the line ((1, 1),ΨN). The intersection of
these two lines represents the TPR′ and FPR′. The reason is that the line

18



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Ψ      p

Ψ      N

TPR

RPR

FNR

FPR RNR TNR

Figure 7: Visualisation of a reject classifier in the ROC space.

((0, 0),ΨP ) is the iso-precision line and the conditional precision pre′ can be
expressed in the function of the precision preP of the classifier ΨP :

pre′ =
TPR′

TPR′ + FPR′
= preP

(
TPRP + 1−RPR

1−RNRFPRP

TPRP + FPRP

)
(15)

When RPR = RNR we have pre′ = preP . The same demonstration can be
done on the negative example in order to define the second line.

Let the cost of the predictions defined in the table 5. If we consider that
the good classifications are not penalized (λTP = λTN = 0), the classification
cost of a reject classifier is defined by :

L = πP (λFNFNR + λRPRPR) + πN (λFPFPR + λRNRNR) (16)
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Table 1: Cost matrix of a two-class prediction problem.

actual
P N

Predicted P λTP λFP
class N λFN λTN

R λRP λRN

where πP and πN are the prior probabilities of the two classes.
The ROC space can represent the classification cost only for non-reject

classifier. The iso-cost lines are the parallel gray lines in the figure 7, their
slope depends on the ratios πP

πN
and λFN

λFP
[10]. The ROC space can not rep-

resent the classification cost of reject classifier because the classification cost
depends on the trade-off between error and rejection rates that is controlled
by λRP and λRN and these values are not represented in the ROC space. A
solution is to rewrite the classification cost (16) in introducing the formulas
(14) as follow:

L = πPλFN

(
λRP
λFN

FNRN + (1− λRP
λFN

)FNRP

)
+ πNλFP

(
λRN
λFP

FPRP + (1− λRN
λFP

)FPRN

)
= πPλFNFNRλ + πNλFPFPRλ

(17)

The classification cost of the reject classifier is equal to the classification
cost of a non-reject classifier whose the performances, noted (FNRλ, FPRλ),
are convex combinations of the performances of ΨP and ΨN . The point
(FPRλ, TPRλ) represents the performances of a non reject classifier that
has the same classification cost than the reject classifier :

TPRλ =
λRP
λFN

TPRP +

(
1− λRP

λFN

)
TPRN

FPRλ =
λRN
λFP

FPRP +

(
1− λRN

λFP

)
FPRN

(18)

The point(FPRλ, TPRλ) is an indirect visualization of the performances
of a reject classifier in the ROC space. This representation depends natu-
rally on the rejection cost and more specially on the ratios λRP

λFN
and λRN

λFP
.
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Figure 8: Visualization of the classification cost of a reject classifier in the ROC space
with ratios ( λRP

λFN
, λRN

λFP
).

The figure 8 shows some examples of the point (FPRλ, TPRλ) for a given
reject classifier. Each cross corresponds to the classification cost of the re-
ject classifier for given ratios λRP

λFN
and λRN

λFP
. In varying these ratios from 0

to 1, the cross spans the rectangle defined by ΨP and ΨN . The upper left
corner corresponds to the case where the costs of rejection are null. The
diagonal from the upper left to the bottom right corner corresponds to the
cases where the ratios are equal. The two black lines are the iso-cost lines
passing respectively through ΨP and ΨN . These lines can be used to define
the area of interest of the reject classifier. If a cross is above both iso-cost
lines then the reject classifier has a lower classification cost than both non-
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reject classifiers. The reject option will improve the performances and should
therefore be used. All crosses below one of these two iso-cost lines represent
cases where the rejection cost are too high such that the reject option can
improve the performances of the classifier.

6. Discussion and conclusion

In this paper, we presented three spaces (ER, CR, ROC) to represent the
performances of the reject classifiers. Each one has its advantages and draw-
backs, the choice of the space depends on the context of the classification
problem. Both ER and CR space plot the performances of the reject clas-
sifiers in exploring different trade-offs between the error and the rejection.
However, they do not use the same tools to do this exploration. The ER
space represents explicitly the relation between the conditional error and the
rejection rate, but the comparison of the performances with different costs
of rejection is difficult. The CR uses the cost of rejection and classification
cost. It is easy to make a comparison with different rejection cost but the
relation between error and rejection rate is less visible than in the ER space.
We recommend using the ER space if a value of rejection cost can be fixed
and the CR space when the rejection cost varies. Another major difference
between the ER and CR space is the values that are used to represent the
performance. The ER space represents the conditional performances E ′, A′

and R whereas the CR space represents the unconditional performances E,
R, A and L̃. In function of the performances measure that we use, we can
prefer the ER and CR space. However, we point out that in the CR space
we can easily construct all other values E ′ and A′. In the ER space, E and
A can also be easily constructed, however, the representation of L is more
complex since the iso-cost lines are not linear.

In both ER and CR space we defined an area of interest, representing the
part of the graph where we have to focus our attention. A point out from this
area of interest represents cases where the rejection option is not possible or
trivial. In CR space the area of interest is defined by the three constraints:
1) a classifier must have better performances than random classifier 2) a
reject classifier cannot have worse performances than the classifier rejecting
all examples 3) λR < 1 − 1

d
. In the ER space, only the first condition can

be represented. The second and third conditions cannot be used because
when R = 1 then E ′ is not defined and λR is not represented in the ER
space. There are some parts in the area of interest of the ER space that
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are actually irrelevant for the performance analysis of a reject classifier. The
consequences of this point, that have been illustrated in the experiments of
on the figure 6, may lead to wrong conclusions in classifiers comparison or
error-rejection trade-off selection. We recommend checking always the area
of interest in the CR space.

The ROC space is clearly the less convenient space to represent the per-
formances of the reject classifier. Only the unconditional values can easily be
represented, the conditional TPR′ and FPR′ can be constructed, the clas-
sification cost can only be visualized indirectly in plotting the performances
of a non-reject classifier with equivalent performances. The only case where
we recommend the use of the ROC space is in the two-classes problem when
the importance of the two classes is different λFP 6= λFN or/and λRP 6= λRN .
The ER and CR space deal with error and rejection rate computed over all
classes. Only the ROC space can plot separately the performances of the two
classes.
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[16] Blaise Hanczar and Michèle Sebag. Combination of one-class support
vector machines for classification with reject option. In Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in
Databases, pages 547–562. Springer, 2014.

24



[17] Lars Kai Hansen, Christian Liisberg, and Peter Salamon. The error-
reject tradeoff. Open Systems & Information Dynamics, 4:159–184,
1997.

[18] Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To trust or
not to trust a classifier. In Advances in Neural Information Processing
Systems, pages 5546–5557, 2018.

[19] Hoel Le Capitaine. A unified view of class-selection with probabilistic
classifiers. Pattern Recognition, 47(2):843–853, 2014.

[20] Claudio Marrocco, Mario Molinara, and Francesco Tortorella. An em-
pirical comparison of ideal and empirical roc-based reject rules. In Pro-
ceedings of the 5th international conference on Machine Learning and
Data Mining in Pattern Recognition, MLDM ’07, pages 47–60, 2007.

[21] M.S.A. Nadeem, JD. Zucker, and B. Hanczar. Accuracy-rejection curves
(arcs) for comparing classification methods with a reject option. Journal
of Machine Learning Research - Proceedings Track, 8:65–81, 2010.

[22] Tadeusz Pietraszek. Optimizing abstaining classifiers using roc analysis.
In Proceedings of the 22nd international conference on Machine learning,
ICML ’05, pages 665–672, 2005.

[23] Tadeusz Pietraszek. On the use of roc analysis for the optimization of
abstaining classifiers. Machine Learning, 68(2):137–169, August 2007.

[24] F. Tortorella. A roc-based reject rule for dichotomizers. Pattern Recog-
nition Letters, 26(2):167–180, 2005.

[25] Francesco Tortorella. An optimal reject rule for binary classifiers. In
Proceedings of the Joint IAPR International Workshops on Advances in
Pattern Recognition, pages 611–620, 2000.

[26] Kirill Trapeznikov and Venkatesh Saligrama. Supervised sequential clas-
sification under budget constraints. In Artificial Intelligence and Statis-
tics, pages 581–589, 2013.

[27] M. van de Vijver. A gene-expression signature as a predictor of survival
in breast cancer. N Engl J Med., 347:1999–2009, 2002.

25




