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Abstract

In this paper, we provide a sufficient condition under which the vector-fields solution of mean-field

optimal control problems formulated on continuity equations are Lipschitz in space. Our approach involves

a novel combination of mean-field approximation results for infinite-dimensional multi-agent optimal control

problems, along with a careful extension of an existence result of locally optimal Lipschitz feedbacks. The

latter is based on the reformulation of a coercivity estimate in the language of the differential calculus of

Wasserstein spaces.
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1 Introduction

The mathematical analysis of collective behaviours in large systems of interacting agents has received an in-
creasing attention from several communities during the past decade. Multi-agent systems are ubiquitous in
applications ranging from aggregation phenomena in biology [9, 18] to the understanding of crowd motion
[8, 30], animal flocks [6, 31], swarms of autonomous vehicles [14] or traffic flows [34]. While the first studies
on multi-agent systems were formulated in a graph-theoretic framework (see e.g. [14] and references therein),
several recent models have started to rely on continuous-time dynamical systems to describe this type of col-
lective dynamics. In this context, a multi-agent system is usually described by a family of coupled differential
equations of the form

ẋi(t) = vN [x(t)](t, xi(t)), (1)

where x = (x1, . . . , xN ) denotes the state of all the agents and vN [·](·, ·) is a non-local velocity field depending
both on the running agent and on the whole state of the system (see e.g. [7, 31]). However general and useful,
these models may not be the most powerful ones in order to capture the global features of a multi-agent system.
Besides, their intrinsic dependence on the number N of agents makes most of the classical computational
approaches practically intractable for large systems.

One of the most natural ideas to circumvent this model limitation is to approximate the large system of
coupled ODEs written in (1) by a single infinite-dimensional dynamics via a process called mean-field limit (see
e.g. [60]). In this setting, the agents are supposed to be indistinguishable, and the assembly of particles is
described by means of its spatial density µ(·). The evolution through time of this global quantity is prescribed
by a non-local continuity equation of the form

∂tµ(t) + ∇ · (v[µ(t)](t, ·)µ(t)) = 0. (2)

Such a macroscopic approach has been successfully used e.g. to model pedestrian dynamics and biological
systems, as well as to transpose the study of classical patterns such as consensus or flocking formation to the
mean-field setting. From a quite different standpoint, J.M. Lasry and P.L. Lions proposed in their seminal
paper [50] a model for the self-organisation of large systems of rational agents based on the optimisation of a
selfish cost, which led to the development of the theory of mean-field games (see also [49]). Both facets of the
literature have hugely benefited from the recent progresses made in the theory of optimal transportation, for
which we point to the reader to the reference monographs [5, 58, 59].
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More recently, the problem of controlling multi-agent systems so as to promote a desired behaviour or
configuration became relevant in a growing number of applications. Motivated by implementability and efficiency
issues, many contributions have therefore been aiming to generalise relevant notions of control theory to PDEs
of the form (2) serving as mean-field approximations of the discrete system (1). The resulting class of controlled
continuity equations are usually written as

∂tµ(t) + ∇ ·
(

(v[µ(t)](t, ·) + u(t, ·))µ(t)
)

= 0. (3)

While a few results have been dealing with controllability issues [38, 39] or the explicit design of control laws
[19, 20, 55], the major part of the literature has been focusing on mean-field optimal control problems, with
contributions ranging from existence results [43, 44, 45] to first-order optimality conditions [10, 11, 12, 15, 24,
25, 56] and numerical methods [1, 16, 57].

One of the distinctive features of continuity equations is that they require fairly restrictive regularity as-
sumptions on the driving velocity fields to be classically well-posed. While (3) makes sense whenever the drift
and control are measurable and satisfy some integrability bounds, the corresponding notion of so-called su-
perposition solution (see Theorem 5 below) is fairly weak and of limited practical use. In [2, 35], a theory of
well-posedness was developed for continuity equations with Sobolev and BV velocity fields . However powerful
and general, this theory has not yet been generalised to non-local driving fields, and is inherently restricted to
measures which are absolutely continuous with respect to the ambient Lebesgue measure. Up to now, the only
identified setting in which a strong form of classical well-posedness holds (see Theorem 6 below) for arbitrary
measures for (3) is that of Cauchy-Lipschitz regularity (see e.g. [3, Section 3] and [54]). In this framework, (3)
can be formulated indifferently on empirical or absolutely continuous measures, its solutions are unique, and
stability estimates are available both with respect to the right-hand side of the equation and its initial datum.

This latter fact is highly relevant to our purpose, since optimal control problems formulated on continuity
equations are frequently studied in an “optimise-then-discretise” spirit. Indeed, the main desirable property
of a control law designed for the kinetic model (3) is be to provide a strategy which can be in turn applied
– either exactly or approximately – to finite-dimensional systems of the form (1). In the case in which the
infinite-dimensional strategy is not strictly optimal for the discrete multi-agent system, one would also like
to have access to quantitative error estimates between the true solution and the approximate one. From a
numerical standpoint, Cauchy-Lipschitz regularity is also relevant to ensure the well-posedness of numerical
methods such as semi-Lagrangian schemes (see e.g. [23, 26]), as well as to prevent the apparition of Lavrentiev-
type instabilities in the context of optimal control (see e.g. [51]). For all these reasons, a wide portion of the
literature of mean-field control has been dealing with problems in which one imposes an a priori Lipschitz-in-
space regularity on the admissible controls (see e.g. [10, 11, 12, 44, 45]), or at least some continuity assumptions
on the driving fields (see [24, 25]). A natural question is then to ask whether this regularity property can hold
intrinsically or not, and if yes under which assumptions. In this paper, we investigate this question in the setting
of mean-field optimal control problems, formulated on controlled dynamics given by (3).

Remark 1 (“Optimise-then-discretise ”for hyperbolic PDEs). Let it be noted that the problem of ensuring a
correspondence between solutions of optimal control problems governed by hyperbolic partial differential equations
and their discrete approximations is in general highly non-trivial. Indeed, it has been noticed as early as [48]
that discretizations of the Hibert Uniqueness Method introduced by J.L. Lions in [52] to perform the exact
controllability of a wide class of partial differential equations could give rise to high frequency oscillations and
diverge. We refer the reader to [40] and references therein for a modern treatment of this problem.

It is well-known that solutions of Wasserstein optimal control problems need not be regular in general.
Indeed, there exists a vast literature devoted to the study of the regularity properties of solutions to Monge’s
optimal transport problem (see e.g. [33, 42] for some of the farthest-reaching contributions on this topics),
mostly via PDE techniques. However, few of these results can be translated into regularity properties on the
optimal tangent velocity field v∗(·, ·) solving the Benamou-Brenier problem

(PBB)























min
v∈L2

[

∫ T

0

∫

Rd

1
2 |v(t, x)|2dµ(t)(x)dt

]

s.t.

{

∂tµ(t) + ∇ · (v(t, ·)µ(t)) = 0,

µ(0) = µ0 and µ(T ) = µ1.

This tangent vector field should be – roughly speaking – as regular as the derivative of the optimal transport
map. For the optimal control problem (PBB), Caffarelli proved in [17] that v(t, ·) ∈ Ck,α

loc (Rd,Rd) for some
α ∈ (0, ᾱ) whenever µ0, µ1 ∈ Pac(Rd) have densities with respect to the d-dimensional Lebesgue measure

which have regularity at least Ck,ᾱ
loc (Rd,Rd) .
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Another context in which the regularity of mean-field optimal controls has been (indirectly) investigated is
that of mean-field games. Indeed, there is a large literature dedicated to the regularity of the value function
(t, x) 7→ V ∗(t, x) solving the backward Hamilton-Jacobi equation of the coupled mean-field games system

{

∂tV (t, x) +H(t, x,DxV (t, x)) = f(t, x, µ(t)), V (T, x) = gT (x, µ(T )),

∂tµ(t) − ∇ · (∇pH(t, x,DxV (t, x))µ(t)) = 0, µ(0) = µ0.

In the setting of potential mean-field games, the tangent velocity field v∗(t, x) = −∇pH(t, x,DxV
∗(t, x)) is

the optimal control associated to a mean-field optimal control problem. Therefore, regularity properties of the
optimal control can be recovered from that of the optimal value function, and are expected to have one order
of differentiation fewer. We refer the reader e.g. to [21] for Sobolev regularity results and to [22] for Hölder
regularity properties.

In this paper, we investigate the intrinsic Lipschitz-in-space regularity of the solutions of general mean-field
optimal control problems of the form

(P)























min
u∈U

[

∫ T

0

(

L(t, µ(t)) +

∫

Rd

ψ(u(t, x))dµ(t)(x)

)

dt+ ϕ(µ(T ))

]

s.t.

{

∂tµ(t) + ∇ · ((v[µ(t)](t, ·) + u(t, ·))µ(t)) = 0,

µ(0) = µ0 ∈ Pc(Rd).

The set of admissible controls for (P) is defined by U = L1([0, T ], L1(Rd, U ;µ(t))) where U ⊂ R
d is a convex

and compact set. Remark that since we do not impose any a priori regularity assumptions on the control
vector fields u(·, ·), there may not exist solutions to the non-local transport equation (3) driving problem (P).
Moreover even if they do exist, these solution will not be classically well-posed and only defined in a weak sense
(see Theorem 5 below).

The main contribution of this paper is the following existence result of intrinsically Lipschitz mean-field
optimal controls for (P).

Theorem 1 (Existence of Lipschitz-in-space optimal controls for (P)). Let µ0 ∈ Pc(Rd), (µ0
N ) ⊂ Pc(Rd) be

a sequence of empirical measures narrowly converging towards µ0. Suppose that hypotheses (H) of Section 4
hold, and that the mean-field coercivity assumption (CON ) described in Section 5 holds as well.

Then, there exists a mean-field optimal pair control-trajectory (u∗(·, ·), µ∗(·)) ∈ U × Lip([0, T ],Pc(R
d)) for

problem (P). Moreover, the optimal control map (t, x) ∈ [0, T ] × R
d 7→ u∗(t, x) is LU -Lipschitz in space for

L 1-almost every t ∈ [0, T ], where the uniform constant LU only depends on the data of the problem (P).

The proof of this result is built around two main ingredients. The first one is an existence result for mean-
field optimal controls which was derived in [43] and recalled in Theorem 7 below. In the latter, it is proven
under very general assumptions that there exist optimal solutions of problem (P) which can be recovered as
Γ-limits in a suitable topology of sequences of solutions to the discrete problems

(PN )



























min
u(·)∈UN

[

∫ T

0

(

LN (t,x(t)) +
1

N

N
∑

i=1

ψ(ui(t))

)

dt+ ϕN (x(T ))

]

s.t.

{

ẋi(t) = vN [x(t)](t, xi(t)) + ui(t),

xi(0) = x0
i ∈ R

d.

Here, UN = L∞([0, T ], UN), and the functionals (t, x,x) ∈ [0, T ] × R
d × (Rd)N 7→ vN [x](t, x), (t,x) ∈ [0, T ] ×

(Rd)N 7→ LN (t,x) and x ∈ (Rd)N 7→ ϕ(x) are discrete approximating sequences (see Definition 8 below) of
v[·](·, ·), L(·, ·) and ϕ(·) respectively.

The second key component of our approach is a careful adaptation to the family of problems (PN ) of a
methodology recently developed in [28, 36]. These contributions provide powerful metric regularity results (see
Definition 11 below) for a large class of differential inclusions. This part relies crucially on the following uniform
mean-field coercivity estimate (CON ) for the sequence of problems (PN )

Hessx ϕN [x∗
N (T )](y(T ),y(T )) −

∫ T

0

Hessx HN [t,x∗
N (t), r∗

N (t),u∗
N (t)](y(t),y(t))dt

−
∫ T

0

Hessu HN [t,x∗
N (t), r∗

N (t),u∗
N (t)](w(t),w(t))dt ≥ ρT

∫ T

0

|w(t)|2N dt,

along optimal mean-field Pontryagin triples (u∗
N(·),x∗

N (·), r∗
N (·)) (see Proposition 6 below). In this context,

Hess (•)[·](·, ·) denotes the discrete version of the intrinsic Wasserstein Hessian bilinear form (see e.g. [27, 47]),
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which construction is further detailed in Section 2. In essence, this uniform coercivity assumption allows us
to inverse the maximisation condition stemming from an application of the Pontryagin Maximum Principle
to (PN ), with a control on the Lipschitz constant of this inverse. The main subtlety lies in the fact that we
need these estimates to be uniform with respect to N . Consequentially, we apply to (PN ) an adapted
mean-field Pontryagin Maximum Principle – which is the discrete counterpart of the Wasserstein PMP studied
in [10, 11, 12] –, and express the coercivity condition in the language of Wasserstein calculus. From there on,
the statement of Theorem 1 can then be recovered by standard limit arguments which can be found e.g. in
[10, 45].

Remark 2 (Comparison with related contributions in mean-field games). It was recently brought to our at-
tention that a result similar to Theorem 1 above was derived in [46] for mean-field games, which are known
to be linked in certain cases to optimal control problems in Wasserstein spaces (see [50]). In [46], the authors
show that the value function of a certain class of first-order mean-field games is continuously differentiable with
Lipschitz derivative when the data are of class C3 and the time horizon T is sufficiently small. These two
requirement are very close to our standing assumptions. Indeed, we posit in hypotheses (H) of Section 4 that
all our data are C2,1

loc , and it is illustrated in Section 6 that our uniform coercivity estimate (CON ) can be
interpreted as a quantitative condition comparing the relative size of the time horizon T with other constants of
the problem. We would also like to stress that our approach allows for a much wider class of dynamics and cost
functionals.

Moreover, the proof strategy of [46] is fairly close to the one that we independently developed here, as it relies
on the application of inverse function mappings to sequences of approximations by empirical measures, with a
quantitative control on the Lipschitz constant of the inverse. Let it also be noted that the results of [46] have
recently been extended in [53] to a broader class of first-order mean-field games systems.

The structure of this article is the following. In Section 2, we recall several general prerequisites on measure
theory and optimal transport. In Section 3, we review notions pertaining to finite-dimensional optimal control
problems, with a particular emphasise on Lipschitz feedbacks. We proceed by exposing in Section 4 well-
posedness results and concepts dealing with continuity equations and mean-field optimal control problems. In
Section 5, we state precisely the coercivity assumption (CON) and prove our main result Theorem 1. We
conclude by providing in Section 6 an analytical example in which our coercivity estimate is both necessary and
sufficient for the existence of Lipschitz-in-space mean-field optimal controls.

2 Preliminaries

In this section, we introduce results and notations that we will use throughout the article. Section 2.1 presents
known results of analysis in measure spaces and optimal transport, while Section 2.2 deals with first and second
differential calculus in Wasserstein spaces. We introduce in Section 2.3 the notion of mean-field approximating
sequence, along with a discretised counterpart of the Wasserstein calculus.

2.1 Analysis in measure spaces

In this section, we introduce some classical notations and results of analysis in measure spaces and optimal
transport theory. For these topics, we refer the reader to [4] and [5, 58, 59] respectively.

We denote by (M(Rd,Rm), ‖·‖T V ) the Banach space of m-dimensional vector-valued Borel measures defined
on R

d endowed with the total variation norm, defined by

‖ν‖T V := sup

{

+∞
∑

k=1

|ν(Ek)| s.t. Ek are disjoint Borel sets and
+∞
⋃

k=1

Ek = R
d

}

,

for any ν ∈ M(Rd,Rm). It is known by Riesz’s Theorem (see e.g. [4, Theorem 1.54]) that M(Rd,Rm) can be
identified with the topological dual of the Banach space (C0

0 (Rd,Rm), ‖·‖C0), which is the completion of the
space C0

c (Rd,Rm) of continuous and compactly supported functions. The latter is endowed with the duality
bracket

〈

ν, φ
〉

C0 :=
m
∑

k=1

∫

Rd

φk(x)dνk(x), (4)

defined for any ν ∈ M(Rd,Rm) and φ ∈ C0
c (Rd,Rm). Given a positive Borel measure ν ∈ M(Rd,R+) and an

element p ∈ [1,+∞], we denote respectively by Lp(Ω,Rm; ν) and W 1,p(Ω,Rm; ν) the corresponding spaces of
p-integrable and Sobolev functions. In the case where ν = L d is the standard d-dimensional Lebesgue measure,
we simply denote these spaces by Lp(Ω,Rm) and W 1,p(Ω,Rm).
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We denote by P(Rd) ⊂ M(Rd,R+) the set of Borel probability measures and for p ≥ 1, we define Pp(Rd)
as the subset of P(Rd) of measures having finite p-th moment, i.e.

Pp(Rd) = {µ ∈ P(Rd) s.t.
∫

Rd |x|pdµ(x) < +∞}.

The support of a Borel measure ν ∈ M(Rd,Rm) is defined as the closed set supp(ν) = {x ∈ R
d s.t. ν(N ) 6=

0 for any neighbourhood N of x}. We denote by Pc(Rd) ⊂ P(Rd) the subset of Borel probability measures
with compact support.

Definition 1 (Absolute continuity and Radon-Nikodym derivative). Let Ω ⊂ R
m and U ⊂ R

d be two Borel
sets. Given a pair of measures (ν, µ) ∈ M(Ω, U) × M(Ω,R+), we say that ν is absolutely continuous with
respect to µ – denoted by ν ≪ µ –, provided that |ν|(B) = 0 whenever µ(B) = 0 for any Borel set B ⊂ Ω.

Moreover, we have that ν ≪ µ if and only if there exists a Borel map u ∈ L1(Ω, U ;µ) such that ν = u(·)µ.
This map is referred to as the Radon-Nikodym derivative of ν with respect to µ, and denoted by u(·) := dν

dµ (·).

We recall in the following definition the notions of pushforward of a Borel probability measure through a
Borel map and of transport plan.

Definition 2 (Pushforward of a measure through a Borel map). Given a measure µ ∈ P(Rd) and a Borel
map f : Rd → R

d, the pushforward f#µ of µ through f(·) is defined as the Borel probability measure such that
f#µ(B) = µ(f−1(B)) for any Borel set B ⊂ R

d.

Definition 3 (Transport plans). Let µ, ν ∈ P(Rd). We say that γ ∈ P(R2d) is a transport plan between µ
and ν – denoted by γ ∈ Γ(µ, ν) –, provided that π1

#γ = µ and π2
#γ = ν, where π1, π2 : R2d → R

d respectively
denote the projection on the first and second component.

In 1942, the Russian mathematician Leonid Kantorovich introduced the optimal mass transportation problem
in its modern mathematical formulation. Given two probability measures µ, ν ∈ P(Rd) and a cost function
c : R2d → R, one searches for a transport plan γ ∈ Γ(µ, ν) such that

∫

R2d

c(x, y)dγ(x, y) = min
γ

{∫

R2d

c(x, y)dγ′(x, y) s.t. γ′ ∈ Γ(µ, ν)

}

.

This problem has been extensively studied in very broad contexts (see e.g. [5, 58, 59]), with high levels of
generality on the underlying spaces and cost functions. In the particular case where c(x, y) = |x− y|p for some
real number p ≥ 1, the optimal transport problem can be used to define a distance overt Pp(Rd).

Definition 4 (Wasserstein distance and Wasserstein spaces). Given two measures µ, ν ∈ Pp(Rd), the p-
Wasserstein distance between µ and ν is defined by

Wp(µ, ν) := min
γ

{(

∫

R2d

|x− y|pdγ(x, y)
)1/p

s.t. γ ∈ Γ(µ, ν)
}

.

The set of plans γ ∈ Γ(µ, ν) achieving this optimal value is denoted by Γo(µ, ν) and referred to as the set of
optimal transport plans between µ and ν. The space (Pp(Rd),Wp) of probability measures with finite momentum
of order p endowed with the p-Wasserstein metric is called the Wasserstein space of order p.

We recall some of the interesting properties of these spaces in the following proposition (see e.g. [5, Chapter
7] or [59, Chapter 6]).

Proposition 1 (Elementary properties of the Wasserstein spaces). The Wasserstein spaces (Pp(Rd),Wp) are
separable metric spaces, and the distance Wp metrizes the weak-∗ topology associated to the duality pairing (4):

Wp(µ, µn) −→
n→+∞

0 if and only if











µn ⇀∗

n→+∞
µ,

∫

Rd

|x|pdµn(x) −→
n→+∞

∫

Rd

|x|pdµ(x).

Given two measures µ, ν ∈ P(Rd), the Wasserstein distances are ordered, i.e. it holds that Wp1
(µ, ν) ≤

Wp2
(µ, ν) whenever p1 ≤ p2. Moreover when p = 1, the following Kantorovich-Rubinstein duality formula holds

W1(µ, ν) = sup
φ

{∫

Rd

φ(x) d(µ− ν)(x) s.t. Lip(φ;Rd) ≤ 1

}

. (5)

We end this introductory paragraph by recalling in the following theorem the concept of disintegration of a
family of vector-valued measures (see e.g. [4, Theorem 2.28]).
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Theorem 2 (Disintegration). Let Ω1 ⊂ R
m1 , Ω2 ⊂ R

m2 and U ⊂ R
d be Borel sets. Let ν ∈ M(Ω1 ×Ω2, U) and

π1 : Rm1 × R
m2 → R

m1 be the projection on the first factor. Defining the measure µ := π1
#|ν| ∈ M(Ω1,R+),

there exists a µ-almost uniquely determined Borel family of measures {νx}x∈Ω1
⊂ M(Ω2, U) such that

∫

Ω1×Ω2

f(x, y)dν(x, y) =

∫

Ω1

(∫

Ω2

f(x, y)dνx(y)

)

dµ(x) (6)

for any Borel map f ∈ L1(Ω1 × Ω2, |ν|). This construction is referred to as the disintegration of ν onto µ, and
it is denoted by ν =

∫

Ω1
νxdµ(x).

2.2 First and second order differential calculus over (P2(R
d), W2)

In this section, we introduce key concepts related to first and second order differential calculus in the Wasserstein
space (P2(Rd),W2). We refer the reader to [5, Chapters 9-11] for an exhaustive treatment of the first-order
theory, and to [47] for the theoretical foundations of the second-order theory. We borrow the main working
definitions dealing with Wasserstein Hessians from [27, Section 3]. Throughout this section, we denote by
φ : P2(Rd) → R a lower-semicontinuous and proper functional with non-empty effective domain D(φ) = {µ ∈
P2(Rd) s.t. φ(µ) < +∞}.

We start by introducing in the following definition the notions of classical subdifferential and superdifferential
for functionals defined over (P2(Rd),W2).

Definition 5 (Classical Wasserstein subdifferential and superdifferentials). Let µ ∈ D(φ). We say that a map
ξ ∈ L2(Rd,Rd;µ) belongs to the classical subdifferential ∂−φ(µ) of φ(·) at µ provided that

φ(ν) − φ(µ) ≥ sup
γ∈Γo(µ,ν)

∫

R2d

〈ξ(x), y − x〉dγ(x, y) + o(W2(µ, ν)),

for all ν ∈ P2(Rd). Similarly, we say that a map ξ ∈ L2(Rd,Rd;µ) belongs to the classical superdifferential
∂+φ(µ) of φ(·) at µ if (−ξ) ∈ ∂−(−φ)(µ).

Following [5, Chapter 8], we define the analytical tangent space TanµP2(Rd) to the Wasserstein space
P2(Rd) at some measure µ by

TanµP2(Rd) := ∇C∞
c (Rd)

L2(µ)
=
{

∇ξ s.t. ξ ∈ C∞
c (Rd)

}L2(µ)
. (7)

In the next definition, we recall the notion of differentiable functional over P2(Rd).

Definition 6 (Differentiable functionals in (P2(Rd),W2)). A functional φ : P2(Rd) 7→ R is said to be
differentiable at some µ ∈ D(φ) if ∂−φ(µ) ∩ ∂+φ(µ) 6= ∅. In this case, there exists a unique elements
∇µφ(µ) ∈ ∂−φ(µ) ∩ ∂+φ(µ) ∩ TanµP2(Rd), called the Wasserstein gradient of φ(·) at µ, which satisfies

φ(ν) − φ(µ) =

∫

R2d

〈∇µφ(µ)(x), y − x〉dγ(x, y) + o(W2(µ, ν)), (8)

for any ν ∈ P2(Rd) and γ ∈ Γo(µ, ν).

From the characterization (8) of the Wasserstein gradient ∇µφ(µ), we can deduce the following chain rule
along elements of TanµP2(Rd) (see [5, Proposition 10.3.18]).

Proposition 2 (First-order chain rule). Suppose that φ(·) is differentiable at µ ∈ D(φ). Then for any ξ ∈
TanµP2(Rd), the map s ∈ R 7→ φ((Id + sξ)#µ) is differentiable at s = 0 with

Lξφ(µ) := d
dsφ((Id + sξ)#µ)|s=0 =

∫

Rd

〈∇µφ(µ)(x), ξ(x)〉dµ(x), (9)

where Lξφ(µ) denotes the Lie derivative of φ(·) at µ in the direction ξ ∈ TanµP2(Rd).

In the sequel, we will also need a notion of second-order derivative for functionals defined over P2(Rd). We
therefore introduce in the following definition the notion of Wasserstein Hessian bilinear form for a sufficiently
regular functional φ(·).

Definition 7 (Hessian bilinear form in (P2(Rd),W2)). Suppose that φ(·) is differentiable at µ ∈ D(φ) and
suppose that for any ξ ∈ ∇C∞

c (Rd), the map

Lξφ : ν ∈ P2(Rd) 7→ 〈∇µφ(ν), ξ〉L2(ν),
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is differentiable at µ in the sense of Definition 6. Then, we define the partial Wasserstein Hessian of φ(·) at µ
as the bilinear form

Hessφ[µ](ξ1, ξ2) := Lξ2
(Lξ1

φ(µ)) − LDξ1ξ2
φ(µ), (10)

for any ξ1, ξ2 ∈ ∇C∞
c (Rd). Moreover, if there exists a constant Cµ > 0 such that

Hessφ[µ](ξ1, ξ2) ≤ Cµ ‖ξ1‖L2(µ)‖ξ2‖L2(µ),

we denote again by Hessφ[µ](·, ·) its extension to TanµP2(Rd) × TanµP2(Rd) and we say that φ(·) is twice
differentiable at µ.

We end this preparatory section by providing in the following proposition a condensed version of several
statements of [27, Section 3]. This will allow us to derive an analytical and natural expression for the Hessian
bilinear form, as well as a second-order differentiation formula for Wasserstein functionals.

Proposition 3 (Wasserstein Hessian and second-order expansion). Suppose that φ(·) is differentiable at µ ∈
D(φ) in the sense of Definition 6, and that the maps

y ∈ R
d 7→ ∇µφ(µ)(y) and ν ∈ P2(Rd) 7→ ∇µφ(ν)(x)

are differentiable at x ∈ R
d and µ ∈ D(φ) respectively. Then, φ(·) is twice differentiable in the sense of

Definition 7, and its Wasserstein Hessian writes explicitly as

Hessφ[µ](ξ1, ξ2) =

∫

Rd

〈

Dx∇µφ(µ)(x)ξ1(x), ξ2(x)
〉

dµ(x) +

∫

R2d

〈

D2
µφ(µ)(x, y)ξ1(x), ξ2(y)

〉

dµ(x)dµ(y), (11)

for any ξ1, ξ2 ∈ TanµP2(Rd). Here, the map Dx∇µφ(µ)(x) ∈ R
d×d is the classical differential of ∇µφ(µ)(·)

at x ∈ R
d, while D2

µφ(µ)(x, ·) : Rd → R
d×d denotes the matrix-valued map which columns are the Wasserstein

gradients of the components of ∇µφ(µ)(x) defined as in Definition 6. Moreover, one has that

d
dsLξ1

φ((Id + sξ2)#µ)|s=0 = Hessφ[µ](ξ1, ξ2) + LDξ1ξ2
φ(µ), (12)

for any ξ1, ξ2 ∈ ∇C∞
c (Rd).

2.3 Mean-field adapted structures and discrete measures

In this section, we present several notions dealing with functionals defined over empirical measures, along with
an adapted discrete version of the differential structure described in Section 2.2.

We denote by PN (Rd) = { 1
N

∑N
i=1 δxi

s.t. (x, . . . , xN ) ∈ (Rd)N } the set of N -empirical probability measures
over R

d. It is a standard result in optimal transport theory (see e.g. [5, Chapter 7]) that ∪NPN (Rd) is a
dense subset of P(Rd) with respect to the narrow topology. For any N ≥ 1, we denote by x = (x1, . . . , xN )

a given element of (Rd)N and by µ[x] := 1
N

∑N
i=1 δxi

∈ PN (Rd) its associated empirical measure. A map
φ : (Rd)N → R

m is said to be symmetric if φ◦σ(·) = φ(·) for any d-blockwise permutation σ : (Rd)N → (Rd)N .
In the following definition, we introduce the notion of mean-field approximating sequence for a continuous
functional φ(·) defined over Pc(Rd).

Definition 8 (Mean-field approximating sequence). Given an integer n ≥ 1 and a set Ω ⊂ R
n, we define the

mean-field approximating sequence of a functional F ∈ C0(Ω × Pc(Rd),Rm) as the family of symmetric maps
(F N (·, ·)) ⊂ C0(Ω × (Rd)N ,Rm) such that

F (x, µ[x]) = F N (x,x) (13)

for any N ≥ 1 and (x,x) ∈ Ω × (Rd)N .

We introduce below the notion of C2,1
loc -Wasserstein regularity which we will use throughout the article.

Definition 9 (C2,1
loc -Wasserstein regularity). A functional φ : Pc(Rd) → R

m is said to be C2,1
loc -Wasserstein

regular if for any compact set K ⊂ R
d, the map φ(·) is twice differentiable over P(K) in the sense of Definition

7 and such that

φ(µ) + ‖∇µφ(µ)(·)‖C0(K) + ‖Dx∇µφ(µ)(·)‖C0(K) +
∥

∥D2
µφ(µ)(·, ·)

∥

∥

C0(K×K)

+ Lip
(

Dx∇µφ(·)(·); P(K) ×K
)

+ Lip
(

D2
µφ(·)(·, ·); P(K) ×K ×K

)

≤ CK

(14)

for all µ ∈ P(K), where CK > 0 is a constant depending on K.
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In the sequel, we endow the vector space (Rd)N with the rescaled inner product 〈·, ·〉N , defined by

〈x,y〉N =
1

N

N
∑

i=1

〈xi, yi〉, (15)

for any x,y ∈ (Rd)N , where 〈·, ·〉 is the standard Euclidean inner product of Rd. We denote by | · |N =
√

〈·, ·〉N

the rescaled Euclidean norm induced by 〈·, ·〉N over (Rd)N , and remark that ((Rd)N , 〈·, ·〉N ) has the structure
of a Hilbert space.

In the following proposition, we show that the Wasserstein differential structure described in Section 2.2 for
functionals defined on measures induces a natural differential structure on the Hilbert space ((Rd)N , 〈·, ·〉N ).

Proposition 4 (Mean-field derivatives of symmetric maps). Let φ(·) be C2,1
loc -Wasserstein regular with mean-

field approximating sequence (φN (·)) ⊂ C0((Rd)N ). Then one has that φN ∈ C2,1
loc ((Rd)N ,R) for any N ≥ 1.

Moreover, the following Taylor expansion holds

φN (x + h) = φN (x) + 〈Grad φN (x),h〉N +
1

2
Hess φN [x](h,h) + o(|h|2N ), (16)

for any x,h ∈ (Rd)N , where we introduced the mean-field gradient Grad φN (·) and mean-field Hessian
Hess φN [·] of φN (·), defined respectively by

Grad φN (x) := (∇µφ(µ[x])(xi))1≤i≤N , (17)

and

Hess φN [x](h,h) :=
1

N

N
∑

i=1

〈Dx∇µφ(µ[x])(xi)hi, hi〉N +
1

N2

N
∑

i,j=1

〈D2
µφ(µ[x])(xi, xj)hi, hj〉. (18)

For any compact set K ⊂ R
d, there exists a constant CK > 0 such that for any N ≥ 1, one has that

‖φN (·)‖C2(KN ) + Lip
(

Hess φN [·];KN
)

≤ CK , (19)

where the C2-norm here is defined by

‖φN (·)‖C2(K) = max
x∈K

φN (x) + max
x∈K

|Grad φN (x)|N + max
x∈K

sup
|h|N ≤1

Hess φN [x](h,h), (20)

for any set K ⊂ (Rd)N .

Proof. Let x,h ∈ (Rd)N , ǫ = 1
4 minxi 6=xj

|xi − xj | and ζN (·) be defined by

ζN : x ∈ R
d 7→

{

〈x, hi〉 if x ∈ B(xi, 2ǫ),

0 otherwise.

Let η ∈ C∞
c (Rd) be a symmetric mollifier centered at the origin and supported on the closure of B(0, ǫ). We

define the tangent vector ξN ∈ ∇C∞
c (Rd) ⊂ Tanµ[x]P2(Rd) at µ[x] by

ξN : x ∈ R
d 7→ ∇(η ∗ ζN )(x). (21)

Remark that by construction, one has

ξN (xi) = hi, DxξN (xi) = 0, (22)

so that in particular µ[x + sh] = (Id + sξN )#µ[x] for any s ∈ R.
By assumption, the map φ(·) is differentiable at µ[x] ∈ Pc(Rd). We can therefore apply the first-order chain

rule derived in Proposition 2 along tangent vectors to recover that

lim
s→0

[

φ(µ[x + sh]) − φ(µ[x])

s

]

= LξN
φ(µ[x]) =

∫

Rd

〈∇µφ(µ[x])(x), ξN (x)〉dµ[x](x).

We can further obtain by recalling the definition of the symmetric maps φN (·) given in (13) that

lim
s→0

[

φN (x + sh) − φN (x)

s

]

= φ′
N(x; h) =

1

N

N
∑

i=1

〈∇µφ(µ[x])(xi), hi〉, (23)
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where we used (22) along with the fact that µ[x] = 1
N

∑N
i=1 δxi

. It is straightforward to check that the directional
derivative h 7→ φ′

N (x; h) of φN (·) defined in (23) is a linear form and that it is continuous with respect to the
rescaled Euclidean metric | · |N . Whence, the map φN (·) is Fréchet differentiable at x, and by Riesz’s Theorem
(see e.g. [13, Theorem 5.5]), its differential can be represented in the Hilbert space ((Rd)N , 〈·, ·〉N ) by the the
so-called mean-field gradient Grad φN (x) := (∇µφ(µ[x])(xi))1≤i≤N .

Consider now two elements h1,h2 ∈ (Rd)N and the corresponding tangent vectors ξ1
N , ξ

2
N ∈ ∇C∞

c (Rd) built
as in (21). Since the map φ(·) is twice differentiable in the sense of Definition 7, we can use the the second-order
differentiation formula (12) to obtain that

lim
s→0

[

Lξ1
N
φ((Id + sξ2

N )#µ[x]) − Lξ1
N
φ(µ[x])

s

]

=Hessφ[µ[x]](ξ1
N , ξ

2
N ) + LDξ1

N
ξ2

N
φ(µ[x]). (24)

Recall now that by (21), it holds that Dξ1
N (x) = 0 for µ[x]-almost every x ∈ R

d, so that LDξ1
N

ξ2
N
φ(µ[x]) = 0. Fur-

thermore by definition of the symmetric maps φN (·) along with that of their mean-field gradients Grad φN(·),
equation (24) can be equivalently rewritten as

lim
s→0

[ 〈Grad φN (x + sh2) − Grad φN (x),h1〉N

s

]

=
1

N

N
∑

i=1

〈Dx∇µφ(µ[x])(xi)h
1
i , h

2
i 〉

+
1

N2

N
∑

i,j=1

〈D2
µφ(µ[x])(xi, xj)h1

i , h
2
j〉,

where we used the analytical expression (11) of the Wasserstein Hessian. We accordingly introduce the mean-
field Hessian of φN (·) at x, defined by

Hess φN [x](h1,h2) =
1

N

N
∑

i=1

〈Dx∇µφ(µ[x])(xi)h
1
i , h

2
i 〉 +

1

N2

N
∑

i,j=1

〈D2
µφ(µ[x])(xi, xj)h1

i , h
2
j〉. (25)

It is again possible to verify that Hess φN [x](·, ·) defines a continuous bilinear form with respect to the rescaled
metric | · |N , so that the map φN (·) is twice Fréchet differentiable over (Rd)N .

The Taylor expansion formula (16) can be derived directly by expanding φN (x + h) using the classical
Taylor theorem in (Rd)N along with (23) and (25). Defining the C2-norm of a functional φN (·) as in (20), it
follows directly from the uniform bounds (14) stemming from the C2,1

loc -Wasserstein regularity of φ(·) that for
any compact set K ⊂ R

d, there exists a constant CK > 0 such that

‖φN (·)‖C2(KN ) + Lip
(

Hess φN [·];KN
)

≤ CK .

This ends the proof of Proposition 4.

Remark 3 (Matrix representation of the mean-field Hessian in (Rd)N ). By Riesz’s Theorem applied in the
Hilbert space ((Rd)N ), 〈·, ·〉N ), one can represent the action of the Hessian bilinear form Hess φN [x](·, ·) as

Hess φN [x](h1,h2) =
〈

Hess φN (x)h1,h2
〉

N
. (26)

for any x,h1,h2 ∈ (Rd)N , where Hess φN (x) is a matrix. In this case, its components are given explicitly by

(Hess φN (x))i,j = D2
µφ(µ[x])(xi, xj), (Hess φN (x))i,i = NDx∇µφ(µ[x])(xi) + D2

µφ(µ[x])(xi, xj),

for any pair of indices i, j ∈ {1, . . . , N} such that i 6= j.

3 Locally optimal Lipschitz feedbacks in optimal control

In this section, we start by recalling some classical facts about finite dimensional optimal control problems.
We then describe in Theorem 3 a result proven in [36], which provides sufficient conditions for the existence
of locally optimal Lipschitz feedbacks in a neighbourhood of an optimal trajectory. This result is based on
general metric regularity properties explored recently in [28] for dynamical differential inclusions. Throughout
this section, we will study the finite-dimensional optimal control problem

(Poc)























min
u(·)∈U

[

∫ T

0

(

l(t, x(t)) + ψ(u(t))
)

dt+ g(x(T ))

]

s.t.

{

ẋ(t) = f(t, x(t)) + u(t),

x(0) = x0 ∈ R
d,

under the following structural assumptions.
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Hypotheses (Hoc).

1. The set of admissible controls is U = L∞([0, T ], U) where U ⊂ R
d is a compact and convex set.

2. The control cost u 7→ ψ(u) is C2,1
loc -regular and strictly convex.

3. The map (t, x) 7→ f(t, x) is Lipschitz with respect to t ∈ [0, T ], sublinear and C2,1
loc -regular with respect to

x ∈ R
d.

4. The running cost (t, x) 7→ l(t, x) is Lipschitz with respect to t ∈ [0, T ] and C2,1
loc -regular with respect to

x ∈ R
d. Similarly, the final cost x 7→ g(x) is C2,1

loc -regular.

As a direct consequence of our regularity hypotheses and of the compactness of the set of admissible control
values U , we have the following lemma.

Lemma 1 (Uniform compactness of admissible trajectories). There exists a compact set K ⊂ R
d such that any

admissible curve x(·) for (Poc) associated with a control map u(·) ∈ U satisfies x(·) ∈ Lip([0, T ],K).

This follows directly from Grönwall’s Lemma. From now on, we fix such a compact set K ⊂ R
d.

Proposition 5 (Existence of solutions for problem (Poc)). Under hypotheses (Hoc), there exists an optimal
pair control-trajectory (u∗(·), x∗(·)) ∈ U × Lip([0, T ],K) for problem (Poc).

This result is standard under our working hypotheses and can be found e.g. in [29, Theorem 23.11]. We can
further define the Hamiltonian associated to (Poc) by

H : (t, x, p, u) ∈ [0, T ] × (Rd)3 7→ 〈p, f(t, x) + u〉 −
(

l(t, x) + ψ(u)
)

.

Let (u∗(·), x∗(·)) be an optimal pair control-trajectory for (Poc). By the Pontryagin Maximum Principle (see
e.g. [29, Theorem 22.2]), there exists a curve p∗(·) ∈ Lip([0, T ],Rd) such that the couple (x∗(·), p∗(·)) is a
solution of the forward-backward Hamiltonian system

{

ẋ∗(t) = ∇pH(t, x∗(t), p∗(t), u∗(t)), x∗(0) = x0,

ṗ∗(t) = −∇xH(t, x∗(t), p∗(t), u∗(t)), p∗(T ) = −∇g(x∗(T )).
(27)

Moreover, the Pontryagin maximisation condition

H(t, x∗(t), p∗(t), u∗(t)) = max
v∈U

[H(t, x∗(t), p∗(t), v)] , (28)

holds along this extremal pair for L 1-almost every t ∈ [0, T ]. Such a collection of optimal state, costate and
control (x∗(·), p∗(·), u∗(·)) is called an optimal Pontryagin triple for (Poc). Let it be noted that since the problem
(Poc) is unconstrained, there are no abnormal curves stemming from the maximum principle.

Remark now that, as a by-product of the local Lipschitz regularity of f(·, ·), l(·, ·) and g(·), there exists a
compact set K ′ ⊂ R

d such that any covector p(·) associated with an admissible pair (u(·), x(·)) via (27) satisfies
p ∈ Lip([0, T ],K ′). We henceforth denote by K = [0, T ] ×K ×K ′ × U the uniform compact set containing the
admissible times, states, costates and controls for (Poc). Moreover, we denote by LK the Lipschitz constant
over K of the maps f(·, ·), l(·, ·), ψ(·) and H(·, ·, ·, ·) and of their derivatives with respect to the variables (x, u)
up to the second order.

We now present the central and somewhat less standard assumption which allows for the construction of
locally optimal feedbacks around the graph of x∗(·).

Definition 10 (Uniform coercivity estimate). We say that a Pontryagin triple (x∗(·), p∗(·), u∗(·)) for (Poc)
satisfies the uniform coercivity estimate with constant ρ > 0 if the following inequality holds

〈

∇2
x g(x∗(T ))y(T ), y(T )

〉

−
∫ T

0

〈

∇2
x H(t, x∗(t), p∗(t), u∗(t))y(t), y(t)

〉

dt

−
∫ T

0

〈

∇2
u H(t, x∗(t), p∗(t), u∗(t))w(t), w(t)

〉

dt ≥ ρ

∫ T

0

|w(t)|2dt

(29)

for any pair of maps (y(·), w(·)) ∈ W 1,2([0, T ],Rd)×L2([0, T ],Rd) solution of the linearised control-state equation

{

ẏ(t) = Dxf(t, x∗(t))y(t) + w(t), y(0) = 0,

u∗(t) + w(t) ∈ U for L
1-almost every t ∈ [0, T ].

(30)
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As we shall see later on, the uniform coercivity estimate (29) can be interpreted as a strong positive-
definiteness condition for the linearisation of (Poc) in a neighbourhood of (x∗(·), p∗(·), u∗(·)). We can now state
main result of this section which can be found in [36, Theorem 5.2].

Theorem 3 (Existence of locally optimal feedbacks for (Poc)). Let (x∗(·), p∗(·), u∗(·)) ∈ Lip([0, T ],K) ×
Lip([0, T ],K ′) × U be an optimal Pontryagin triple for problem (Poc). Suppose that (Hoc) hold and that
(x∗(·), p∗(·), u∗(·)) satisfies the uniform coercivity estimate (29)-(30) with constant ρ > 0.

Then, there exist constants ǫ, η > 0, an open subset N ⊂ [0, T ] × R
d and a locally optimal feedback

ū(·, ·) ∈ Lip(N ,Rd) which Lipschitz constant depends only on ρ and LK , such that

(i) ū(·, x∗(·)) = u∗(·).

(ii)
(

Graph(x∗(·)) + {0} × B(0, ǫ)
)

⊂ N .

(iii) For every (τ, ξ) ∈ N , the equation

ẋ(t) = f(t, x(t)) + ū(t, x(t)), x(τ) = ξ, (31)

has a unique solution x̂(τ,ξ)(·) such that Graph(x̂(τ,ξ)(·)) ⊂ N .

(iv) The map û(τ,ξ) : t ∈ [τ, T ] 7→ ū(t, x̂(τ,ξ)(t)) is such that

∫ T

τ

l
(

t, x̂(τ,ξ)(t), û(τ,ξ)(t)
)

dt+ g(x̂(τ,ξ)(T )) ≤
∫ T

τ

l
(

t, x(t), u(t)
)

dt+ g(x(T ))

among all the admissible open-loop pairs (u(·), x(·)) ∈ U × Lip([τ, T ],Rd) for (Poc) such that ‖ u(·) −
û(τ,ξ)(·)‖L∞([τ,T ])≤ η.

To better illustrate our subsequent use of Theorem 3 in the proof of our main result Theorem 1, we provide
here an overview of the strategy used to prove it in [36], which is based on the earlier work [28]. We start our
heuristic exposition by recalling the concept of strong metric regularity for a set-valued map.

Definition 11 (Strong metric regularity). Let Y ,Z be two Banach spaces. A set-valued map G : Y ⇒ Z is
said to be strongly metrically regular at y∗ ∈ Y for z∗ ∈ Z if z∗ ∈ F (y∗) and if there exists a, b > 0 and κ ≥ 0
such that

G−1 : B(z∗, b) → B(y∗, a)

is single-valued and κ-Lipschitz.

We now fix a time τ ∈ [0, T ). In (27)-(28), we wrote the Pontryagin maximum principle for (Poc). Since
v ∈ U 7→ H(t, x∗(t), p∗(t), v) is differentiable, we can reformulate the maximisation condition (28) as

∇uH(t, x∗(t), p∗(t), u∗(t)) ∈ NU (u∗(t)),

for L 1-almost every t ∈ [0, T ], where NU (v) denotes the normal cone of convex analysis to U at v. Then, any
optimal Pontryagin triple (x∗(·), p∗(·), u∗(·)) can be seen as a solution of the differential generalised inclusion

0 ∈ Fτ

(

x(·), p(·), u(·)
)

+Gτ

(

x(·), p(·), u(·)
)

, (32)

where the maps Fτ : Yτ → Zτ and Gτ : Yτ ⇒ Zτ are defined by

Fτ (x(·), p(·), u(·)) =













ẋ(·) − f(·, x(·)) − u(·)
x(τ) − x∗(τ)

ṗ(t) + ∇xH(·, x(·), p(·), u(·))
p(T ) + ∇g(x(T ))

−∇uH(·, x(·), p(·), u(·))













,

and Gτ (x(·), p(·), u(·)) = (0, 0, 0, 0, N∞
U (u(·)))⊤. Here, we introduced the two Banach spaces

{

Yτ = W 1,∞([τ, T ],Rd) ×W 1,∞([τ, T ],Rd) × L∞([τ, T ], U),

Zτ = L∞([τ, T ],Rd) × R
d × L∞([τ, T ],Rd) × R

d × L∞([τ, T ],Rd).

and N∞
U (u(·)) = {v ∈ L∞([0, T ], U) s.t. v(t) ∈ NU (u(t)) for L 1-a.e. t ∈ [0, T ]}.

In [36], it is proven that Theorem 3 can be derived as as a consequence of the strong metric regularity of
Fτ (·) +Gτ (·) at the restriction to [τ, T ] of the Pontryagin triple (x∗(·), p∗(·), u∗(·)) for 0, uniformly with respect
to τ . A standard strategy for proving metric regularity of mappings of the form of F (·) + G(·) where F (·) is
Fréchet-differentiable is to apply the Robinson’s inverse function theorem (see e.g. [37, Theorem 5F.5]).
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Theorem 4 (Robinson’s inverse function theorem). Let y∗ ∈ Y and z∗ ∈ G(y∗). Suppose that F : Y → Z is
Fréchet differentiable at y∗. Then, the set-valued map y ∈ Y 7→ F (y) + G(y) is strongly metrically regular at y∗

for F (y∗) + z∗ if and only if the partially linearised mapping y 7→ F (y∗) + DF (y∗)(y − y∗) + G(y) is strongly
metrically regular at y∗ for F (y∗) + z∗.

The strong metric regularity of (32) can therefore be equivalently derived from that of its partial linearisation
involving the Fréchet differential of Fτ (·). Notice that since in our problem the control and state are decoupled,
there are no crossed derivatives in (x, u). Now, the key point is to remark that the partially linearised generalized
differential inclusion

0 ∈ DFτ

(

x∗(·), p∗(·), u∗(·)
)(

y(·), q(·), w(·)
)

+Gτ

(

y(·), q(·), w(·)
)

can be equivalently seen as the Pontryagin maximum principle for the LQ problem

(PLin)























min
w(·)∈Uτ

[

∫ T

τ

(

1

2
〈A(t)y(t), y(t)〉 +

1

2
〈B(t)w(t), w(t)〉

)

dt+
1

2
〈C(T )y(T ), y(T )〉

]

s.t.

{

ẏ(t) = Dxf(t, x∗(t))y(t) + w(t),

y(τ) = 0.

Here, the set of admissible controls is defined by

Uτ = {v ∈ L2([τ, T ], U) s.t. u∗(t) + v(t) ∈ U for L
1-almost every t ∈ [τ, T ]}

and the cost functionals by

{

A(t) = −∇2
xH(t, x∗(t), p∗(t), u∗(t)), B(t) = −∇2

uH(t, x∗(t), p∗(t), u∗(t)),

C(T ) = ∇2
xg(x∗(T )).

The coercivity estimate (29)-(30) is still valid on [τ, T ] up to choosing w(·) ≡ 0 on [0, τ ], and it is indeed a
second-order strict positive-definiteness condition for the linearised problem (PLin). In [28], it was proven that
by applying Robinson’s inverse function theorem, one can recover the strong metric regularity of (32) uniformly
with respect to τ , which was in turn used in [36] to prove Theorem 3.

4 Non-local transport equations and mean-field optimal control

In this section, we recall some results concerning continuity equations and optimal control problems in Wasser-
stein spaces written in the general form

(P)























min
u∈U

[

∫ T

0

(

L(t, µ(t)) +

∫

Rd

ψ(u(t, x))dµ(t)(x)

)

dt+ ϕ(µ(T ))

]

s.t.

{

∂tµ(t) + ∇ · ((v[µ(t)](t, ·) + u(t, ·))µ(t)) = 0,

µ(0) = µ0.

We make the following working assumption on the data of problem (P).

Hypotheses (H).

(H1) The set of control values U ⊂ R
d is a convex and compact set containing a neighbourhood of the origin.

(H2) The control cost v 7→ ψ(v) ∈ [0,+∞] is radial, C2,1
loc -regular, strictly convex, and such that ψ(0) = 0.

(H3) The non-local velocity field (t, x, µ) 7→ v[µ](t, x) ∈ R
d is Lipschitz with respect to t ∈ [0, T ] and continuous

in the product | · | ×W2-topology with respect to (x, µ) ∈ R
d × Pc(Rd). For all times t ∈ [0, T ], it is such

that
|v[µ](t, x)| ≤ M

(

1 + |x| +
(∫

Rd |y|dµ(y)
)

)

,

for a given constant M > 0 and any (x, µ) ∈ R
d × Pc(Rd). It further satisfies the Cauchy-Lipschitz

properties
{

|v[µ](t, x) − v[µ](t, y)| ≤ LK
1 |x− y|,

‖v[µ](t, ·) − v[ν](t, ·)‖C0(K,Rd) ≤ LK
2 W2(µ, ν),

on any compact set K ⊂ R
d and for any pairs x, y ∈ K and µ, ν ∈ P(K).
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(H4) The map v[·](t, x) is C2,1
loc -Wasserstein regular in the sense of Definition 9, uniformly with respect to

(t, x) ∈ [0, T ] ×K where K ⊂ R
d is compact.

(H5) The running cost (t, µ) 7→ L(t, µ) is Lipschitz with respect to t ∈ [0, T ] and C2,1
loc -Wasserstein regular with

respect to µ ∈ Pc(Rd) in the sense of Definition 9.

(H6) The final cost µ 7→ ϕ(µ) is C2,1
loc -Wasserstein regular in the sense of Definition 9.

Let it be noted that the strong requirements of C2,1
loc -Wasserstein regularity on the functionals involved in the

problem are not classical, since the well-posedness results e.g. of [54] are proven under mere Lipschitz regularity
in the measure variables.

We present in Section 4.1 two classical well-posedness results for continuity equations formulated in Wasser-
stein spaces. We further state in Section 4.2 a powerful existence result of so-called mean-field optimal controls
for an adequate variant of problem (P). The latter is a reformulation of the main result of [43], which was
derived under more general assumptions than our working hypotheses (H).

4.1 Non-local transport equations in R
d

Given a positive constant T > 0, we denote by λ = 1
T L 1

x[0,T ] the normalized Lebesgue measure on [0, T ].

For any p ≥ 1, a narrowly continuous curve of measures µ(·) in Pp(Rd) can be uniquely lifted to a measure
µ̃ ∈ Pp([0, T ] × R

d) through the disintegration formula µ̃ =
∫

[0,T ] µ(t)dλ(t) introduced in Theorem 2. We

say that a narrowly continuous curve of measure t 7→ µ(t) ∈ Pp(Rd) solves a continuity equation with initial
condition µ0 ∈ Pp(Rd) associated to the Borel velocity field w ∈ Lp([0, T ] × R

d,Rd; µ̃) provided that

{

∂tµ(t) + ∇ · (w(t, ·)µ(t)) = 0,

µ(0) = µ0.
(33)

This equation has to be understood in duality against smooth and compactly supported functions, namely

∫ T

0

∫

Rd

(

∂tξ(t, x) + 〈∇xξ(t, x),w(t, x)〉
)

dµ(t)(x)dt = 0 (34)

for any ξ ∈ C∞
c ([0, T ] × R

d).
We state in the following theorem a general existence result for solutions of continuity equations of the form

(33) under mere Lp-integrability of the driving velocity field. We refer the reader to the seminal papers [2, 35]
as well as to [5, Chapter 8].

Theorem 5 (Superposition principle). Let µ(·) ∈ C0([0, T ],Pp(Rd)) and w(·, ·) ∈ Lp([0, T ] × R
d,Rd; µ̃) be a

Borel vector field satisfying the integrability bound

∫ T

0

∫

Rd

|w(t, x)|
1 + |x| dµ(t)(x)dt < +∞.

Then, µ(·) is a solution of (33) associated to v(·, ·) if and only if there exists a probability measure η ∈ P(Rd ×
C0([0, T ],Rd)) such that the following holds.

(i) η is concentrated on the set of pairs (x, γ(·)) ∈ R
d × AC([0, T ],Rd) such that γ̇(t) = w(t, γ(t)) for L 1-

almost every t ∈ [0, T ] and γ(0) = x.

(ii) It holds that µ(t) = (et)#η where for all times t ∈ [0, T ] we introduced the evaluation map et : (x, γ(·)) ∈
R

d × AC([0, T ],Rd) 7→ γ(t) ∈ R
d.

Taking in particular p = 1 and a non-local velocity field of the form w : (t, x) 7→ v[µ(t)](t, x) + dν

dµ̃ (t, x),

we recover a notion of solution for the Cauchy problem on which problem (P) is formulated. In Theorem 6
below, we state another existence result derived in [54] and concerned with classical well-posedness for non-local
transport equations under stronger regularity assumptions.

Theorem 6 (Well-posedness of transport equation). Let µ ∈ Pc(Rd) 7→ v[µ](·, ·) ∈ L1([0, T ], C0(Rd,Rd))
be a non-local Borel velocity field satisfying hypothesis (H3). Then, there exists a unique solution µ(·) ∈
Lip([0, T ],Pc(R

d)) of (33) driven by the non-local vector field v[·](·, ·). Furthermore, there exist constants
RT , LT > 0 such that

supp(µ(t)) ⊂ B(0, RT ), W1(µ(t), µ(s)) ≤ LT |t− s|,
for all times s, t ∈ [0, T ].
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4.2 Existence of mean-field optimal controls for problem (P)

In this section, we show how problem (P) can be reformulated so as to encompass both the measure theoretic
formulation and its sequence of approximating problems. We subsequently recall a powerful existence result
derived in [43] for general multi-agent optimal control problems formulated in Wasserstein spaces.

Let us start by fixing an integer N ≥ 1, an initial datum x0
N ∈ (Rd)N and the associated discrete measure

µ0
N = µ[x0

N ] as defined in Section 2.3. As already sketched in the introduction, we will naturally consider the
family of discrete problems

(PN )



























min
u(·)∈UN

[

∫ T

0

(

LN (t,x(t)) +
1

N

N
∑

i=1

ψ(ui(t))
)

dt+ ϕN (x(T ))

]

s.t.

{

ẋi(t) = vN [x(t)](t, xi(t)) + ui(t),

xi(0) = x0
i ,

where UN = L∞([0, T ], UN), and where we introduced the mean-field approximating functionals

vN [x](·, ·) = v[µ[x]](·, ·), LN (·,x) = L(t, µ[x]), ϕN (x) = ϕ(µ[x]),

in the sense of Definition 8. It can be checked that as a consequence of hypotheses (H) displayed in Section
5, the problems (PN ) satisfy the set of hypotheses (Hoc) of Section 3. We can moreover deduce the following
lemma directly from Proposition 5.

Lemma 2 (Existence of solutions for (PN )). Under hypotheses (H), there exist optimal control-trajectory pairs
(u∗

N (·),x∗
N (·)) ∈ UN × Lip([0, T ], (Rd)N ) solution of (PN ) for all N ≥ 1.

We proceed by recasting problem (P) into a framework which also encompasses the sequence of problems
(PN ). Let us consider a narrowly continuous curve of measures µ(·) ∈ C0([0, T ],P1(Rd)) and its canonical lift
µ̃ ∈ P1([0, T ] × R

d). Recall that by Definition 1, a vector-valued measure ν ∈ M([0, T ] × R
d, U) is absolutely

continuous with respect to µ̃ if and only if there exists a map u(·, ·) ∈ L1([0, T ]×R
d, U ; µ̃) such that ν = u(·, ·)µ̃.

Moreover the absolute continuity of ν with respect to µ̃ implies the existence of a λ-almost unique measurable
family of measures {ν(t)}t∈[0,T ] such that ν =

∫

[0,T ]
ν(t)dλ(t) in the sense of disintegration for vector-valued

measures recalled in Theorem 2. Bearing this in mind, problem (P) can be relaxed as

(Pmeas)























min
ν∈U

[

∫ T

0

(

L(t, µ(t)) + Ψ(ν(t)|µ(t))
)

dt+ ϕ(µ(T ))

]

s.t.

{

∂tµ(t) + ∇ · (v[µ(t)](t, ·)µ(t) + ν(t)) = 0,

µ(0) = µ0.

where we denote the set of generalized measure controls by U = M([0, T ] × R
d, U) and where the map σ ∈

M(Rd, U) 7→ Ψ(σ|µ) ∈ [0,+∞] is defined by

Ψ(σ|µ) =











∫

Rd

ψ

(

dσ

dµ
(x)

)

dµ(x) if σ ≪ µ,

+ ∞ otherwise.

(35)

This type of relaxation appears frequently in variational problems involving integral functional on measures.
Indeed, functionals of the form of Ψ(·|µ̃) as defined in (35) possess a wide range of useful features, such as
weak-∗ lower-semicontinuity, while also imposing an absolute continuity property on their argument. We refer
the reader to [5, Section 9.4] for a detailed account on their properties.

Consider now an optimal pair control-trajectory (u∗
N (·),x∗

N (·)) ∈ UN × Lip([0, T ], (Rd)N ) for (PN ). One
can canonically associate to any such solution the discrete control-trajectory measure pairs (ν∗

N , µ
∗
N (·)) ∈

U × Lip([0, T ],PN(Rd)) defined by

µ∗
N (·) =

1

N

N
∑

i=1

δx∗

i
(·), ν∗

N =

∫

[0,T ]

(

1

N

N
∑

i=1

u∗
i (t)δx∗

i
(t)

)

dλ(t). (36)

In the following theorem, we state a condensed version of the main result of [43], which shows that this
relaxation allows to prove the convergence of the discrete problems (PN ) towards (P). This convergence result
has to be understood both in terms of mean-field limit of the functional describing the dynamics and of Γ-
convergence of the corresponding minimizers.
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Theorem 7 (Existence of mean-field optimal controls for (P)).Let µ0 ∈ Pc(Rd), (µ0
N ) ⊂ Pc(R

d) be a sequence
of empirical measures associated with (x0

N ) ⊂ (Rd)N such that W1(µ0
N , µ

0) → 0, and assume that hypotheses
(H) hold. For any N ≥ 1, denote by (u∗

N (·),x∗
N (·)) ∈ UN ×Lip([0, T ], (Rd)N ) an optimal pair control-trajectory

for (PN ) and by (ν∗
N , µ

∗
N(·)) ∈ U × Lip([0, T ],PN(Rd)) the corresponding pair of measure control-trajectory

defined as in (36).
Then, there exists a pair (ν∗, µ∗(·)) ∈ U × Lip([0, T ],Pc(R

d)) such that

ν∗
N ⇀∗

N→+∞

ν∗ and sup
t∈[0,T ]

W1(µ∗
N (t), µ∗(t)) −→

N→+∞

0,

along a suitable subsequence. Moreover, the classical pair control-trajectory
(

dν
∗

dµ̃∗
(·, ·), µ∗(·)

)

∈ L∞([0, T ] × R
d, U ; µ̃) × Lip([0, T ],Pc(R

d)),

is optimal for problem (P) and solves (33) in the superposition sense.

5 Coercivity estimate and proof of Theorem 1

In this section, we prove the main result of this article stated in Theorem 1. We suppose that hypotheses (H)
of Section 4 hold, along with the following additional mean-field coercivity assumption.

Hypotheses ((CON )). There exists a constant ρT > 0 such that for every mean-field optimal Pontryagin
triple (x∗

N (·), r∗
N (·),u∗

N (·)) in the sense of Proposition 6 below, the following coercivity estimate

Hess ϕN [x∗
N (T )](y(T ),y(T )) −

∫ T

0

Hessx HN [t,x∗
N (t), r∗

N (t),u∗
N(t)](y(t),y(t))dt

−
∫ T

0

Hessu HN [t,x∗
N (t), r∗

N (t),u∗
N (t)](w(t),w(t))dt ≥ ρT

∫ T

0

|w(t)|2N dt,

holds along any solution pair (w(·),y(·)) ∈ L2([0, T ], (Rd)N )×W 1,2([0, T ], (Rd)N ) of the linearised control-state
equations

{

ẏi(t) = DxvN [x∗(t)](t, x∗
i (t))yi(t) + 1

N

∑N
j=1Dxj

vN [x∗(t)](t, x∗
i (t))yj(t) + wi(t),

yi(0) = 0 and u∗
N (t) + w(t) ∈ UN for L

1-almost every t ∈ [0, T ].

Our argument is split into three steps. In Step 1, we write a Pontryagin Maximum Principle adapted to the
mean-field structure of the problem (PN ). We proceed by building in Step 2 a sequence of Lipschitz-in-space
optimal control maps for the discrete problems (PN ) by combining Theorem 3 and (OCPN ). We then show
in Step 3 that this sequence of control maps is compact in a suitable weak topology preserving its regularity in
space, and that its limit points coincide with the mean-field optimal control introduced in Theorem 7.

Step 1 : Solutions of (PN ) and mean-field Pontryagin maximum principle In this first step, we
characterise and derive uniform estimates on the optimal pairs (u∗

N (·),x∗
N (·)) for (PN ). Our analysis is based

on the finite-dimensional Pontryagin maximum principle applied to (Rd)N ,rewritten as a Hamiltonian flow with
respect to the rescaled mean-field inner product 〈·, ·〉N .

Proposition 6 (Characterization of the solutions of (PN )). Let N ≥ 1 and (u∗
N (·),x∗

N (·)) ∈ L∞([0, T ], UN) ×
Lip([0, T ], (Rd)N )) be an optimal pair control-trajectory for (PN ). Then, there exists a rescaled covector r∗

N (·) ∈
Lip([0, T ], (Rd)N ) such that (x∗

N (·), r∗
N(·),u∗

N (·)) satisfies the mean-field Pontryagin Maximum Principle















ẋ∗
N (t) = Gradr HN (t,x∗

N (t), r∗
N (t),u∗

N (t)), x∗
N (0) = x0

N ,

ṙ∗
N (t) = −Gradx HN (t,x∗

N (t), r∗
N (t),u∗

N (t)), r∗
N (T ) = −Gradx ϕN (x∗

N (T )),

u∗
N (t) ∈ argmax

v∈UN

HN(t,x∗
N (t), r∗

N (t),v) for L
1-almost every t ∈ [0, T ],

(37)

where the mean-field Hamiltonian HN (·, ·, ·, ·) of the system is defined by

HN(t,x, r,u) =
1

N

N
∑

i=1

(

〈ri,vN [x](t, xi) + ui〉 − ψ(ui)
)

− LN (t,x) (38)

for all (t,x, r,u) ∈ [0, T ] × (Rd)N × (Rd)N × UN . Furthermore, there exists uniform constants RT , LT > 0
which are independent from N , such that

Graph
(

(x∗(·), r∗(·))
)

⊂ [0, T ] × B(0, RT )2N , Lip
(

(x∗(·), r∗(·)) ; [0, T ]
)

≤ LT . (39)
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Proof. By an application of the standard PMP to (PN ) (see for instance [29, Theorem 22.2]), there exists a
family of costate variables {p∗

i (·)}N
i=1 = p∗(·) ∈ Lip([0, T ], (Rd)N ) such that















ẋ∗
i (t) = ∇pi

HN (t,x∗(t),p∗(t),u∗(t)), x∗
i (0) = x0

i ,

ṗ∗
i (t) = −∇xi

HN (t,x∗(t),p∗(t),u∗(t)), p∗
i (T ) = −∇xi

ϕN (x∗(T )),

u∗
i (t) ∈ argmax

v∈U

[

〈p∗
i (t), v〉 − 1

N ψ(v)
]

.
(40)

Here, the classical Hamiltonian HN (·, ·, ·, ·) of the system is defined by

HN (t,x,p,u) =

N
∑

i=1

〈pi,vN [x](t, xi) + ui〉 − 1

N

N
∑

i=1

ψ(ui) − LN (t,x),

for every (t,x,p,u) ∈ [0, T ] × (Rd)N × (Rd)N × UN . By introducing the variables r∗
i (·) = Np∗

i (·), it holds that

ẋ∗
i (t) = N∇ri

HN(t,x∗(t), r∗(t),u∗(t)) = Gradri
HN (t,x∗(t), r∗(t),u∗(t)), (41)

as well as
ṙ∗

i (t) = −N∇xi
HN (t,x∗(t), r∗(t),u∗(t)) = −Gradxi

HN (t,x∗(t), r∗(t),u∗(t)), (42)

and
r∗

i (T ) = −N∇xi
ϕ(x∗(T )) = −Gradxi

ϕ(x∗(T )), (43)

as a consequence of Proposition 4. Moreover, it can be seen easily from the maximisation condition in (40)
that u∗

i (t) ∈ argmax [〈r∗
i (t), v〉 − ψ(v)]. Merging this condition with (41), (42) and (43), we recover the desired

claim that (x∗(·), r∗(·),u∗(·)) satisfies the mean-field Pontryagin Maximum Principle (37) associated to the
mean-field Hamiltonian HN (·, ·, ·, ·) for all times t ∈ [0, T ].

In the spirit of [10, 55], we introduce the discrete L∞-radius function

XN : t ∈ [0, T ] 7→ max
i∈{1,...,N}

|x∗
i (t)|.

By Danskin’s Theorem (see e.g. [32]), the map XN (·) is differentiable L 1-almost everywhere and it holds that

XN (t)X ′
N (t) =

d

dt

[

1
2X

2
N (t)

]

≤ 〈x∗
I(t)(t), ẋ

∗
I(t)(t)〉

≤ |x∗
I(t)(t)|

(

M
(

1 + |x∗
I(t)(t)| + |x∗

N (t)|N
)

+ LU

)

by (H1), (H3) and Cauchy-Schwarz inequality. Here, I(t) ∈ argmaxi∈{1,...,N}|x∗
i (t)| is any of the indices

realising the value of XN(t) for L 1-almost every t ∈ [0, T ]. Remarking now that |x∗
N (t)|N ≤ XN (t), we recover

X ′
N(t) ≤ LU +M(1 + 2XN(t))

so that by Grönwall Lemma, there exists a constant R1
T > 0 depending on supp(µ0), T , M and LU such that

sup
t∈[0,T ]

|x∗
i (t)| ≤ R1

T , (44)

for all i ∈ {1, . . . , N}. Plugging this bound into (41), we recover the existence of a constant L1
T > 0 such that

Lip(x∗
i (·); [0, T ]) ≤ L1

T , (45)

for all i ∈ {1, . . . , N}.
We now prove a similar estimate on the costate variable (r∗

N (·)). By invoking the C2,1
loc -MF regularity

assumptions of (H4)-(H6) as well as the uniform bound (44)-(45), we can derive by Grönwall Lemma that

sup
t∈[0,T ]

|r∗
i (t)| ≤ C′

(

T + |Gradxi
ϕN (x∗

N (T ))|
)

eC′T (46)

for all i ∈ {1, . . . , N}, where C′ > 0 is a given uniform constant, independent from N . By hypothesis (H6), we
know that ϕN (·) is locally Lipschitz over (Rd)N with a uniform constant on products of compact sets, so that

sup
t∈[0,T ]

|r∗
i (t)| ≤ R2

T , Lip(r∗
i (·); [0, T ]) ≤ L2

T , (47)

for all i ∈ {1, . . . , N} and for some positive constants R2
T , L

2
T > 0. Subsequently, there exists uniform constants

RT , LT > 0 which are again independent from N , such that

Graph
(

(x∗(·), r∗(·))
)

⊂ [0, T ] × B(0, RT )2N , Lip
(

(x∗(·), r∗(·)) ; [0, T ]
)

≤ LT ,

which concludes the proof of Proposition 6.
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We end this first step of our proof by a simple corollary in which we provide a common Lipschitz constant
for all the maps involved in (PN ) that is uniform with respect to N .

Corollary 1. Let K = [0, T ] × B(0, RT )2N × UN where RT > 0 is defined as in (39). Then, there exists a

constant LK > 0 such that the C2,1-norms of the maps HN(t, ·, r, ·), LN (t, ·), 1
N

∑N
i=1 ψ(·) and ϕN (·) with

respect to the variables (x,u) are bounded by LK over K, uniformly with respect to (t, r) ∈ [0, T ] ×B(0, RT )N .

Proof. This result follows directly from the C2,1
loc -Wasserstein regularity hypotheses (H3)-(H6) on the datum

of (PN ) along with the uniform compactness of the optimal Pontryagin triples derived in Proposition 6.

Step 2 : Construction of a Lipschitz-in-space optimal controls for (PN ) In this second step, we
associate to any solution (u∗

N (·),x∗
N (·)) of (PN ) a mean-field optimal control map u∗

N ∈ L∞([0, T ],Lip(Rd, U)).
We have seen in Proposition 6 that any optimal pair (u∗

N (·),x∗
N (·)) satisfies a PMP adapted to the mean-field

structure of (PN ). In Proposition 7 below, we show that this result along with the coercivity assumption
(CON ) and Theorem 3 allows us to build a sequence of optimal controls (uN (·, ·)) ⊂ L∞([0, T ],Lip(Rd, U))
which Lipschitz constants are uniformly bounded with respect to N ≥ 1.

Proposition 7 (Existence of mean-field locally optimal Lipschitz feedback). Let (u∗
N (·),x∗

N (·)) ∈ UN ×
Lip([0, T ], B(0, RT )N ) be an optimal pair control-trajectory for (PN ) and assume that hypotheses (H) hold.
Then, there exists a Lipschitz map u∗

N (·, ·) ∈ Lip([0, T ] × R
d, U) such that u∗

N (t, xi(t)) = u∗
i (t) for all times

t ∈ [0, T ] and which Lipschitz constant LU with respect to the space variable is independent from N .

Proof. The first step of this proof is to apply Theorem 3 to (PN ) seen as an optimal control problem in
the rescaled Euclidean space

(

(Rd)N , 〈·, ·〉N

)

introduced in (15). As it was already mentioned in the proof
of Proposition 6, (PN ) satisfies the structural assumptions (Hoc) of Section 3. Given a rescaled covector
r∗

N (·) associated to (u∗
N (·),x∗(·)) via (37), the mean-field Pontryagin triple (x∗

N (·), r∗
N (·),u∗

N (·)) is bounded
in L∞([0, T ], (R2d)N × UN) uniformly with respect to N as a consequence of (H1) and Proposition 6. By
Corollary 1, the C2,1-norms of the datum of (PN ), defined in the sense of (19)-(20), are uniformly bounded

over K = [0, T ] ×B(0, RT )2N × UN by a constant LK > 0.
Similarly to what was presented in Section 3, the mean-field Pontryagin optimality system (37) can be

written as the dynamical differential inclusion

0 ∈ F N
τ (x(·), r(·),u(·)) + GN

τ (x(·), r(·),u(·)), (48)

for any τ ∈ [0, T ). Here, the mappings F N
τ : YN

τ → ZN
τ and GN

τ : YN
τ ⇒ ZN

τ are respectively defined by

F N
τ (x(·), r(·),u(·)) =













ẋ(·) − VN [x(·)](·,x(·)) − u(·)
xi(τ) − x∗

i (τ)
ṙ(·) + Gradx HN (·,x(·), r(·),u(·))

r(T ) + Gradx ϕ(x(T ))
−Gradu HN(·, x(·), p(·), u(·))













, (49)

where
VN [x(·)](t,x(·)) ≡ (vN [x(·)](t, xi(·)))1≤i≤N ∈ (Rd)N ,

and GN
τ (x(·), r(·),u(·))= (0, 0, 0, 0, N∞

UN
(u(·)))⊤. The two Banach spaces YN

τ ,Z
N
τ are defined in this context

by
YN

τ = W ,1,∞([τ, T ], (Rd)N ) ×W ,1,∞([τ, T ], (Rd)N ) × L∞([τ, T ], UN ),

ZN
τ = L∞([τ, T ], (Rd)N ) × (Rd)N × L∞([τ, T ], (Rd)N ) × (Rd)N × L∞([τ, T ], (Rd)N ).

Following [28], we now compute the first-order variation of the map F N
τ (·) with respect to the adapted differential

structure introduced in Section 2.3. Let (y(·), s(·),w(·)) ∈ YN
0 , i ∈ {1, . . . , N} and t ∈ [0, T ]. One has that

vN [x + y](t, xi + syi) = vN [x](t, xi) + DxvN [x](t, xi)yi

+
1

N

N
∑

j=1

Dxj
vN [x](t, xi)yj + o(|yi|) + o(|y|N ),

(50)

where Dxj
vN [x](t, xi) is the matrix which rows are the mean-field gradients with respect to xj of the components

(vk
N [x](t, xi))1≤k≤d. Analogously, it holds that

Gradx HN (t,x(t) + y, r(t) + s(t),u(t) + w(t))

= Gradx HN (t,x(t), r(t),u(t)) + Hessx HN (t,x(t), r(t),u(t))y(t)

+ Hessrx HN (t,x(t), r(t),u(t))s(t) + o(|y(t)|N ) + o(|w(t)|N ),
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as well as
Gradu HN (t,x(t) + y, r(t) + s(t),u(t) + w(t))

= Gradu HN (t,x(t), r(t),u(t)) + Hessu HN (t,x(t), r(t),u(t))w(t)

+ Hessru HN (t,x(t), r(t),u(t))s(t) + o(|s(t)|N ) + o(|w(t)|N ),

and
Gradx ϕN (x(T ) + y(T )) = Gradx ϕ(x(T )) + Hessx ϕN (x(T ))y(T ) + o(|y(T )|N)

as a consequence of the chain rule of Proposition 4. Here for convenience, we used the matrix representation
(26) for mean-field Hessians in (Rd)N introduced in Remark 3.

It is again possible to interpret the partial linearisation of the differential generalized inclusion (48) as the
Pontryagin maximum principle for the linear-quadratic problem



































min
w∈UN

τ

[

∫ T

τ

(

1

2
〈A(t)y(t),y(t)〉N +

1

2
〈B(t)w(t),w(t)〉N

)

dt+
1

2
〈C(T )y(T ),y(T )〉N

]

s.t.















ẏi(t) = DxvN [x∗
N (t)](t, x∗

i (t))yi(t) +
1

N

N
∑

j=1

Dxj
vN [x∗

N (t)](t, x∗
i (t))yj(t),

yi(τ) = 0,

where the set of admissible controls is defined by

UN
τ =

{

v ∈ L∞([τ, T ], UN) s.t. u∗
N (t) + w(t) ∈ UN for L

1-a.e. t ∈ [τ, T ]
}

,

and the cost functionals by
{

A(t) = −Hessx HN (t,x∗
N (t), r∗

N (t),u∗
N (t)), C(T ) = Hessx ϕN (x∗

N (T )),

B(t) = −Hessu HN(t,x∗
N (t), r∗

N (t),u∗
N (t)).

Moreover, we assumed in (CON ) that there exists a constant ρT , which is independent from N , such that the
mean-field coercivity estimate

Hessx ϕN [x∗
N (T )](y(T ),y(T )) −

∫ T

0

Hessx HN [t,x∗
N (t), r∗

N (t),u∗
N (t)](y(t),y(t))dt

−
∫ T

0

Hessu HN [t,x∗
N (t), r∗

N (t),u∗
N (t)](w(t),w(t))dt ≥ ρT

∫ T

0

|w(t)|2N dt,

holds for any admissible pair (w(·),y(·)) ∈ L2([0, T ], (Rd)N ) ×W 1,2([0, T ], (Rd)N ) for (PN
Lin).

We can therefore apply Theorem 3 to (PN ) and recover the existence of a neighbourhood N ⊂ [0, T ]×(Rd)N

of Graph(x∗(·)) along with that of a locally optimal Lipschitz feedback ũ(·, ·) defined over N ∩
(

[0, T ] ×
B(0, RT )N

)

which Lipschitz constant LU depends only on the structural constant LK introduced in Corollary
1 and on the coercivity constant ρT introduced in (CON ). In particular, LU is independent from N .

For any i ∈ {1, . . . , N}, we associate to x∗
i (·) the projected control maps ũi : Ni := πi(N ) → R

d defined by

ũi(t, x) = ũi(t, x̂
x
i (t)),

where x̂x
i (t) = (x∗

1(t), . . . , x∗
i−1(t), x, x∗

i+1(t), . . . , x∗
N (t)) denotes the element in (Rd)N which has all its compo-

nents matching that of x∗(t) except the i-th one which is free and equal to x. By construction, each ũi(·, ·)
defines a locally optimal feedback in the neighbourhood Ni of Graph(x∗

i (·)). Furthermore, we can derive the
following uniform estimate for the projected control maps

|ũi(t, y) − ũi(t, x)| = |ũi(t, x̂
y
i (t)) − ũi(t, x̂

x
i (t))|

≤
( N
∑

j=1

|ũj(t, x̂y
i (t)) − ũj(t, x̂x

i (t))|2
)1/2

≤
√
NLU |x̂y

i (t) − x̂x
i (t)|N = LU |y − x|,

so that we recover the uniform Lipschitz estimate

|ũi(t, y) − ũi(t, x)| ≤ LU |y − x|,
for all (t, x, y) ∈ [0, T ] × πRd(Ni)

2. This shows that the projected optimal control ũi(·, ·) maps are Lipschitz-
regular in space uniformly with respect to N .

Therefore, each ũi(·, ·) can be defined unequivocally on a closed neighbourhood of Graph(x∗
i (·)) contained

in Ni. By using e.g. McShane’s Extension Theorem (see e.g. [41, Theorem 3.1]) combined with a projection
on the convex and compact set U , one can define a global optimal control map u∗

N : [0, T ] × R
d → U such that

u∗
N (t, x∗

i (t)) = u∗
i (t) for all t ∈ [0, T ] and

Lip(u∗
N (t, ·);Rd) ≤ LU ,

for L 1-almost every t ∈ [0, T ], where we redefined the constant LU :=
√
dLU .
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Step 3 : Existence of Lipschitz optimal controls for problem (P). In this third step, we show that the
sequence of optimal maps (u∗

N (·, ·)) constructed in Proposition 7 is compact in a suitable topology and that the
limits along subsequences are optimal solutions of problem (P) which are Lipschitz-regular in space. We state
in the following lemma a variation of the classical Dunford-Pettis compactness criterion (see e.g. [4, Theorem
1.38]) which was already explored in [45, Theorem 2.5].

Lemma 3 (Compactness of Lipschitz-in-space optimal maps). Let LU > 0 be a positive constant and Ω ⊂ R
d

be a bounded set. Then, the set

ULU
=
{

u(·, ·) ∈ L2([0, T ],Lip(Ω, U)) s.t. sup
t∈[0,T ]

‖u∗(t, ·)‖W 1,∞(Ω,Rd)≤ LU

}

is compact in the weak topology of L2([0, T ],W 1,p(Ω,Rd)) for any p ∈ (1,+∞).

This allows to derive the following convergence result on the sequence of controls (u∗
N (·, ·)) built in Step 2.

Corollary 2 (Convergence of Lipschitz optimal control). There exists a map u∗(·, ·) ∈ L∞([0, T ],Lip(Rd, U))
such that the sequence of Lipschitz optimal control maps (u∗

N (·, ·)) defined in Proposition 7 converges towards
u∗(·, ·) along a suitable subsequence in the weak L2([0, T ],W 1,p(Ω,Rd))-topology for any p ∈ (1,+∞).

Proof. This result comes from a direct application of Lemma 3 to the sequence of optimal maps built in
Proposition 7 up to redefining LU ≡ max{LU ,LU }.

We now prove that the generalized optimal control ν∗ ∈ U for problem (Pmeas) is induced by the Lipschitz-
in-space optimal control u∗(·, ·) ∈ L∞([0, T ],Lip(Rd, U)) which has been defined in Corollary 2. Remark first
that by construction of the maps (u∗

N (·, ·)), it holds that

ν∗
N =

∫

[0,T ]

(

1

N

N
∑

i=1

u∗
N(t, x∗

i (t))δx∗

i
(t)

)

dλ(t) = u∗
N(·, ·)µ̃∗

N ,

for any N ≥ 1, where ν∗
N ∈ U denotes the generalized discrete control measure introduced in Theorem 7. In

the following proposition, we prove that the sequence (u∗
N (·, ·)µ̃∗

N ) converges towards u∗(·, ·)µ̃∗ in the weak-∗

topology of M([0, T ] × R
d, U)

Lemma 4 (Convergence of generalized Lipschitz optimal controls). Let (µ∗
N (·)) ⊂ Lip([0, T ],PN(Rd)) be

the sequence of optimal measure curves associated with (PN ) and (u∗
N (·, ·)) ⊂ L∞([0, T ],Lip(Rd, U)) be the

sequence of Lipschitz controls built in Proposition 7. Then, the sequence (ν∗
N ) = (u∗

N(·, ·)µ̃∗
N ) converges towards

ν∗ = u∗(·, ·)µ̃∗ in the weak-∗ topology of M([0, T ] × Ω,Rd).

Proof. We know by Lemma 3 that for any p ∈ (1,+∞), there exists a subsequence of (u∗
N (·, ·)) which converges

in the weak-topology of L2([0, T ],W 1,p(Ω, U)) towards u∗(·, ·) ∈ ULU
. Recalling that one can identify the topo-

logical dual of the Banach space L2([0, T ],W 1,p(Ω, U)) with L2([0, T ],W−1,p′

(Ω, U)), where p′ is the conjugate
exponent of p, the fact that uN(·, ·) ⇀

N→+∞
u(·, ·) can be written as

∫ T

0

〈ξ(t), u∗
N (t, ·)〉W 1,p dt −→

N→+∞

∫ T

0

〈ξ(t), u∗(t, ·)〉W 1,p dt, (51)

for any ξ ∈ L2([0, T ],W−1,p′

(Ω,Rd)), where 〈·, ·〉W 1,p denotes the duality bracket of W 1,p(Ω, U).
Let us now fix in particular a real number p > d so that by Morrey’s Embedding (see e.g. [13, Theorem

9.12]), it holds that W 1,p(Ω, U) ⊂ C0(Ω, U). By taking the topological dual of each spaces, we recover the
reverse inclusion M(Ω, U) ⊂ W−1,p′

(Ω, U). The latter relation combined with the definition (4) of the duality
pairing for vector measures and (51) yields that

∫ T

0

∫

Rd

〈ξ(t, x), u∗
N (t, x)〉dσ(t)(x)dt −→

N→+∞

∫ T

0

∫

Rd

〈ξ(t, x), u∗(t, x)〉dσ(t)(x)dt, (52)

for any curve σ(·) ∈ C0([0, T ],M(Ω,R+)) and any ξ ∈ C1
c ([0, T ] × Ω,Rd). Remark now that for any N ≥ 1,

one has that
∣

∣

∣

∣

∣

∫ T

0

∫

Rd

〈ξ(t, x), u∗(t, x)〉dµ∗(t)(x)dt−
∫ T

0

∫

Rd

〈ξ(t, x), u∗
N (t, x)〉dµ∗

N (t)(x)dt

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ T

0

∫

Rd

〈ξ(t, x), u∗(t, x) − u∗
N (t, x)〉dµ∗(t)(x)dt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ T

0

∫

Rd

〈ξ(t, x), u∗
N (t, x)〉d(µ∗(t) − µ∗

N (t))(x)dt

∣

∣

∣

∣

∣

.

(53)
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The first term in the right-hand side of (53) vanishes as N → +∞ as a consequence of (52). By invoking
Kantorovich’s duality formula (5) along with the uniform Lipschitz-regularity of the maps (u∗

N (·, ·)), we can
obtain the following upper bound on the second term in the right-hand side of (53)

∣

∣

∣

∣

∣

∫ T

0

∫

Rd

〈ξ(t, x), u∗
N (t, x)〉d(µ∗(t) − µ∗

N (t))(x)dt

∣

∣

∣

∣

∣

≤ Cξ sup
t∈[0,T ]

W1(µ(t), µN (t)) −→
N→+∞

0,

where Cξ = LU supt∈[0,T ]

(

‖ξ(·)‖C0(Ω) + Lip(ξ(t, ·); Ω)
)

. Therefore, we recover that

∫ T

0

∫

Rd

〈ξ(t, x), u∗
N (t, x)〉dµ∗

N (t)(x)dt −→
N→+∞

∫ T

0

∫

Rd

〈ξ(t, x), u∗(t, x)〉dµ∗(t)(x)dt, (54)

for any ξ ∈ C1
c ([0, T ] × R

d,Rd). Since the measure curves µ∗
N (·) are uniformly compactly supported in Ω ⊂ R

d,
one can show that (54) holds for any ξ ∈ C0

c ([0, T ] × R
d,Rd) by a classical approximation argument. This

precisely amounts to saying that ν∗
N ⇀∗ u∗(·, ·)µ̃∗ as N → +∞ along the same subsequence.

By uniqueness of the weak-∗ limit in M([0, T ] × R
d, U), we obtain by combining Lemma 4 with Theorem

7 that the optimal solution ν∗ ∈ U of (Pmeas) is induced by u∗(·, ·). This allows us to conclude that the
pair (u∗(·, ·), µ∗(·)) ∈ L∞([0, T ],Lip(Rd, U)) × Lip([0, T ],P(B(0, RT )) is a classical optimal pair for (P), which
concludes the proof of Theorem 1.

6 Discussion on the coercivity assumption (CON)

In this section, we discuss more in detail the mean-field coercivity assumptions (CON) by developing an example
in which it is both necessary and sufficient for the Lipschitz regularity in space of the optimal control. With
this goal, we consider the following Wasserstein optimal control problem

(PV )























min
u∈U

[

λ

2

∫ T

0

∫

R

|u(t, x)|2dµ(t)(x)dt− 1

2

∫

R

|x− µ̄(T )|2 dµ(T )(x)

]

s.t.

{

∂tµ(t) + ∇ · (u(t, ·)µ(t)) = 0,

µ(0) = 1
21[−1,1]L

1.

In the latter, one aims at maximising the variance at time T > 0 of a measure curve µ(·) starting from
the normalised indicator function of [−1, 1], while penalizing the L2(µ(t))-norm of the control . Here, the
set of admissible control values is U = [−C,C] for a positive constant C > 0, and the parameter λ > 0 is
the relative weight between the final cost and the control penalization. It can be verified straightforwardly
that this problem satisfies the hypotheses (H1)-(H6) of Theorem 1. Given a sequence of empirical measures
(µ0

N ) := (µ[xN ]) ⊂ PN (R) converging narrowly towards µ0, we can define the family (PN
V ) of discretized

multi-agent problems as

(PN
V )



























min
u(·)∈UN

[

λ

2N

N
∑

i=1

∫ T

0

u2
i (t)dt− 1

2N

N
∑

i=1

|xi(T ) − x̄(T )|2
]

s.t.

{

ẋi(t) = ui(t),

xi(0) = x0
i .

where x̄(·) = 1
N

∑N
i=1 xi(·) and UN = L∞([0, T ], UN).

As a consequence of Proposition 5, there exists a pair control-trajectory (u∗
N (·),x∗

N (·)) ∈ L∞([0, T ], UN) ×
Lip([0, T ], (Rd)N ) solution of (PN

V ) for any N ≥ 1. The mean-field Hamiltonian associated to (PN
V ) is given by

HN : (t,x, r,u) ∈ [0, T ] × (R3)N 7→ 1

N

N
∑

i=1

(

〈ri, ui〉 − 1

2
|ui|2

)

. (55)

By applying the mean-field Pontryagin Maximum Principle displayed in Proposition 6, we obtain the existence
of a covector r∗

N (·) ∈ Lip([0, T ],RN) such that















ṙ∗
i (t) = −Gradxi

HN (t,x∗
N (t), r∗

N (t),u∗
N (t)) = 0,

r∗
i (T ) = Gradxi

VarN (x∗
N (T )) = x∗

i (T ) − x̄∗(T ),

u∗
i (t) ∈ argmax

v∈U
[〈r∗

i (t), v〉 − 1
2 |v|2].
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Therefore, the optimal covector r∗
N (·) is constant and uniquely determined via

r∗
i (t) = x∗

i (T ) − x̄∗(T ).

Moreover, the optimal control u∗
N (·) is also uniquely determined, and its components write explicitly as

u∗
i (t) = πU (r∗

i (t)) ≡ π[−C,C]

(

x∗
i (T ) − x̄∗(T )

λ

)

, (56)

for all i ∈ {1, . . . , N}. It follows directly from this expression that

˙̄x∗(t) =
1

N

N
∑

i=1

u∗
i (t) =

1

N

N
∑

i=1

π[−C,C]

(

x∗
i (T ) − x̄∗(T )

λ

)

= 0.

Without loss of generality, we can therefore choose x0 ∈ R
N such that x̄∗(·) ≡ x̄0 = 0.

In the following lemma, we derive a simple analytical necessary and sufficient condition for the mean-field
coercivity assumption to hold for (PV ).

Lemma 5 (Charaterization of the coercivity condition for (PV )). The mean-field coercivity condition (CON )
holds for (PV ) if and only if λ > T . In which case, the optimal coercivity constant is given by ρT = λ− T .

Proof. We start by computing the mean-field Hessians involved in the coercivity estimate. For any x,y,u,w ∈
R

N , we have as a consequence of (55) that

Hess VarN [x](y,y) = |y|2N − |ȳ|2 ≤ |y|2N , Hessu HN [t,x, r,u](w,w) = λ|w|2N .

Let (w(·),y(·) ∈ L2([0, T ], UN) ×W 1,2([0, T ],RN) be the solution of the linearised control-state problem

ẏ(t) = w(t), y(0) = 0, (57)

with u∗
N (t) + w(t) ∈ UN . By Cauchy-Schwarz inequality, one can further estimate |y(T )|2N as

|y(T )|2N =

∣

∣

∣

∣

∣

∫ T

0

w(t)dt

∣

∣

∣

∣

∣

2

N

≤ T

∫ T

0

|w(t)|2N dt,

so that we recover

−Hess VarN [x∗
N (T )](y(T ),y(T )) −

∫ T

0

Hessu HN [t,x∗
N (t), r∗

N (t),u∗
N (t)](w(t),w(t))dt

≥ (λ− T )

∫ T

0

|w(t)|2N dt,

and we obtain that the mean-field coercivity condition (CON ) holds whenever λ > T .
Conversely, let us choose a constant admissible control perturbation wc(·) ≡ wc such that w̄c = 0. It is

always possible to make such a choice since by (56), there exists at least two indices i, j such that sign(ui) =
−sign(uj) for all times t ∈ [0, T ]. It is then sufficient to choose wc such that

{

(wc)i = −sign(ui)ǫ, (wc)j = −(wc)i,

(wc)k = 0 if k ∈ {1, . . . , N} and k 6= i, j,

where ǫ > 0 is a small parameter. As a consequence of (57), the corresponding state perturbation yc(·) is such
that ȳc(·) ≡ 0. Moreover, it also holds that

|yc(T )|2N = T 2|wc|2N = T

∫ T

0

|wc|2N dt.

We therefore obtain that for this particular choice of linearised pair control-state, it holds that

− Hess VarN [x∗
N (T )](yc(T ),yc(T ))

−
∫ T

0

Hessu HN [t,x∗
N (t), r∗

N (t),u∗
N (t)](wc(t),wc(t))dt = (λ− T )

∫ T

0

|w(t)|2N dt,

so that ρT = λ − T is the sharp mean-field coercivity constant, and the mean-field coercivity condition holds
only if λ > T .
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We can now use this characterization of the coercivity condition to show that it is itself equivalent to the
uniform Lipschitz regularity in space of the optimal controls.

Proposition 8 (Coercivity and regularity). The followings are equivalent.

(i) The mean-field coercivity condition λ > T holds.

(ii) For any sequence of empirical measures (µ0
N ) converging narrowly towards µ0 = 1

21[−1,1]L
1 and generating

the discrete optimal pairs (u∗
N (·),x∗

N (·)), it holds that

|u∗
i (t) − u∗

j (t)) ≤ 1

ρT
|x∗

i (t) − x∗
j t)|,

for all t ∈ [0, T ], where ρT = λ− T is the coercivity constant of (PV ).

Proof. Suppose first that the uniform coercivity estimate does not hold, i.e. λ ≤ T . Since the optimal controls
are constant over [0, T ] as a consequence of (56), the total cost of (PN

V ) can be rewritten as

C (u1, . . . , uN) =
1

2N

N
∑

i=1

(

T (λ− T )u2
i − 2Tx0

iui − |x0
i |2
)

.

for any N -tuple u = (u1, . . . , uN ) ∈ [−C,C]N . Since λ ≤ T , the minimum of C is achieved by taking u∗
i =

sign(x0
i )C for all i ∈ {1, . . . , N}. This further implies that

|u∗
i − u∗

j | =

{

0 if sign(xi) = sign(xj),

2C otherwise,

so that for any pair of indices such that sign(x0
i ) = −sign(x0

j ), it holds that

|u∗
i − u∗

j | =
2C

|x0
i − x0

j | + 2Ct
|x∗

i (t) − x∗
j (t)|. (58)

The fact that µN ⇀∗ µ0 = 1
21[−1,1]L

1 as N → +∞ implies that for all ǫ > 0, there exists Nǫ ≥ 1 such that
for any N ≥ Nǫ, there exists at least one pair of indices i, j ∈ {1, . . . , N} such that sign(x0

i ) = −sign(x0
j ) and

|x0
i − x0

j | ≤ ǫ. Thus, it follows from (58) that (ii) fails to hold some pairs of indices and at least for small times.
Suppose now that the mean-field coercivity estimate hold, i.e. λ > T , and denote by ρT = λ− T the sharp

coercivity constant. Let IN , JN ⊂ {1, . . . , N} be the set of indices defined by

IN =
{

i ∈ {1, . . . , N} s.t. |x0
i | ≤ ρTC

}

, JN = {1, . . . , N}\IN .

For N sufficiently big, IN is necessarily non-empty since ρT > 0 and as a consequence of the narrow convergence
of (µ0

N ) towards µ0. Then for any i ∈ IN , one has that

|x∗
i (T )| ≤ |x0

i | + CT ≤ (ρT + T )C = λC,

whence for any such indices, the optimal controls are given by u∗
i = 1

λx
∗
i (T ). In which case, one has that

x∗
i (T ) =

x0
i

1 − T/λ
and u∗

i =
x∗

i (t)

ρT + t

so that

|u∗
i − u∗

j | ≤ 1

ρT + t
|x∗

i (t) − x∗
j (t)|, (59)

for any pair of indices i, j ∈ IN . It can be checked reciprocally that u∗
i = sign(x0

i )C for any i ∈ JN , which
furthermore yields by (58) that

|u∗
i − u∗

j | ≤











0 if sign(xi) = sign(xj),

|x∗
i (t) − x∗

j (t)|
ρT + t

otherwise,
(60)

since in this case |x0
i − x0

j | ≥ 2ρTC whenever i, j ∈ JN and sign(xi) = −sign(xj). Suppose now that we are

given a pair of indices i, j ∈ {1, . . . , N} such that i ∈ IN and j ∈ JN . If sign(x0
i ) = sign(x0

j ), it holds that

|u∗
i − u∗

j | = u∗
j − u∗

i = sign(x0
j )C − x∗

i (t)

ρT + t

=
x∗

j (t)C

|x∗
j (t)| − x∗

i (t)

ρT + t
≤
x∗

j (t) − x∗
i (t)

ρT
=

|x∗
i (t) − x∗

j (t)|
ρT

,

(61)
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since |x∗
j (t)| ≥ ρTC by definition of JN . Symmetrically if sign(x0

i ) = −sign(x0
j ), one can easily show that

|u∗
i − u∗

j | ≤
|x∗

i (t) − x∗
j (t)|

ρT
. (62)

By merging (59), (60), (61) and (62), we conclude that (ii) holds with the uniform constant 1
ρT

> 0 whenever
the mean-field coercivity estimate holds, which ends the proof of our claim.

In Proposition 8, we have proven that the mean-field coercivity estimate is both necessary and sufficient for
the existe86nce of a uniform Lipschitz constant for the finite-dimensional optimal controls. It is clear when this
condition fails that it is not possible to build a sequence of uniformly Lipschitz optimal maps (u∗

N (·, ·)) for prob-
lem (PN

V ). Since the discrete optimal pairs control-trajectory (u∗
N (·),x∗

N (·)) ∈ L∞([0, T ], UN) × Lip([0, T ],RN)
are uniquely determined, we conclude that the mean-field coercivity condition (CON ) is necessary and suffi-
cient in the limit for the existence of a Lipschitz-in-space mean-field optimal control for the Wasserstein optimal
control problem (PV ).
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