
HAL Id: hal-02271492
https://hal.science/hal-02271492

Submitted on 26 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MUSICNTWRK: data tools for music theory, analysis
and composition

Marco Buongiorno Nardelli

To cite this version:
Marco Buongiorno Nardelli. MUSICNTWRK: data tools for music theory, analysis and composition.
Computer Music Multidisciplinary Research 2019, Oct 2019, Marseille, France. �hal-02271492�

https://hal.science/hal-02271492
https://hal.archives-ouvertes.fr

MUSICNTWRK: data tools for music theory, analysis
and composition

Marco Buongiorno Nardelli1,2,3,4,5[0000−0003−0793−5055]

1 CEMI, Center for Experimental Music and Intermedia, University of North Texas,
Denton, TX 76203, USA

2 iARTA, Initiative for Advanced Research in Technology and the Arts, University of
North Texas, Denton, TX 76203, USA

3 Department of Physics, University of North Texas, Denton, TX 76203, USA
4 IMéRA - Institut d’Études Avancée of Aix-Marseille Université, Marseille 13004,

France
5 Laboratoire CNRS-PRISM, 13402 Marseille, France

mbn@unt.edu

http://www.musicntwrk.com

Abstract. We present the API for MUSICNTWRK, a python library for
pitch class set and rhythmic sequences classification and manipulation,
the generation of networks in generalized music and sound spaces, deep
learning algorithms for timbre recognition, and the sonification of arbi-
trary data. The software is freely available under GPL 3.0 and can be
downloaded at www.musicntwrk.com.

Keywords: Computational Music Theory · Computer Aided Composi-
tion · Data Tools · Machine Learning.

1 Introduction

Big data tools have become pervasive in virtually every aspects of culture and
society. In music, application of such techniques in Music Information Retrieval
applications are common and well documented. However, a full approach to
musical analysis and composition is not yet available for the music community
and there is a need for providing a more general education on the potential, and
the limitations, of such approaches. From a more fundamental point of view, the
abstraction of musical structures (notes, melodies, chords, harmonic or rhythmic
progressions, timbre, etc.) as mathematical objects in a geometrical space is one
of the great accomplishments of contemporary music theory. Building on this
foundation, we have generalized the concept of musical spaces as networks and
derive functional principles of compositional design by the direct analysis of the
network topology. This approach provides a novel framework for the analysis
and quantification of similarity of musical objects and structures, and suggests
a way to relate such measures to the human perception of different musical
entities. The original contribution of this work is in the introduction of the
representation of musical spaces as large-scale statistical mechanics networks:

2 M. Buongiorno Nardelli

uncovering their topological structure is a fundamental step to understand their
underlying organizing principles, and to unveil how classifications or rule-based
frameworks (such as common-practice harmony, for instance) can be interpreted
as emerging phenomena in a complex network system. Results from this research
and the theoretical and technical foundation for this paper can be found in Ref.
[1].

This paper is intended to introduce the community of computer music prac-
titioners, composers and theorists to the practical use of data science tools (net-
work theory, machine learning etc.) through the MUSICNTWRK package
(www.musicntwrk.com), a python library comprised of four modules:

1. pcsPy - pitch class set classification and manipulation; construction of gener-
alized pitch class set networks using distances between common descriptors;
the analysis of scores and the generation of compositional frameworks;

2. rhythmPy - rhythmic sequence classification and manipulation; and construc-
tion of rhythmic sequence networks using various definitions of rhythmic
distance;

3. timbrePy - orchestration color networks; analysis and characterization of
timbre from a (psycho-)acoustical point of view; and machine learning mod-
els for timbre recognition; and

4. sonifiPy - a module for the sonification of arbitrary data structures, includ-
ing automatic score (musicxml) and MIDI generation.

In the following we will discuss the API of each module. All theoretical and
technical analysis, including the definition of all the quantities that MUSICNTWRK

is able to calculate, are not explicitly discussed here. The interested reader can
find all this information in Ref. [1].

2 MUSICNTWRK

MUSICNTWRK is a python library written by the author and available at
https://www.musicntwrk.com or on GitHub:
https://github.com/marcobn/musicntwrk. MUSICNTWRK is written in python 3
and requires installation of the following modules via the ”pip install” com-
mand:§

1. System modules: sys, re, time, os
2. Math modules: numpy, itertools, fractions, gcd, functools
3. Data modules: pandas, sklearn, networkx, community, tensorflow
4. Music and audio modules: music21, librosa
5. Parallel processing: mpi4py
6. Visualization modules: matplotlib, vpython (optional)

The reader is encouraged to consult the documentation of each package to get
acquainted with its purposes and use. In what follows we provide the full API
of MUSICNTWRK only.

§ this step is unnecessary if running on a cloud service like Google Colaboratory.

MUSICNTWRK 3

2.1 pcsPy

pcsPy is a module for pitch class set classification and manipulation in any
arbitrary temperament; the construction of generalized pitch class set networks
using distances between common descriptors (interval vectors, voice leadings);
the analysis of scores and the generation of compositional frameworks.

The PCSet class. pcsPy is is comprised of the PCSet class and its methods (listed
below) and a series of functions for pcs network manipulations. The PCSet class
deals with the classification and manipulation of pitch set classes generalized
to arbitrary temperament systems (arbitrary number of pitches). The following
methods are available:

def class PCSet

– def init (self,pcs,TET=12,UNI=True,ORD=True)

• pcs (int) pitch class set as list or numpy array
• TET (int) number of allowed pitches in the totality of the musical space

(temperament). Default = 12 tones equal temperament
• UNI (logical) if True, eliminate duplicate pitches (default)
• ORD (logical) if True, sorts the pcs in ascending order (default)

– def normalOrder(self)

Order the pcs according to the most compact ascending scale in pitch-class
space that spans less than an octave by cycling permutations.

– def normal0Order(self)

As normal order, transposed so that the first pitch is 0
– def transpose(self,t=0)

Transposition by t (int) units (modulo TET)
– def zeroOrder(self)

transposed so that the first pitch is 0
– def inverse(self)

inverse operation: (-pcs modulo TET)
– def primeForm(self)

most compact normal 0 order between pcs and its inverse
– def intervalVector(self)

total interval content of the pcs
– def LISVector(self)

Linear Interval Sequence Vector: sequence of intervals in an ordered pcs
– def operator(self,name)

operate on the pcs with a distance operator
• name (str) name of the operator O(ni)

– def forteClass(self)

Name of pcs according to the Forte classification scheme (only for TET=12)
– def jazzChord(self)

Name of pcs as chord in a jazz chart (only for TET=12 and cardinalities 7)
– def commonName(self)

Display common name of pcs (music21 function - only for TET=12)

4 M. Buongiorno Nardelli

– def commonNamePrime(self)

As above, for prime forms
– def nameWithPitchOrd(self)

Name of chord with first pitch of pcs in normal order
– def nameWithPitch(self)

Name of chord with first pitch of pcs
– def displayNotes(self,xml=False,prime=False)

Display pcs in score in musicxml format. If prime is True, display the prime
form.
• xml (logical) write notes on file in musicxml format
• prime (logical) write pcs in prime form

Network functions. pcsPy contains specific functions for network generation
and analysis. Network functions include:

– def pcsDictionary(Nc,order=0,TET=12,row=False,a=np.array(None))

Generate the dictionary of all possible pcs of a given cardinality in a gen-
eralized musical space of TET pitches. Returns the dictionary as pandas
DataFrame and the list of all Z-related pcs
• Nc (int) cardinality
• order (logical) if 0 returns pcs in prime form, if 1 retrns pcs in

normal order, if 2, returns pcs in normal 0 order
• row (logical) if True build dictionary from tone row, if False, build

dictionary from all combinatorial pcs of Nc cardinality given the totality
of TET.

• a (int) if row = True, a is the list of pitches in the tone row
– def pcsNetwork(input csv, thup=1.5, thdw=0.0,TET=12, distance=

’euclidean’, col=2,prob=1)

generate the network of pcs based on distances between interval vectors
In output it writes the nodes.csv and edges.csv as separate files in csv format
• input csv (str) file containing the dictionary generated by pcsNet-

work
• thup, thdw (float) upper and lower thresholds for edge creation
• distance (str) choice of norm in the musical space, default is ’eu-

clidean’
• col (int) metric based on interval vector, col = 1 can be used for voice

leading networks in spaces of fixed cardinality NOT RECOMMENDED
• prob (float) if not 1, defines the probability of acceptance of any given

edge
– def pcsEgoNetwork(label,input csv,thup e=5.0,thdw e=0.1,thup=1.5,thdw=0.1,

TET=12,distance=’euclidean’)

Generates the network for a focal node (ego) and the nodes to whom ego is di-
rectly connected to (alters). In output it writes the nodes ego.csv, edges ego.csv
and edges alters.csv as separate files in csv format
• label (str) label of the ego node
• thup e, thdw e (float) upper and lower thresholds for edge creation

from ego node

MUSICNTWRK 5

• thup, thdw (float) upper and lower thresholds for edge creation
among alters

• distance (str) choice of norm in the musical space, default is ’eu-
clidean’

– def vLeadNetwork(input csv,thup=1.5,thdw=0.1,TET=12,w=True,

distance=’euclidean’,prob=1)

Generation of the network of all minimal voice leadings in a generalized
musical space of TET pitches based on the minimal distance operators select
by distance. In output returns nodes and edges tables as pandas DataFrames.

• input csv (str) file containing the dictionary generated by pcsNet-
work

• thup, thdw (float) upper and lower thresholds for edge creation
• distance (str) choice of norm in the musical space, default is ’eu-

clidean’
• w (logical) if True it writes the nodes.csv and edges.csv files in csv

format

– def vLeadNetworkByName(input csv,thup=1.5,thdw=0.1,TET=12,w=True,

distance=’euclidean’,prob=1)

Generation of the network of all minimal voice leadings in a generalized mu-
sical space of TET pitches based on the minimal distance operators select
by name. In output returns nodes and edges tables as pandas DataFrames.
Available also in vector form for computational efficiency as vLeadNetworkByNameVec

• input csv (str) file containing the dictionary generated by pcsNet-
work

• name (str) name of operator for edge creation
• distance (str) choice of norm in the musical space, default is ’eu-

clidean’
• w (logical) if True it writes the nodes.csv and edges.csv files in csv

format

– def scoreNetwork(seq,TET=12)

Generates the directional network of chord progressions from any score in
musicxml format

• seq (int) list of pcs for each chords extracted from the score

– def scoreDictionary(seq,TET=12)

Builds the dictionary of pcs in any score in musicxml format
– def readScore(inputxml,TET=12,music21=False)

Reads musicxml score and returns chord sequence

• inputxml (str) score file
• music21 (logical) if True search the music21 corpus

2.2 rhythmPy.

rhythmPy is a module for rhythmic sequence classification and manipulation;
and the construction of rhythmic sequence networks using various definitions of
rhythmic distance.

6 M. Buongiorno Nardelli

The RHYTHMSeq class rhythmPy is comprised of the RHYTHMSeq class and its
methods (listed below) and a series of functions for rhythmic network manipu-
lations. The RHYTHMSeq class deals with the classification and manipulation of
rhythmic sequences. The following methods are available:

def class RHYTHMSeq

– init (self,rseq,REF=’e’,ORD=False)

• rseq (str/fractions/floats) rhythm sequence as list of strings/fractions/floats
name

• REF (str) reference duration for prime form the RHYTHMSeq class
contains a dictionary of common duration notes that uses the fraction
module for the definitions (implies import fraction as fr): {’w’:fr.Fraction(1,1),
’h’:fr.Fraction(1,2),’q’:fr.Fraction(1,4), ’e’:fr.Fraction(1,8),

’s’:fr.Fraction(1/16),’t’:fr.Fraction(1,32), ’wd’:fr.Fraction(3,2),

’hd’:fr.Fraction(3,4),’qd’:fr.Fraction(3,8), ’ed’:fr.Fraction(3,16),

’sd’:fr.Fraction(3,32),’qt’:fr.Fraction(1,6), ’et’:fr.Fraction(1,12),

’st’:fr.Fraction(1,24), ’qq’:fr.Fraction(1,5), ’eq’:fr.Fraction(1,10),

’sq’:fr.Fraction(1,20)}. This dictionary can be extended by the user
on a case by case need.

• ORD (logical) if True sort durations in ascending order

– def normalOrder(self)

Order the rhythmic sequence according to the most compact ascending form.
– def augment(self,t=’e’)

Augmentation by t units

• t (str duration of augmentation

– def diminish(self,t=’e’)

Diminution by t units

• t (str) duration of diminution

– def retrograde(self)

Retrograde operation
– def isNonRetro(self)

Check if the sequence is not retrogradable
– def primeForm(self)

reduce the series of fractions to prime form
– def durationVector(self,lseq=None)

total relative duration ratios content of the sequence

• lseq (list of fractions) reference list of duration for evaluating
interval content the default list is: [fr.Fraction(1/8),fr.Fraction(2/8),
fr.Fraction(3/8), fr.Fraction(4/8),fr.Fraction(5/8), fr.Fraction(6/8),
fr.Fraction(7/8), fr.Fraction(8/8), fr.Fraction(9/8)]

– def durationVector(self,lseq=None)

inter-onset duration interval content of the sequence

• lseq (list of fractions) reference list of duration for evaluating
interval content the default list is the same as above.

MUSICNTWRK 7

Network functions. rhythmPy contains specific functions for network generation
and analysis. Network functions include:

– def rhythmDictionary(Nc,a=None,REF=’e’)

Generates the dictionary of all possible rhythmic sequences of Nc length in
a generalized meter space of N durations. Returns the dictionary as pandas
DataFrame and indicates all non retrogradable and Z-related cells

• Nc (int) cell length

• a (str) list of durations in the rhythm sequence

– def rhythmPDictionary(N,Nc,REF=’e’)

Generate the dictionary of all possible rhythmic sequences from all possible
groupings of N REF durations. Returns the dictionary as pandas DataFrame
and indicates all non retrogradable and Z-related cells

• Nc (int) cell length

• N (int) number of REF units

– def rhythmNetwork(input csv,thup=1.5,thdw=0.0,distance=

’euclidean’,prob=1,w=False)

Generates the network of rhythmic cells based on distances between duration
vectors. In output it writes the nodes.csv and edges.csv as separate files in
csv format

• input csv (str) file containing the dictionary generated by rhythm-
Network

• thup, thdw (float) upper and lower thresholds for edge creation

• distance (str) choice of norm in the musical space, default is ’eu-
clidean’

• prob (float) if not 1, defines the probability of acceptance of any given
edge

• w (logical) if True it writes the nodes.csv and edges.csv files in csv
format

– def rLeadNetwork(input csv,thup=1.5,thdw=0.1,w=True,distance=

’euclidean’,prob=1)

Generation of the network of all minimal rhythm leadings in a generalized
musical space of Nc-dim rhythmic cells based on the rhythm distance oper-
ator. Returns nodes and edges tables as pandas DataFrames

• input csv (str) file containing the dictionary generated by rhythm-
Network

• thup, thdw (float) upper and lower thresholds for edge creation

• distance (str) choice of norm in the musical space, default is ’eu-
clidean’

• prob (float) if not 1, defines the probability of acceptance of any given
edge

• w (logical) if True it writes the nodes.csv and edges.csv files in csv
format

8 M. Buongiorno Nardelli

2.3 timbrePy

timbrePy comprises of two sections: the first deals with orchestration color and
it is the natural extension of the score analyzer in pscPy; the second deals with
analysis and characterization of timbre from a (psycho-)acoustical point of view.
In particular, it provides: the characterization of sound using, among others,
Mel Frequency or Power Spectrum Cepstrum Coefficients (MFCC or PSCC); the
construction of timbral networks using descriptors based on MF- or PS-CCs; and
machine learning models for timbre recognition through the TensorFlow Keras
framework.

Orchestration analysis. The orchestration analysis section of timbrePy com-
prises of the following modules:

– def orchestralVector(inputfile,barplot=True)

Builds the orchestral vector sequence from score in musicxml format. Re-
turns the score sliced by beat; orchestration vector.
• barplot=True plot the orchestral vector sequence as a matrix

– def orchestralNetwork(seq)

Generates the directional network of orchestration vectors from any score in
musicxml format. Use orchestralScore() to import the score data as sequence.
Returns nodes and edges as Pandas DataFrames; average degree, modularity
and partitioning of the network.
• seq (int) list of orchestration vectors extracted from the score

– def orchestralVectorColor(orch,dnodes,part,color=plt.cm.binary)

Plots the sequence of the orchestration vectors color-coded according to the
modularity class they belong. Requires the output of orchestralNetwork()
• seq (int) list of orchestration vectors extracted from the score

Fig. 1. Orchestration map of the first movement (Allegro) of J.S. Bach’s Brandenburg
Concerto n. 2, BWV 1047, as produced by the orchestralVectorColor function. Dif-
ferent shades of gray represent the sections of similar orchestral color as measured by
their modularity class in the network.

Sound classification. The sound classification section of timbrePy comprises
of modules for specific sound analysis that are based on the librosa python
library for audio signal processing. We refer the interested reader to the librosa
documentation at https://librosa.github.io/librosa/index.html. Fore a
more complete discussion on the descriptors defined in MUSICNTWRK please refer
to the work in Ref. [2]. Specific audio signal processing functions are:

MUSICNTWRK 9

– def computeMFCC(input path,input file,barplot=True,zero=True)

read audio files in repository and compute a normalized MEL Frequency
Cepstrum Coefficients and single vector map of the full temporal evolution
of the sound as the convolution of the timeresolved MFCCs convoluted with
the normalized first MFCC component (power distribution). Returns the list
of files in repository, MFCC0, MFCC coefficients.
• input path (str) path to repository
• input file (str) filenames (accepts ”*”)
• barplot (logical) plot the MFCC0 vectors for every sound in the

repository
• zero (logical) If False, disregard the power distribution component.

– def computePSCC(input path,input file,barplot=True,zero=True)

Reads audio files in repository and compute a normalized Power Spectrum
Frequency Cepstrum Coefficients and single vector map of the full tempo-
ral evolution of the sound as the convolution of the time-resolved PSCCs
convoluted with the normalized first PSCC component (power distribution).
Returns the list of files in repository, PSCC0, PSCC coefficients. Other vari-
ables as above.

– def computeStandardizedMFCC(input path,input file,nmel=16,

nmfcc=13,lmax=None,nbins=None)

read audio files in repository and compute the standardized (equal number
of samples per file) and normalized MEL Frequency Cepstrum Coefficient.
Returns the list of files in repository, MFCC coefficients, standardized sample
length.
• nmel (int) number of Mel bands to use in filtering
• nmfcc (int) number of MFCCs to return
• lmax (int) max number of samples per file
• nbins (int) number of FFT bins

– def computeStandardizedPSCC(input path,input file,nmel=16,

psfcc=13,lmax=None,nbins=None)

read audio files in repository and compute the standardized (equal number
of samples per file) and normalized Power Spectrum Frequency Cepstrum
Coefficients. Returns the list of files in repository, PSCC coefficients, stan-
dardized sample length.
Variables defined as for MFCCs.

– def timbralNetwork(waves,vector,thup=10,thdw=0.1)

generates the network of MFCC vectors from sound recordings. Returns the
nodes and edges tables as pandas DataFrames
• seq (float) list of MFCC0 vectors
• waves (str) names of sound files

Machine Learning Models. The definition of machine learning models for sound
recognition requires standard techniques of data science (like the separation of
data entries in training and testing sets, definition of neural network architec-
tures, etc.) that will not be discussed here. Basic knowledge of Keras is also

10 M. Buongiorno Nardelli

Fig. 2. Map of the MFCC0 for a repository of 180 impact sounds.

assumed. MUSICNTWRK module timbrePy contains many auxiliary functions to
deal with such tasks. Here we limit to report the API for the main machine
learning functions:

– def trainNNmodel(mfcc,label,gpu=0,cpu=4,niter=100,nstep=10,

neur=16,test=0.08,num classes=2,epoch=30,verb=0,thr=0.85,w=False)

train a 2 layer neural network model on the ful MFCC spectrum of sounds.
Returns: model,training and testing sets,data for re-scaling and normaliza-
tion,data to asses the accuracy of the training session.
• mfcc (float) list of all the MFCCs (or PSCCs) in the repository
• gpu, cpu (int) number of GPUs or CPSs used for the run
• niter (int) max number of model fit sessions
• nstep (int) how often the training and testing sets are redefined
• neur (int) number of neurons in first layer (it is doubled on the second

layer
• test (float) defines the relative size of training and testing sets
• num classes=2 (int) dimension of the last layer
• epoch (int) number of epochs in the training of the neural network
• verb (int) verbose - print information during the training run
• thr (float) keep the model if accuracy is ¿ test
• w (logical) write model on file if accuracy is above thr

– def trainCNNmodel(mfcc,label,gpu=0,cpu=4,niter=100,nstep=10,

neur=16,test=0.08,num classes=2,epoch=30,verb=0,thr=0.85,w=False)

train a convolutional neural network (CNN) model on the full MFCC/PSCC
spectrum of sounds. Returns: model,training and testing sets,data for re-
scaling and normalization,data to asses the accuracy of the training session.
Parameters are defined as above.

2.4 sonifiPy

sonifiPy contains functions for the sonification of data in multi-column or csv
format and produces output as WAV (it requires an installation of csound and
direct reference to the ctcsound module -), or musicxml or MIDI. Two sonifica-
tion protocols are available: spectral - data are mapped to a single sound using
subtractive synthesis (FIR filter); and linear - individual data points are mapped
to pitches in a time-series structure. See Ref. [3, 4] for a complete description of
this protocol. sonifiPy contains:

MUSICNTWRK 11

Fig. 3. Training and validation accuracy and loss in a typical Neural Network model
learning run

– def r 1Ddata(path,fileread)

Read data file in a multicolumn format (csv files can be easily put in this
format using Pandas). Returns the data values as (x,y).
• path (str) path to data file
• fileread (str) data file

– def i spectral2(xv,yv,itime,path=’./’,instr=’noise’)

Use subtractive synthesis to sonify data structure. Returns the sound file.
• xv,yv (float) data structure to sonify
• path (str) path to data file
• fileread (str) data file

– def i time series(xv,yv,path=’./’,instr=’csb701’)

Use csound instruments to sonify data structures as time-series. Returns the
sound file.
• xv,yv (float) data structure to sonify
• path (str) path to data file
• fileread (str) data file
• instr (str) csound instrument (it can be modified by user)

– def MIDImap(pdt,scale,nnote)

Data to MIDI conversion on a given scale defined in scaleMapping (see be-
low). Returns the MIDI data structure.
• pdt (float) data structure mapped to MIDI numbers
• scale (float) scale mapping (from scaleMapping)
• nnote (int) number of notes in the scale (from scaleMapping)

– def scaleMapping(scale)

Scale definitions for MIDI mapping. Returns: scale, nnote (see above).
– def MIDIscore(yvf,dur=2,w=None,outxml=’./music’,outmidi=’./music’)

Display score or writes to file
• yvf (float) data structure mapped to MIDI numbers (from MIDImap)
• dur (int) reference duration
• w (logical) if True writes either musicxml or MIDI file)

– def MIDImidi(yvf,vnorm=80,dur=4,outmidi=’./music’)

Display score or writes to file
• yvf (float) data structure mapped to MIDI numbers (from MIDImap)
• vnorm (int) reference velocity
• outmidi (str) MIDI file

12 M. Buongiorno Nardelli

Fig. 4. Data, MIDI map and score from the sonification protocol in MIDIscore

The most computationally intensive parts of the modules can be run on
parallel processors using the MPI (Message Passing Interface) protocol. Com-
munications are handled by two additional modules: communications and
load balancing. Since the user will never have to interact with these modules,
we omit here a detailed description of their functions.

Finally, a full set of examples is provided as Jupyter notebooks with the
distribution.

3 Conclusions and acknowledgments

We have presented the API for the MUSICNTWRK software package. The software is
freely available under GPL 3.0 and can be downloaded at www.musicntwrk.com.
We acknowledge the support of Aix-Marseille University, IMéRA, and of Labex
RFIEA+. Finally, we thank Richard Kronland-Martinet, Sølvi Ystad, Mitsuko
Aramaki, Jon Nelson, Joseph Klein, Scot Gresham-Lancaster, David Bard-Schwarz,
Roger Malina and Alexander Veremyer for useful discussions.

References

1. Buongiorno Nardelli, M.: Topology of Networks in Generalized Musical Spaces.
https://arxiv.org/abs/1905.01842, 2019.

2. Buongiorno Nardelli, M., Aramaki, M., Ystad, S., Kronland-Martinet, R.: in prepa-
ration, 2019

3. Buongiorno Nardelli, M.: materialssoundmusic: a computer-aided data-driven com-
position environment for the sonification and dramatization of scientific data
streams. International Computer Music Conference Proceedings, 356 (2015).

4. Buongiorno Nardelli, M.: Beautiful Data: Reflections for a Sonification and Post-
Sonification Aesthetics, in Leonardo Gallery: Scientific Delirium Madness 4.0,
Leonardo 51(3), 227–238 (2018).

