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Abstract—As process technology downscales, testing difficul-
ties and susceptibility of circuits to random hardware faults arise.
This trend, combined with increasing complexity of functions to
be performed by Systems-on-Chip, poses crucial concerns when
system engineers have to quantify the dependability achieved by
their SoC design. In this paper we propose an extension of the
existing approaches to the fault analysis of SoCs describing (1)
an algorithm for the automatic generation of failure scenarios
based on Bounded Model Checking (BMC) (2) a methodology
and Simulink-based tool for the automatic execution of SoC safety
analysis and (3) an application of the proposed analysis flow to
a concrete SoC use case.
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I. INTRODUCTION

System-on-Chip (SoC) design and testing complexity
seems to fit very well a monotonic non-decreasing func-
tion of time. On the one hand, technology downscaling is
causing considerable drawbacks, e.g. higher susceptibility of
circuits to radiation-induced soft errors [1]. On the other hand,
SoC functions are getting more and more sophisticated as
SoCs spread over safety-critical domains such as automotive,
aerospace, building automation, railway and medical. The
trend of pervasively using SoCs to control physical systems
directly interacting with human beings creates the need for
new methodologies and tools to quantify the dependability –
and in particular the functional safety– achieved by the system.
This requires improving the capabilities of testing techniques
and failure scenario identification for SoCs and represents one
of the most crucial concerns for engineers and international
certification authorities. The service delivered by a system is its
behaviour as perceived by another system (human or physical)
interacting with it. The deviation of the service delivered
by a SoC from the specified service is known as a service
failure. Random hardware faults introduce unpredictability to
the services provided by the SoC, and can generate service
failures. The typical design approach to control service fail-
ures, and consequently the system’s functional safety, is to
introduce redundancies to the system design in the space, time
and information domains. However, even if controlled, still
radiation-induced soft errors can cause residual service failures
for a number of reasons: the techniques to control failures
(1) might be based on models, which by nature suppress
some information, (2) could cover a subset of the total set
of occurring faults, (3) might only cover faults assumed to
occur in specific use cases, (4) could have some limitations
due to implementation costs. In summary, regardless of the
efforts spent for techniques aiming at improving the depend-
ability of delivered services, SoC services will be inevitably

affected by residual failures due to soft errors. Standards like
IEC 61508 [2] and ISO 26262 [3] introduce metrics and
recommend methodologies and tools to quantify the Safety
Integrity Level (SIL) of a SoC; for each SIL level the target
value for metrics to be achieved by the design is defined
and must be guaranteed. In this context, automatic generation
of failure scenarios assumes fundamental importance to test
the SoC design against fault models and to explore design
solutions, including evaluation of the effectiveness of fault-
tolerant mechanisms and cost trade-off. Several techniques and
tools have been described in literature proposing model-based
approaches to safety analysis. In [4] the application of a model
based flow for the automatic generation of fault trees based on
generation of minimal cut sets is shown. In [5] the SCADE
formalism is used to perform Deductive Cause-Consequence
Analysis (DCCA) using Design Verifier as formal engine. In
[6] Joshi et al. describe some results on exploiting Simulink
and SCADE for the safety analysis based on Simulink models.
In [7] Bozzano et al. describe the SLIM language for the
formalization of hybrid systems in presence of faults and
an automatic fault analysis tool-flow using NuSMV. All the
previously described approaches use high level models of the
system under analysis for the automatic generation of fault-
trees and binary decision diagrams (BDDs) as formal analysis
techniques.
In this paper we propose an extension of existing approaches
to perform automatic failure scenario generation during the
design of complex System-on-Chip architectures. The main
contributions of the paper can be summarized as follows: (1)
an algorithm for the generation of Minimal Critical Failure
Set (MCFS) based on Bounded Model Checking (BMC) is
described (2) a methodology and a Simulink-based tool for the
automatic generation of failure scenarios for SoC is described
and (3) the application of the proposed analysis flow to a con-
crete SoC use case is presented and discussed. Our approach
differs from the previous described ones in several ways. The
algorithm is not founded on the construction of BDDs but
relies on Bounded Model Checking (BMC) technique taking
full advantage of the last advances in parallel SAT solving [8].
The use of BDD limits the applicability of existing techniques
to models containing hundreds of Boolean memory elements
whereas the use of Parallel SAT solvers in conjunction with
BMC allows for successful algorithm application to industry-
sized level problems tackling models containing thousands of
Boolean variables. The analysis tool automatically explores
all the minimal critical failure sets starting from a functional
model of the SoC and the specification of components’ failure
modes relying on an internal model transformation engine
[9] that automatically builds the error model starting from
a functional formalization of the SoC and a list of failure



Fig. 1. Top-level view of the HW/SW composition.

mode functions allowing the designer focusing on the SoC
architecture and fault-tolerance mechanisms design aspects.
The minimal nature of injected faults intuitively ensures that
only the failures significant to the analysis will be considered
in the generated scenarios as will be described in detail in the
following sections. Finally, our analysis process supports the
MATLAB R© Simulink/Stateflow [10] framework as modelling
and analysis front-end that represents the standard de-facto for
system design.

II. MOTIVATING EXAMPLE

As a motivating example we refer to a simple function
generating a Pulse Width Modulated (PWM) waveform with
period and active time specified by an external module. The
example models the implementation of the function on the
eTPU IP [11]. The eTPU is a programmable CPU co-processor
designed for timing control (real-time input capture/analysis
and output generation) provided with configurable hardware
channels operating in parallel. A previous work [12] suc-
cessfully applied formal verification to the eTPU based on
System Verilog Assertions (SVA) language and CadenceTMIFV
tool for static formal verification. As shown in Fig. 1, at top
level our model takes three main inputs: a reference source

Fig. 2. Functional model of a stuck-at-value.

of ticks –representing the reference in the time, angle or
similar domains– modelled as a counter register and a couple
of values, representing the desired period and active time of
the PWM waveform to generate. We can consider them as
constants, with no loss of generality. The function is modelled
as a composition of two main FSMs: the the hardware FSM
and the software FSM. The hardware FSM (PWM OUT HW
in Fig. 1) represents an eTPU channel configured in “either-
match, non-blocking” mode [11]; it is composed of two “action
units” operating in parallel: each action unit is provided with a
comparator and three latches. Fig. 3 shows the finite state ma-
chine representation of one action unit in Simulink/Stateflow.
The comparator seeks for a match in value between the ticks
reference (TCRA) and a software-defined value (MatchA).
When these two match, the comparator triggers the channel
pin-action logic, which drives the output pin. The modelled
actions on the output pin are: set pin-high (PinA=1 in Fig. 3)
and set pin-low (PinA=0 in Fig. 3) [11]. The effective output
pin behaviour is modelled by another FSM (not shown here)
that keeps into account the events coming from both the action
units. The three latches operate as follows: one latch notifies
that a match event occurred, the service request latch notifies
the eTPU scheduler that the channel has required service

Fig. 3. Representation of one of the two action units in PWM OUT HW
FSM as a Statechart in Simulink/Stateflow.



Fig. 4. Functional specification of the top-level event (TLE).

and a Flag latch reflects a Boolean variable set by software;
in our example the Flag latch is set by eTPU-software to
reflect its state in hardware. At the match event both the
service request latch and the action unit’s latch are raised. With
reference to Fig. 3, the variables used to represent these two
latches are respectively SR A and setMRLA. Depending on
the current state of hardware latches a specific eTPU-software
routine is selected by the eTPU scheduler and executed by
the eTPU engine. Such a routine updates the proper match-
register of the hardware channel with the next-match time
value and (re)sets the related action unit latches. The eTPU-
software FSM (PWM OUT SW in Fig. 1) consists of three
states: (1) an initialization state that sets the initial hardware
configuration, (2) a state handling the actions related to the
end of the active time and (3) a state handling the end of the
PWM period. For sake of simplicity, the interaction between
hardware and software has been modelled as a finite positive
delay, with the intention not to explicitly model the whole
channels operating in parallel and the scheduler managing their
concurrent requests. We use this example to analyse unwanted
functional behaviours (top-level events) through our algorithm
in order to automatically generate failure scenarios. Unwanted
functional behaviours are typically identified through hazard
analysis techniques, exploiting pre-defined sets of keywords.
An example of possible unwanted top level events is: (1) wrong
duration of the generated period and (2) wrong duration of the
generated active time. We modelled functional faults as stuck-
at-value occurring to hardware signals and variables (Fault
injection blocks in Fig. 1). The functional specification for
the stuck-at-value fault is depicted in Fig 2. Until the Boolean
SaV Enable signal equals zero, the Switch block lets the input
value flow directly to the output (as an ideal wire). Once the
SaV Enable signal goes to one (no matter how many time it
stays at one) the control of the Switch makes it isolate the
input: the output is stuck at its last assumed value and cannot
change any more (represented by Memory1 block in Fig. 2).

III. ANALYSIS METHODOLOGY

We propose a model-based methodology for the automatic
generation of failure scenario. The main steps are summarized
in Fig. 5 and in this section we briefly review each of
the activities. It is important to stress that the developed
methodology and algorithm have also been applied to different
application contexts, in particular as part of the effort in
exploiting synergies between formal analyses and testing for
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Fig. 5. Methodology.

the verification of complex embedded systems in the MBAT
project [13] and as part of the effort in defining methodology
and tools for the design of Systems-of-Systems in the DANSE
project [14].

A. Error Model Construction

As a first step the Error Model of the SoC architecture is
formalized (Activity 1 in Fig. 5) by modelling its functional
architecture. For each component the nominal behaviour is
described in terms of Simulink/Statechart blocks and the
specification of the failure modes that can affect it is provided.
This step should be guided by a previously performed hazard
analysis or by the expertise of the designers. In the general
case a failure mode is represented as a state machine (directly
modelled by the designer or selected from a specific library)
and formalizes how the nominal behaviour of the component
is modified in presence of a failure. After an automatic model
transformation step an error model is constructed. In Section V
the formal aspects of the transformation step will be described
in detail.

B. Top Level Event Specification

The top-level event (TLE) is a hazardous behaviour that
must not occur. It is an invariant property that must hold
when the model behaves correctly (as expected). The TLE
can be either addressed by deductive safety analysis such as
fault tree analysis (FTA), or it can be identified directly from
system requirements specification. The top-level event is a
function involving the outputs and possibly the inputs of the
subsystem. The evaluation of the function modelling the TLE
should always be FALSE except in case of property violation,
for which it switches to TRUE and the TLE is said to be
activated. Faults occurring across the system have the potential
of activating the TLE. For example, the TLE modelled in
Fig. 4 formalizes the following property: in absence of faults
the value of Pin Out (an output of PWM OUT HW in Fig.
1) delayed by one step and the value of Flag (an output
of (PWM OUT SW in Fig. 1) must not be equal to one
simultaneously.

C. Algorithm Execution

The Error Model is processed by the fault analysis (FA)
algorithm that takes a top-level event specification as an addi-
tional input. The objective of the fault analysis is to exercise
the error model by exhaustively exploring the inputs space and



injecting failures in order to reach this unsafe behaviour. The
outcome of this activity is two-fold: on the one hand a list
of minimal sets of failures is produced (the minimal critical
failure set). Each set collects the failures to be injected in
order to assert the TLE and its minimal nature guarantees
that if any of the collected (minimal set of) failures is not
injected, the hazardous behaviour is not reached. On the other
hand a set of execution traces is produced, each exposing a
sequence of failure injections and input values that leads to
the hazard for each minimal critical failure set. The traces can
be used to effectively exercise the Error Model to show how
the SoC evolves to a hazardous state and to help reasoning on
its expected and unexpected unsafe behaviours.

D. Fault tolerant architecture design

The information collected in the previous activity is re-
viewed by the safety engineers to drive the design of one or
more fault-tolerant versions of the SoC. It may be needed
to iterate between activities 1, 2 and 3 (Fig. 5) to reach a
mature description of the functional design before terminating
the activity. The result of this activity is a fault-tolerant
version of the SoC produced as an executable (and possibly
synthesizable) model.

IV. RUN-TIME VERIFICATION

The traces generated during activity 3 (Fig. 5) are used
to exercise the fault-tolerant model to check the effectiveness
of the fault identification, detection and recovery (FDIR)
mechanisms. During this phase flaws in the fault-tolerant SoC
design may be discovered and iterations with both the safety
engineering and the SoC design teams may be needed. The use
of a model-based flow for the safety analysis of complex SoC
has several advantages with respect to the classical manual
process. At first the use of executable models helps the
different teams to reason on a shared formal representation
of the system, which helps minimizing the misinterpretation
of requirements and communication issues between design-
and safety-engineers. Then, models can be processed automat-
ically using model-transformation engines easing the design
exploration process and reducing the occurrence of design
errors, costs and time-to-market. Finally, a formal model is
important for supporting the certification process needed for
the qualification of fault-tolerant SoCs [2], [3].

V. FORMAL SPECS VERIFIER - FAULT ANALYSIS TOOL

In this section the Formal Specs Verifier tool for Fault
Analysis (FSV-FA) is described. At first an overview of the tool
architecture will be provided and then the detailed description
of the underlying exploration algorithm will follow.

A. Tool Overview

The FormalSpecs Verifier (FSV) is a framework for the
verification of complex embedded systems. The core of the
tool is based on a translator from a Simulink model to the
NuSMV tool native language [8]. The transformation process
produces a semantically equivalent NuSMV representation
of the input model taking into account the non-determinism
resolution that may be introduced during the transformation
step. For the execution of the Fault Analysis the FSV tool has
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Fig. 6. Tool Overview.

been enriched with additional modules that implement part
of the flow described in Section III. The enrichment covers
in particular the automatic generation of the Error Model
and the algorithm execution, summarized as follows: the tool
translates a Simulink model to an internal format performing
a model transformation step. The model is then processed by
a second transformation that enriches each component with
faulty behaviours taking into account the specification of the
failure modes provided by the user obtaining a NuSMV model
that can be processed by the internal formal engine.

B. Algorithm Description

The tool supports fixed-step discrete time Simulink models.
A nominal model is formalized as a function F [u,x, f , k]
that at each discrete time k maps inputs u[k] and current
state x[k] vectors to a vector of outputs y[k] and next-state
values x[k+ 1]. The error model is produced by enriching
the behaviour of the nominal model with the failure mode
functions: for each component’s failure mode an additional
input variable, called the failure mode enable input, is created.
Let F = {f1, . . . , fN} be defined as the set of all the failures
added to the model: a failure enable input is a discrete-time
Boolean function fj [k] that is TRUE if the failure fj is active
at the k− th step, FALSE otherwise. The error model is then
modelled as a function over the discrete time F̃ [u,x, f , k]
where f is the vector of failure mode enable inputs. In case
the latter is a constant vector of false values (identified as 0)
we have that F̃ [u,x,0, k] = F [u,x, f , k]. In other terms, in
case all failures are disabled, the nominal and error models
are equivalent. Finally, the Top-Level Event is modelled as a
Boolean function over discrete time H[k] that is TRUE if the
TLE occurs at time step k, FALSE otherwise. For the execution
of the failure scenario generation algorithm additional variables
called monitors are introduced. Each monitor is a Boolean
function over the discrete time mj [k] such that mj [k] is TRUE
if there exists a step i ∈ [0, k] for which the failure enable
input fj [i] has been TRUE, and it is FALSE otherwise. In
other terms, each monitor is associated to a failure enable
input that goes and remains to TRUE if the corresponding
failure input has been TRUE in the past or in the current step.
Our fault analysis algorithm (Algorithm 1) loops until a given
discrete time limit bound provided by the user is reached (line
2). At step 3 the formal engine searches for a counter example
that, at the given time step k, both minimizes the sum of the
values of the monitors m1, . . . ,mN and verifies the hazard
predicate H[k]. The counter example is obtained iteratively by
applying bounded model checking on the error model taking
into account the dynamic behaviour of the SoC. Notice that
the use of BMC in conjunction with a parallel SAT solver
allows for successful application of the technique to real-life
industry sized models. The minimization procedure ensures
that only a minimal number of failures are injected to trigger



Algorithm 1 Fault Analysis Algorithm
1: Initialize bound: k ← 0

2: while k < MAX BOUND do
3: find a counter example s.t. m1[k] +m2[k] + . . .+mN [k] is minimal and H[k] is TRUE
4: if counter example exists then
5: define m∗ = [m∗

1,m
∗
2, . . . ,m

∗
N ] the found monitor configuration

6: exclude m∗ from the admissible solutions of the future searches
7: extract input and failure enable values from the found counter example and store as a failure scenario
8: else
9: Increase time bound k

10: end if
11: end while

the TLE. If a counter example is found, then the monitor values
configuration is extracted and a new constraint is added to the
model in order to exclude the found configuration from future
searches (lines 5 and 6). The test case is extracted from the
counter example storing inputs, outputs and internal variables
of the system (lines 7 and 9). The loop is executed again to
look for additional minimal possible monitor configurations
until no more configurations can be found. The algorithm
ensures that (1) every failure enable set produced is a minimal
critical failure set for the TLE under analysis and (2) it is true
by construction that there are no two traces exposing the same
minimal critical failure set.

VI. APPLICATION TO THE REFERENCE EXAMPLE

The failure scenario generation methodology has been
applied to the eTPU case study described in Section II using
the FSV-FA toolset. A total number of 45 faults have been
modelled in MATLAB Simulink using a predefined library.
The simulation time was limited to k = 28 steps for a
waveform with period p = 100 and active time a = 25. After
60 minutes of computation 5 failure scenarios have been found
using a platform based on an Intel i7 2.4 GHz with 8 GB of
RAM. One of the 5 property violations was observed at time
step k = 2, while the other four occurred at time step k = 28.
Fig. 7 reproduces one of the generated scenarios. The TLE
has been modelled as the Simulink subsystem shown in Fig.
4; referring to the failure scenario shown in Fig. 7 such a TLE
is activated when a stuck-at-one fault affects the output pin of
the eTPU channel (Pin Out). In order for the property to be
violated, the fault is to be active from the beginning (k = 0).
The lower sub-plot of Fig. 7 shows the value of the output
pin (an output of PWM OUT HW in Fig. 1) and the value of
the Flag signal (an output of PWM OUT SW in Fig. 1). The
Flag signal is a local variable of the PWM OUT SW machine
set to zero when the software is expected to be handling the
hardware state “pin high” of PWM OUT HW, and set to one
when the software is expected to be handling the state “pin
low” of PWM OUT HW. At the init time (k = 0) the eTPU
software sets the output pin value to zero (Flag=1), the “next
match” to occur at time k = 1 and the action related to the
match event to “set pin high”. The pin is stuck at one all the
time, in particular from the beginning of the simulation. The
expected sequence of events is the following: at time k = 1,
the pin should transition to 1 and at time k = 2 the value of
Flag should transition to 0, representing a change in state of
the eTPU software FSM (PWM OUT SW). Since the stuck-

Fig. 7. Analysis Results.

at-one fault prevents the pin from changing, the property is
violated and the TLE activtes.

VII. CONCLUSION

In this paper we presented a model-based methodology for
the automatic generation of failure scenarios. The methodology
has been applied to the analysis of a SoC architecture using a
Simulink-based tool that implements a novel algorithm based
on bounded model checking exploiting the recent advances
of parallel SAT solving. A concrete SoC use case has been
proposed to show the effectiveness of the described approach.
In future work we will apply the presented methodology
to more complex Systems-on-Chip models. In particular, we
are interested in evaluating the effectiveness of cross-layer
dependability mechanisms employed in safety-critical SoCs.
Cross-layer dependability mechanisms allow distributing the
fault/error detection phase and the diagnosis and handling
phases across the whole system stack, thus reducing production
costs. To this purpose hierarchical models of the various
hardware and software abstractions (e.g. gate, circuit, hardware
architecture, firmware, operating system, middle-ware and
application) will be developed, exercised and analysed with
the proposed methodology.
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