
HAL Id: hal-02271088
https://hal.science/hal-02271088

Submitted on 26 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hard real-time Java virtual machine for Space
applications

Frédéric Deladerrière

To cite this version:
Frédéric Deladerrière. Hard real-time Java virtual machine for Space applications. 2nd Embedded
Real Time Software Congress (ERTS’04), 2004, Toulouse, France. �hal-02271088�

https://hal.science/hal-02271088
https://hal.archives-ouvertes.fr

+DUG�5HDO�7LPH�-DYD�YLUWXDO�PDFKLQH�IRU�6SDFH�DSSOLFDWLRQV�

)UpGpULF�'HODGHUULqUH��($'6�$VWULXP�±�7RXORXVH��)UDQFH�
(PDLO��IUHGHULF�GHODGHUULHUH#DVWULXP�HDGV�QHW�

$%675$&7�

The AERO ($UFKLWHFWXUH� IRU� (QKDQFHG� 5HSURJUDPPDELOLW\� DQG� 2SHUDELOLW\) is an ESA project with the objectives to
investigate on a real-time Java virtual machine for ERC32 processor. Special attention was put on the garbage collection
mechanism and deterministic execution model. The project have first investigate existing virtual machine to choose a
potential candidate that will be customized, are then investigates the definition of requirements concerning a real-time
interpreter in on-board systems. The second phase of the project was dedicated to the definition of software functions of the
real-time Java virtual machine and to their implementation and assessment through validation tests. The resulting
application is the AERO-JVM.

�
���,1752'8&7,21�

Space missions require an enhanced level of spacecraft operability and reprogrammability, i.e., an appropriate ability to
operate without routine support from ground in order to safeguard the mission objectives. Such requirement can be tackled
through the implementation of an embedded interpreter managing high-level operational procedures. Astrium $YLRQLFV�
3URGXFWV Business Unit have propose to the European Space Agency, the AERO ($UFKLWHFWXUH� IRU� (QKDQFHG�
5HSURJUDPPDELOLW\�DQG�2SHUDELOLW\��project.

The goal of the AERO project is to provide a software architecture, which improves the reprogrammability and operability
of the space systems. Then to propose a standard interface for operability based on state of the art technologies, which
allows getting access to commercial low cost products with a good expected lifetime.�

�
���21�%2$5'�,17(535(7(5�
�
����5DWLRQDOH�IRU�RQ�ERDUG�LQWHUSUHWHU�

The interpreter provides important capabilities to the space systems. Thanks to the isolation provided by the Interpreter, the
Application Programs can be developed and validated separately from the other software components (critical software
layers or applications, services). This allows to tremendously reducing the cost of these Application Programs. The
interpreter allows specifying, developing and validating Application Programs late in the life cycle and even during
operational activity of the system in-orbit (including reprogramming). The execution context of the Application Programs
is isolated from the rest of the system as well as the other Application Programs. The execution control of all the
Application Programs is kept, so that application software failures, if any, do not disrupt software vital functions (AOCS,
FDIR).

The interpreter offers the power of a high level language and supports the implementation of complex algorithms. It also
gives the access to the system commands by the mean of a specific interface allowing the control of the entire spacecraft.
This permits to implement autonomous operations enabling new complex missions when the ground cannot react in real-
time due to the communication delays, including FDIR operations.�

In addition, the interpreter technology allows testing on-board a new loaded control processing, running in parallel with the
predefined one – a sort of « on-board simulation » which is often very difficult to simulate on-ground, because of real time
representativity problems.

All these features show that the Interpreter approach brings benefit to the onboard systems, giving an important flexibility
to the developments, operability and maintainability aspects.

�

�

�

2nd European Congress ERTS - 1 - 21 – 22 – 23 January 2004

SSeessssiioonn 55BB:: OObbjjeeccttss--OOrriieenntteedd LLaanngguuaaggeess aanndd MMooddeellss

����)XQFWLRQDO�UHTXLUHPHQWV�

The interpreter shall offer control structure, data management, subprogram definition and numeric computations. It shall be
activated at a cyclic rate or on asynchronous events, with the ability to execute with appropriate determinism, sequences of
commands, in the right order and following specified delays, monitoring, and specific algorithms such as thermal controls.
The interpreter shall be able to interface with the remaining software layers through different kind of services:
mathematical computations, delays, HW commands and acquisitions, system data.

The interfaces to the environment are critical parts of interpreters. They are the interface with the operating system, with
the TC, with the data and with the other services:

• 7KH�2SHUDWLQJ�V\VWHP�LQWHUIDFH: interpreters are either designed to be activate cyclically or executed as a specific
task of the system.

• 7KH�7&�LQWHUIDFH: interpreter TC interface is standardised and very simple. The interpreted program can be activated
either by a TC, by the timeline function or by another interpreted program.

• 7KH�'DWD� LQWHUIDFH: an interpreter shall have access to the system data through an This also allows exchanging
messages between the different SW components (TM, AP, AOCS, etc.).

• 7KH�6HUYLFH�,QWHUIDFH: the interpreter has the capability to use the whole set or only a subset of the general services
for basic computation by the means of direct calls or by the means of the standard telecommand interface.

•

����6WDWH�RI�WKH�DUW�DQG�OLPLWDWLRQV�

Different application interpreter components have been developed in the scope of other project, (Eureca CLASP
Interpreter, Eurostar 2000/2000+ AP Interpreter, E3000 AP Interpreter and Rosetta Interpreter, COF UCL Interpreter).
These existing products correspond to four generation of interpreter.

&DSDELOLWLHV�
The interpreters suffer from their advantages because they require more and more capabilities. Actually, the development
of an interpreted procedure is quicker and cheaper than the development of the equivalent standard application. The current
trend consists in the implementation of non-recurring functions under the form of interpreted procedures to minimise the
modifications on the rest of the system. Furthermore, the specific functions of a system are defined very late in the life
cycle of the software are there is no other possibility than implementing them with interpreted procedures.

/DQJXDJH�	�7RROV�
Current embedded interpreters work on non-standard front-end language, and non-standard byte code. This involves many
problems during developments and validations. Setting up a development environment for a specific front-end language
supposes to develop specifics tools: editor, debugger, analyser etc. Homemade tools have not the level of functionality of
commercial tools. The cost associated to a modification of the language and tools is then extremely important. It appears
necessary to define a standard for the language that can be reused from a project to another. This standard should support
all the features of existing languages.

3HUIRUPDQFHV�
The performances of current interpreters are very low, limited by the performance of the CPU on which they are executed.
The definition of a high performance interpreter running on a modern processor will permit to execute faster a greater
number of procedures

'HYHORSPHQW�VWUDWHJ\�
Current interpreters were designed with technologies that could not provide subsequent performances and security
management. In the case of the interpreter technology, it’s more efficient to take an optimised standard interpreter and to
adapt it to the specific space systems constraints. This approach is more robust and secure, than using homemade
interpreter, due to the number of specialised developers who worked on it.
�

Non-standard byte-code and front-end language suppose to develop specific tools and process solutions. The global cost
involved is more important than choosing a market-based standard solution. Furthermore, the equivalency of performance,
robustness and quality is not guaranteed.

2nd European Congress ERTS - 2 - 21 – 22 – 23 January 2004

���1/<6,6�2)�327(17,$/�62/87,21��

����5DWLRQDOH�IRU�XVLQJ�WKH�-DYD�%\WHFRGH�DQG�/DQJXDJH�

They’re many interests to have a standard interpreted bytecode. But the selected bytecode to use must have all capabilities
to answer future requirements. On market, the standardized available bytecode are: Forth, Java bytecode (≠Java language),
Lisp, Perl, SmallTalk,Tcl-Tk (interpreted language during execution).�

The bytecode depends on functionalities provided by the front-end language, and must implement all its subtleness, with
maximum performances and security. The performance of interpreters depends, in a great part, on the bytecode definition.

Some criteria was defined to compare bytecode: first level functionalities, instructions size, entropy and redundancy,
availability/commercial standard etc. The result the trade-off is that the Java bytecode have the most complete features.

The Java bytecode offers many advantages, even if the complex sets of opcode involves having specifically optimized
interpreters. But a Java interpreter source code can be easily found, that could be adapted for embedded requirements.

As front-end source code language it’s possible to envisage the use of another language than Java, but Java source code
presents a new viewpoint in the evolution of programming languages--creation of a small and simple language that's still
sufficiently comprehensive to address a wide variety of software application development. Although Java is superficially
similar to C and C++, Java gained its simplicity from the systematic removal of features from its predecessors.

Primary design features of Java, namely, it's VLPSOH (from removing features) and IDPLOLDU (because it looks like C and
C++) and the other characteristics (such as object oriented, robust and secure, architecture neutral and portable, interpreted,
threaded, and dynamic)�finish to decide to choose Java as the source code language.

�

����5HDO�WLPH�SUREOHPDWLF

Unlike most languages designed for real-time programming, interpreted languages are designed more to simplify
programming than to enable programmers to write software that complies reliably with real-time constraints. Therefore it is
usually says that this is not the purpose of interpreted languages and associated Virtual Machine to include real-time
considerations. But, contrary to popular notions, hard real-time problems with extensive hardware interaction can be
solved entirely in interpreted languages. The real-time constraints are not tackled by systems that are interpreted or rely on
techniques such as Ahead of Time compilation. However, two methods can be proposed to match the real-time
requirements. But the determinism of bytecode execution and garbage collection have to be solve regardless of the
methods.

The first method consists in the development of a specific Virtual Machine running over a real-time operating system
(RTOS). In this case, the real-time considerations are directly managed by the RTOS. The Virtual Machine is simpler but
depends on the RTOS.

The second method consists in the implementation of the real-time requirements directly in the Virtual Machine. Several
working groups proposed the specification of a real-time Java, like the Real-Time for Java Expert Group, that have finalize
the Real-Time Specification for Java (RTSJ). This specification introduces the common problems of the real-time
programming: scheduling, memory management, synchronisation, asynchronous event handling, asynchronous transfer of
control, asynchronous thread termination, physical memory access, and exception management. RTSJ propose to improve
the Java language and/or JVM implementations. Presently, it does not exist any Java Virtual Machine that implements
these real-time specifications. Nevertheless, this appears to be the right way to obtain a portable JVM with a standard
behaviour whatever the platform used.

2nd European Congress ERTS - 3 - 21 – 22 – 23 January 2004

����$(52�VROXWLRQ�

The chosen solution is to involves both of this methods, by implement real-time requirements in a JVM, and use RTOS to
ensure low-level hard real-time functions.

A specification that includes all requirements concerning the final interpreter to develop was written; it details real-time
comportments and functions required, essential APIs to be supported, and compatibility with existing specifications and
designs of space domain or others standards.�

A large number of commercial and open source Java Virtual Machines are available on the market. The commercial JVMs
are generally not delivered with their sources and their adaptation to the requirements of space systems is not possible. The
open source JVM give us the possibility to focus our activity on the development of real-time and safety mechanisms. We
already identified numerous virtual machines that should be a good foundation for the development of AERO-JVM.

The selection process has first start with the characterization of methodology, including destructive and selective criteria
definition (features, availability, code readability, maintainability etc.) 25 JVM are evaluated, the resulting chosen solution
is: Jamaica JVM from Aicas Gmbh.

����'HYHORSPHQWV�DQG�FXVWRPL]DWLRQV��

The base solution have been customized: new functions was developed for real-time support, specific deterministic garbage
collection was added, then RTSJ compliance have require a lot of work to add all primitives, memory object and
functionalities. A set of APIs required by space domain has been defined; some other features, of the base solution, not
required have been removed.

The functionality of the classes of the RTSJ and the determinism of garbage collection are an important requirement for
AERO-JVM and the major enhancement to the functionality made during the AERO-JVM project. Priority based
scheduling is provided by the AERO-JVM through the RTSJ interface. New real-time thread classes can be used together
with the priority interface. This scheduling is enabled by use of the underlying operating system’s scheduler.

Implemented garbage collector is based a new specific deterministic algorithm, with a particular implementation. There is
no dedicated garbage collector thread, consequently, real-time thread are automatically executing at a priority logically
higher than that of the garbage collector. All garbage collection work is performed within the application threads. Even
though the AERO-JVM garbage collector does not require special treatment of memory allocations performed within real-
time code, the special memory classes defined in the RTSJ are provided by the AERO-JVM to ensure inter-operability with
other Java implementations and tools. These classes include scoped memory, immortal memory, physical memory etc.

����9DOLGDWLRQ�DQG�HYDOXDWLRQ��

Validation of the AERO-JVM has consisted to check the compliance with Java specification, then the RTSJ compliance
and the specific space domain requirements compliance. This process is ended, and the application is conform to the full
requirements list.

Evaluation is under progress on an ERC32 bench, and consists to run some representative applications, to insure the real-
time comportment and performance of the AERO-JVM. This evaluation will finish in March 2003. First results confirm the
high potential of the developed solution, but a more complete evaluation is foreseen during next industrialization of the
project.

�

2nd European Congress ERTS - 4 - 21 – 22 – 23 January 2004

���$(52�-90�3URGXFW

����'HILQLWLRQ�
�
The AERO-JVM is a new implementation of the Java Virtual Machine specification that provides hard real-time guarantees
for all features of the languages together with high performance runtime efficiency. This enables all of Java’s features to be
used for on-board hard real-time tasks. This includes features essential to object-oriented software development like
dynamic allocation of objects, inheritance, introspection and dynamic binding. Sophisticated automatic class file
compaction and dead-code elimination techniques are involved to reduce the code footprint to the bare minimum.

AERO-JVM includes a runtime system for the execution of applications written for the Java API V1.2. It is designed for
real-time and embedded systems and offers unparalleled support for this target domain, including deterministic dynamic
memory management, which is performed by the AERO GC garbage collector. The use of dynamic class loading is
possible with AERO-JVM. This enables the hot swapping of code and the dynamic addition of new features.
�
�
����)HDWXUHV�
�
AERO-JVM could interpret Java bytecode directly, but class files and the AERO-JVM may be linked into a standalone
binary using a specific Ahead of Time Compiler that gives native performances. The final systems could use Posix
standard, VxWorks or RTEMS operating systems.

The AERO-JVM provides hard real-time guarantees for all primitive Java operations, but all threads executed by the
AERO-JVM are real-time threads too, there is no need to distinguish real-time from non-real-time threads. Any higher
priority thread is guaranteed to be able to pre-empt lower priority threads within a fixed worst-case delay.

Among the features of AERO-JVM are:

• Hard real-time execution guarantees
• Deterministic Garbage collection
• Minimal foot print and ROMable code
• Native code support (JNI)

• Dynamic Linking (interpreted mode only)
• Java Portability
• Fast execution (interpreter or AOT compiler)
• RTSJ (Real-Time Specification for Java) compliant

There are no restrictions on the use of the Java language to program real-time code: since the AERO-JVM executed all Java
code with hard real-time guarantees, even real-time tasks can use the full Java language, i.e., allocate objects, call library
functions, etc. No special care is needed; short worst-case execution delays can be given for any code.

The AERO-JVM is able to run some Java applications at the same time, on a single instance of the JVM. This new
capability improves Java execution model efficiency; else a new instance of a JVM is required to execute a new application
in classical scheme.

2nd European Congress ERTS - 5 - 21 – 22 – 23 January 2004

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

$(52�-90�LQWHJUDWLRQ�LQ�2Q�%RDUG�$UFKLWHFWXUH�

The AERO-JVM run directly on a real-time operating system, but could be also interfaced with a core
DHS. Java applications are compiled and/or interpreted, and may access directly native legacy code. APIs
are libraries of Java code statically compiled in native. The Java execution model is preserved; AERO-JVM
provides, in a real-time deterministic way, segregation between Java applications and the rest of the system.

�
���&21&/86,21�

Interpreted languages, and Java especially, with their Virtual Machines implement a large number of interesting features for
the development of complex applications. The major expected benefits consist in the definition of a homogeneous
development environment (object modeling and object development) and a better reusability of the existing components
leading to an important reduction of the software cost and development time.

By implementing the Java language, AERO-JVM offer all required support to ensure the operability of complex onboard
systems, and provide a standard way for the reprogramming function.

Evolutions and customisations made in the context of the AERO project, allow the use of Java in hard real-time
applications with the AERO-JVM. The AERO-JVM is a new implementation of the Java Virtual Machine specification that
provides hard real-time guarantees for all features of the languages together with high performance runtime efficiency and
dual mode execution (interpretation and Ahead of Time compilation). This enables all of Java’s features essential to
object-oriented software to be used for on-board hard real-time tasks.

�
�
���5()(5(1&(6�

1. A.Walter: Deterministic Execution of Java's Primitive Bytecode Operations, -DYD�9LUWXDO�0DFKLQH�5HVHDUFK�DQG�
7HFKQRORJ\�6\PSRVLXP��-90
���, Monterey, California, April 2001

2. F.Siebert, Hard Realtime Garbage Collection in Modern Object Oriented Programming Languages,�(7$36�
&RQIHUHQFH, Genova, December 2000

3. F.Siebert: Guaranteeing Non-Disruptiveness and Real-Time Deadlines in an Incremental Garbage Collector,
,600, 1998,

4. F.Deladerrière, F.Siebert: Hard real-time JVM for space application, *DOLOHR�:RUNVKRS, Noordwijk, October 2002
5. T.Ritzau, Deterministic Garbage Collection, (7$36�&RQIHUHQFH, Genova, December 2000
6. F.DeBruin, F.Deladerrière, F.Siebert: Hard real-time JVM for embedded systems, '$6,$�����, Prague, June 2003

ERC32 or Leon processor

BSP

Posix Real-time Operating System

Legacy Code

AERO-JVM

Interpreted Java Applications

APIs Native Java
Application

2nd European Congress ERTS - 6 - 21 – 22 – 23 January 2004

