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Abstract We propose an explanation to the enigmatic synrift erosional unconformities reported along
the distal domain of several magma-poor rifted margins. Using thermomechanical numerical modeling,
we show that transient emersion of (future) distal domains following a phase of subsidence can be
explained by asynchronous necking of first the upper mantle and subsequently the crust, without the need
of prominent normal faulting caused by strain softening, mantle phase transitions, or magmatic processes.
When the upper crust and upper mantle are mechanically decoupled by a weak lower crust and, in the
absence of any prominent rheological heterogeneity, upper mantle, necking starts first because of the
higher deviatoric stresses associated with its larger effective viscosity. Consequently, the ductile lower
crustal material flows toward the necked mantle domain, delaying thinning of the overlying crust. Once
the necked lithospheric mantle has locally lost most of its strength, the overdeepened Moho moves upward
toward an isostatically compensated depth. This flexural rebound causes uplift and emersion of distal parts
of the rift system that are composed of still relatively thick crust and triggers the necking of the overlying
crust. Early necking of the upper mantle causes a transient heating event with temperatures up to 750 ◦C at
the base of the crust in the (future) distal domain. The onset of this thermal event slightly predates
emersion of the (future) distal domain. These results are consistent with field observations and
thermochronological data from the fossil Alpine Tethys margins, as well as with seismic observations from
several present-day rifted margins.

1. Introduction
In the last decade, there has been growing evidence that distal parts of different magma-poor rift systems
underwent a transient uplift to shallow water depth, and in some cases even emersion during advanced
stages of continental extension (see Table 1 in Esedo et al., 2012). Examples include the Briançonnais domain
in the fossil Alpine Tethys rift system (e.g., Bourbon, 1980; Faure & Megard-Galli, 1988), the outer hinge of
the Campos Basin (Brazilian margin; Lewis et al., 2014), and, according to Haupert et al. (2016), the second
terrace of the East India margin. In these three examples, synrift deposits in the distal domain are trun-
cated by erosional unconformities and covered by hemipelagic to pelagic sediments and/or sag to postrift
stratigraphic units. This succession indicates the occurrence of a phase of uplift and emersion that was both
preceded and followed by a phase of subsidence and sedimentation. The fact that a comparable unconfor-
mity is lacking over the proximal domain (sensu Péron-Pinvidic & Manatschal, 2009) suggests that emersion
was limited to the (future) distal part of the rift system.

The mechanisms responsible for this regional subsidence-emersion-subsidence succession are not yet iden-
tified. This evolution deviates from the continuous subsidence along the entire rift system predicted by the
depth-uniform thinning model of McKenzie (1978). Dynamic topography cannot account for the regional
uplift of the distal domain because it implies large-scale domal uplift (500- to 1,000-m amplitude over a
region of ∼ 600 km in diameter according to Campbell, 2005) that would necessarily involve the proxi-
mal margins as well (Burgess et al., 1997). The simple shear model from Wernicke (1985) that Lemoine
et al. (1987) invoked to explain the local uplift of the Briançonnais domain is not an appropriate process
either because it does not account for the initially distributed and decoupled deformation recorded in most
proximal margins (e.g., Ball et al., 2013; Beltrando et al., 2015; Withjack et al., 2012).
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Figure 1. (a) Simplified tectonic map of the European Alps (Corsica is drawn into its pre-Oligocene position following
Bache et al., 2010). (b) Schematic sections showing the position of the Briançonnais domain and future distal Adriatic
margin during early stages of Alpine Tethys rifting (modified from Haupert et al., 2016). The round markers represent
specific locations whose basal temperature is tracked in the numerical model. Abbreviations: Ca = Calizzano unit;
CB = Cusio-Biellese zone; MB = Mont Blanc; Iv = Ivrea zone; SL = Santa Lucia nappe; K = crustal keystone; K(r) and
K(d) represent the “residual” and “disintegrated” parts of the crustal keystone, respectively. (c) Schematic view of the
topographic evolution of the proximal (red) and Briançonnais (blue) domains of the Alpine Tethys rift system. The
yellow shaded area represents the thermal pulse at the base of the distal domain (see text for discussion).

Several thermomechanical numerical models show uplift above sea level during early stages of extension
(e.g., Type I margin in Huismans & Beaumont, 2011; models from Svartman Dias et al., 2015; Brune et al.,
2014; Gueydan et al., 2008). These models apply significant strain softening, which generates large-offset
brittle/plastic normal faults. Such faults are at the origin of the prominent flexure of the upper crust and
related topographic uplift. However, this uplift is typically limited to the proximal part of the rift system and
is not preceded by subsidence. Huismans and Beaumont (2014) and Svartman Dias et al. (2015) demon-
strated that synrift uplift of the distal domain subsequent to a phase of subsidence may be enabled by
depth-dependent thinning (see their Figures 7 and 5, respectively); however, none of these models shows
emersion of the (future) distal domain above sea level. Additional processes such as mantle phase transitions
(Kaus et al., 2005; Simon & Podladchikov, 2008) or magmatism (Quirk & Rüpke, 2018) have been consid-
ered in numerical models to account for late-rift uplift of distal domains, but these models did not predict
emersion either.

Our present study aims to describe and unravel what controls the particular subsidence-emersion-
subsidence succession that affects the distal domain of several rift systems. Although some present-day rifted
margins are well imaged with seismic sections, they offer poor access to rock samples and core stratigra-
phy. In contrast, the fossil Alpine Tethys margins, now exposed in the European Alps, are remarkably well
preserved (e.g., Lemoine et al., 1986, cum ref.) and provide access to entire crustal sections along differ-
ent parts of the rift system. Thanks to more than one century of study and related extensive literature (e.g.,
De Graciansky et al., 2011; Pfiffner, 2014, cum ref.), the fossil Alpine Tethys is among the best calibrated rift
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systems in the world. Therefore, to build our description and investigations, we rely on observations and data
from the Briançonnais and Lower Austroalpine domains of the European Alps, which were recognized as the
former distal domain of the European and Adriatic margins of the Alpine Tethys, respectively (see Figures 1a
and 1b; e.g., Decarlis et al., 2017; Trümpy, 1975). We further present the results of a high-resolution,
two-dimensional thermomechanical numerical model of continental rifting that shows transient uplift and
emersion of distal parts of a rift system after an initial phase of subsidence. Our model employs a stan-
dard lithosphere architecture and standard rheological flow laws and does not apply parametrization for
mimicking large-offset brittle normal faulting, phase transitions, or magmatism.

2. The Briançonnais Domain Evolution
The Briançonnais unit (Figure 1a) was initially recognized as a specific geological domain by Lory (1860,
1866) and Kilian (1891) based on its characteristic stratigraphic succession, which comprises generally
(i) Triassic platform carbonate deposits; (ii) a Jurassic unconformity marked by the missing Lias and early
Dogger; and (iii) late Dogger and Malm flooding sequences up to pelagic deposits. Later, Haug (1909),
Debelmas (1955), and Lemoine (1961) identified the Briançonnais domain as the former distal part of the
European margin in the Alpine Tethys rift system.

Restorations of the Briançonnais nappes suggest that the Briançonnais domain was several tens of kilome-
ters wide (∼ 50–60 km in Briançon; see Bell & Butler, 2017; Butler, 2013; Decarlis et al., 2013, cum ref.).
However, the width of this domain varies along strike, and estimates are highly dependent on the assump-
tions made on the direction of Alpine compression. A rough estimate of a few tens of kilometers for the
extent of the erosional unconformity can be given based on present-day mapping of the corresponding for-
mations (≥ 20 km in Briançon; see extent of the Champcella formation in Barféty et al., 1996). However, this
estimation suffers from the same uncertainties as the previous one.

Recently, Lavier and Manatschal (2006) and Haupert et al. (2016) interpreted the Briançonnais and lower
Austroalpine domains to have formed the so-called H block or crustal keystone (see Crosby & Crosby, 1925,
and Huismans & Beaumont, 2011, for keystone definition) of the Alpine Tethys rift during early to inter-
mediate stages of extension (bottom panel of Figure 1b). In this interpretation, the Briançonnais domain
comprises remnants of the topmost part of the crustal keystone (dark blue in Figure 1; see also Mohn et al.,
2010, cum ref.) and remnants of the lower part (dark brown in Figure 1) are exposed in the Lower Aus-
troalpine units (e.g., Dal Piaz, 1993; Froitzheim & Manatschal, 1996; Hermann & Müntener, 1996; Müntener
& Hermann, 1996).

2.1. Jurassic Emersion and Drowning
A wealth of studies of the paleo-European margin documented the existence of a regional synrift strati-
graphic gap in the Briançonnais domain, which contrasts with the continuous sedimentary record of the
adjacent subsiding areas (Baud, 1976; Baud & Masson, 1975; Claudel & Dumont, 1999; Decarlis & Lualdi,
2008; Schneegans, 1933). Emersion of the Briançonnais platform is indicated by a regional unconformity
and karstification of preexisting shelf carbonates along the entire Alpine arc (De Graciansky et al., 2011,
cum ref.). The onset of emersion occurred at the earliest during the Sinemurian, which is the age of the
youngest carbonates affected by the karst (Tricart et al., 1988). Faure and Megard-Galli (1988) and Claudel
and Dumont (1999) suggested that uplift was presumably post-Sinemurian (185 ± 5 Ma); however, no direct
dating of this event is available.

Drowning of the Briançonnais domain started at the latest during the late Bathonian (∼ 165 Ma) since shal-
low marine carbonates of this age locally overlie the karst (Claudel & Dumont, 1999; Mercier, 1977). Due to
the existence of widespread pelagic limestones of Callovian age (∼164–161 Ma) draping the entire Briançon-
nais domain, fast drowning to great water depth was commonly assumed (e.g., Claudel & Dumont, 1999; De
Graciansky et al., 2011, cum ref.). Recently, Haupert et al. (2016) suggested that drowning may have started
earlier but was not recorded onto the Briançonnais because passive infill was restricted to the lows on either
side of this block of thick continental crust. The pelagic nature of the sediments capping the Briançonnais
domain does not necessarily indicate a fast subsidence and/or a deep water depth since pelagic sediments
can be deposited at relatively shallow water depth (below wave base) onto isolated highs disconnected from
sedimentary sources.

The regionality of the Jurassic karst and the consistent nature and age of the overlying sediments suggest
that both emersion and drowning were, from a geological timescale perspective, largely synchronous over
the entire Briançonnais domain.
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Figure 2. Model configuration and depth-dependent stress profile (blue) and initial equilibrium geotherm (red) at
different positions along the model.

2.2. Latest Triassic–Early Jurassic Thermal Event
Recent thermochronological data from the European Alps point to the existence of a crustal-scale
heating-cooling event in the distal part of the Alpine Tethys rift during the late Triassic–early Jurassic (see
Figure 8 in Beltrando et al., 2015). For instance, based on zircon fission track thermochronology, Vance
(1999) suggested a heating event at 179–124 Ma in the Calizzano unit (southwestern Italian Alps, former
distal European margin; Ca in Figure 1). More recently, also using zircon fission track thermochronology,
Decarlis, Fellin, et al. (2017) argued that the heating event occurred before 160–150 Ma. At this time, the
Calizzano unit was resting at upper crustal levels. Using U-Pb thermochronology, Smye and Stockli (2014)
noticed a thermal pulse with temperatures in excess of 650 ◦C during the early Jurassic in the Ivrea zone
(northwestern Italy, former distal Adriatic margin; Iv in Figure 1). This heating event was followed by rapid
cooling from ∼ 180 Ma onward. At this time, the Ivrea zone was located in a lower crustal position. Using
ZHe thermochronology, Beltrando et al. (2015) reported an intense heating event at 215–210 Ma in the
Cusio-Biellese zone (at the proximal-distal transition of the Adriatic margin; CB in Figure 1). At this time,
the Cusio-Biellese zone was located at lower crustal levels. Here again, the heating event was followed by
rapid cooling from 200–190 Ma onward. Based on U-Pb thermochronology, Seymour et al. (2016) high-
lighted a brief thermal event with temperatures as high as 800 ◦C at ∼ 200–180 Ma in the Santa Lucia nappe
complex (Alpine Corsica, former European distal domain; SL in Figure 1). The heating event was also fol-
lowed by rapid cooling from 180–160 Ma. At this time, the Santa Lucia nappe complex was resting at lower
crustal levels.

2.3. Timing With Respect to Major Crustal Thinning
Comparison between the age of emersion (maximum range 189–165 Ma) and heating event (∼ 200–179 Ma)
in the Briançonnais domain highlights that the thermal pulse slightly predated and/or was coeval with the
phase of emersion. Both events largely coincide with the major late Triassic-early Jurassic crustal thinning in
the Alpine Tethys, which will be referred to as the “necking phase” in the following. The age of the necking
phase was estimated based on different approaches: On the one hand, using Ar/Ar geochronology, Mohn
et al. (2012) showed that exhumation of lower- to middle-crustal rocks to temperatures < 300 ◦C occurred
at ∼ 189–179 Ma along the Eita shear zone, which is located at the proximal-distal transition of the future
Adriatic margin. On the other hand, based on sedimentological correlations across the Adriatic margin,
Ribes et al. (2019) proposed that the necking phase lasted from∼ 191 (latest Sinemurian–early Pliensbachien
abandonment of the proximal basins) to ∼ 185 Ma (slightly before the early Toarcian anoxic event dated at
183 Ma).

In summary, two remarkable features characterize the evolution of the Briançonnais domain during the
necking phase of the Alpine Tethys rifting: (1) a transient uplift and emersion above sea level after a phase
of initial subsidence; and (2) a concurrent and/or slightly earlier intense thermal pulse at the base of the
crust. In the following we use thermomechanical numerical modeling to determine whether there is a causal
relationship between the observed uplift/emersion and heat pulse and to unravel what processes control the
particular evolution of the Briançonnais domain.
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Table 1
Materials Physical Properties

Dry quartz continental crust Dry olivine mantle
Density 𝜌 (kg/m3) 2,800 3,330
Internal angle of friction 𝜙 (◦) 30 30
Cohesion Co (MPa) 10 10
Heat capacity Cp (J·kg−1·K−1) 1,050 1,050
Thermal conductivity k (W·M−1·K−1) 2.5 3.0
Heat production H (μW/m3) 1.0 0.0
Thermal expansion 𝛼 (◦C−1) 32.0e−6 32.0e−6

Pressure compressibility 𝛽 (Pa−1) 1.5e−11 1.5e−11

Dislocation creep parameters
Stress exponent n 2.4 3.5
Activation energy Q (kJ/mol) 156 530
Pre-exponential constant A (Pa−n·s−1) 2.667e−20 1.1e−16

Activation volume V* (m3/mol) 0 11.0e−6

Water fugacity f 0 0
Diffusion creep parameters

Stress exponent n / 1
Grain size exponent m / 3
Activation energy Q (kJ/mol1) / 375
Pre-exponential constant A (Pa−n·s−1) / 1.5e−15

Activation volume V* (m3/mol) / 4.0e−6

Peierls creep parameters
Stress dependence q / 2.0
An adjustable constant 𝛾 / 0.1
Peierls stress 𝜎p (Pa) / 8.5e9

Activation energy Q (kJ/mol) / 540
Pre-exponential constant Ap (s−1) / 5.7e11

3. Numerical Model Formulation
We use a two-dimensional finite difference/marker-in-cell thermomechanical code to model lithospheric
extension (see Appendix A for more detailed descriptions of the numerical algorithm). The model considers
viscoelastoplastic incompressible deformation; strain-rate-, stress-, and temperature-dependent rheologies;
and thermomechanical coupling by shear heating.

The modeled domain (Figure 2) is 300 km wide and 200 km deep with a numerical resolution of 500 m
horizontally and 250 m vertically. Models run with similar settings at 500 × 500 m, 1 km × 500 m, and
1 × 1 km resolution produced comparable results (section B1). The top boundary is a free surface (Duretz
et al., 2016), while free slip is applied on the left, right, and bottom boundaries. Horizontal velocities (v) that
depend on the model width (W) are applied on the vertical model sides to generate a constant extension bulk
strain rate ( .

𝜀) of 10−15 s−1 ( .
𝜀 = 2v∕W), which corresponds to an extension velocity of the order of 1 cm/year.

The modeled domain comprises a 30-km-thick dry quartz continental crust with a dislocation creep flow
law (Ranalli, 1997) overlying a 170-km-thick dry olivine mantle with dislocation, diffusion, and Peierls creep
flow laws (Hirth & Kohlstedt, 2003, and Evans & Goetze, 1979, using the approach from Kameyama et al.,
1999; see Table 1 for a summary of materials physical parameters). In order to test whether fundamental ther-
momechanical necking processes can explain the characteristic emersion and thermal pulse observed in the
Briançonnais domain, the model presented here does not consider strain softening, erosion, sedimentation,
nor melt impregnation and comprises a monophase continental crust. Results of simulations with alterna-
tive crustal rheologies, including a two-phase crust, are provided in sections B2 and B3. We emphasize that
we use the term necking to refer to the mechanical thinning process associated with a necking instability,

CHENIN ET AL. 5



Geochemistry, Geophysics, Geosystems 10.1029/2019GC008357

Figure 3. (a–d) Log10 of the second invariant of strain rate tensor; (e–h) horizontal deviatoric stress (the cross marks the location of the point at x = −48 km,
3 km below the Moho displayed as a magenta line in panel p; and (i–l) temperature difference between the initial and current stage across the model domain.
(m) Evolution of the surface topography with time along the model; the black line marks the time at which the crust is thinned to 10 km; the blue and magenta
dashed lines show the location of the points tracked in panel p at x = −26 and −48 km, respectively. (n) Evolution of crustal thickness with time along the
model; the 0-m isobath and the 700 and 800 ◦C isotherms are superimposed. (o) Moho temperature with time at the model center and at the base of the two
blocks of thick continental crust; see the arrows in panels j–l for location of the tracked points. (p) Blue curve: surface topography with time at x = −26 km (see
blue dashed line in panel m); magenta curve: horizontal deviatoric stress 3 km below the Moho at x = −48 km (see magenta cross in panels e–h and magenta
dashed line in panel m); green curve: thickness of layer in which horizontal deviatoric stress is > 100 MPa (i.e., the “strong” upper mantle) at x = −48 km (see
magenta dashed line in panel m).

which generates structures such as pinch-and-swell or boudinage in plastic and/or non-Newtonian materi-
als that are here the crust and the mantle lithosphere (Fletcher & Hallet, 1983; Smith, 1977). Necking (a
mechanical process) and thinning (a kinematic process) are not synonymous, but necking is one possible
process responsible for thinning on the same level as pure shear. In the framework of rifting, necking is the
first step of the progressive localization of deformation that will eventually lead to lithospheric breakup.
In the following, we distinguish between the necking zone, which corresponds to the model region that is
affected by localized thinning, and the proximal domain that is located outside the necking zone.

To trigger localization of deformation, we perturb the initial depth of the crust-mantle boundary with a
sinusoidal function having a 2.5-km amplitude and a 300-km wavelength smoothly distributed over the
entire model width (Figure 2). We counterbalance the Moho perturbation by a sinusoidal surface topography
of ∼ 0.5-km amplitude and 300-km wavelength so that our model is initially in isostatic equilibrium. The
progressive thickening, and thus weakening, of the crust toward the model center (Figure 3) enables the
model to go through a progressive necking process when the crust is extended, similar to the analytical model
described by Fletcher and Hallet (1983). The use of a sinusoidal perturbation of the Moho is reasonable
because (i) Moho depth perturbations are ubiquitous as a result of tectonics (e.g., beneath mountain ranges
and rift basins), including perturbations of more than 100-km wavelength (e.g., Braitenberg et al., 1997;
Karabulut et al., 2013); and (ii) the wavelength of the Moho perturbation has no significant impact on the
rift evolution and final architecture of the rift system in dynamical numerical models (Chenin et al., 2018).

The temperature is set to 0 ◦C at the top of the model and 1330 ◦C at the base, and zero heat flux is
imposed on the model vertical sides. In order to mimic an adiabatic asthenosphere, we set the initial ther-
mal conductivity of the mantle located between 125 and 200 km to 1,000 times its reference value (i.e.,
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3,000 W·m−1·K−1). During the simulation, the conductivity is set back to 3 W·m−1·K−1. This setup results
in a (slow) diffusive cooling of the lithosphere-asthenosphere boundary which has, however, no significant
impact given the short duration of the simulation (∼ 7 Myr). The crust has a constant radiogenic heat pro-
duction of 1 μW/m3. The initial Moho temperature in the central region is 550 ◦C, consistent with the Moho
temperatures recorded at the onset of the Alpine Tethys rifting in Val Malenco (northern Italy; Müntener
et al., 2000).

Because we are interested only in the necking phase, we terminate the simulation when the crust is thinned
to 10 km, before mantle exhumation or breakup. In the following, all depth and height values are given with
respect to the 0-km isobath reference level. We use the term “emersion” when surface topography that was
below the reference level is subsequently uplifted above this level.

4. Results
During the early stages of extension, deformation is widely distributed within both the crust and the man-
tle, and no significant changes occur in the model temperature, surface topography, and crustal thickness
(Figures 3a, 3i, 3m, and 3n). After 2.5 Myr of extension crustal deformation is localized into two wide fault
corridors in the upper crust, which continue as ductile shear zones in the lower crust. They delimit a largely
undeformed∼ 40-km-wide crustal keystone in the model center (Figure 3b). Within the upper mantle, defor-
mation is focused into two intensively deforming shear zones that merge at a depth of ∼ 40 km in the model
center (Figure 3b). At this stage, a boudin of upper mantle has formed in the model center: The initially
∼ 25-km-thick brittle-plastic upper mantle characterized by high deviatoric stresses (deepest orange layer in
Figure 3e) is thinned to less than 5 km on either side of the boudin (Figure 3f). This stress state indicates the
necking of this strong, load-bearing, uppermost mantle layer (Figure 3f). In the uppermost part of the man-
tle outside of the necking zone, we notice a significant drop in the horizontal deviatoric stresses and even
slightly compressional stresses (Figure 3f and magenta curve in Figure 3p). Deviatoric stresses in the upper
mantle become more and more compressive (Figure 3g), which indicates an upward flexure of the upper
mantle on either side of the mantle boudin/necking zone. The vertical variation from compressive to exten-
sive stresses across the lithosphere is a typical feature of flexure or bending (e.g., Figure 3.11 in Turcotte &
Schubert, 2014; see also Figure 3 in Braun & Beaumont, 1989).

The early necking of the upper mantle is associated with (1) a significant temperature increase at the base
of the crust above the mantle necking domain, which reaches up to 700–750 ◦C (Figures 3j and 3o); and
(2) a significant Moho relief in the model center (∼ 9 km between the lowest and highest Moho points; see
Figure 3f). The Moho is pulled downward in the region of necking because the largest deviatoric stresses,
which concentrate in the strongest layer (Figure 2), occur below the Moho (Figure 3f). The strongest level
corresponds to the so-called intrinsic necking depth (Braun & Beaumont, 1989; Kooi et al., 1992), which
tends to remain horizontal during the initial stages of necking. Perturbation of the Moho relief related to
upper mantle necking does not significantly affect the upper crust, as shown by the lack of deflection of
the mid-crustal brittle-ductile transition (topmost orange layer on Figure 3f) and the limited subsidence
(< 800 m) along the model (Figure 3m). Indeed, Moho deflection is largely compensated by lower crustal
flow, as shown by the thick crust (∼ 30 km) that remains until 4–5 Myr in the model center (Figure 3n).
Necking of the upper mantle is thus asynchronous with respect to the later necking of the overlying crust.

As extension continues, deformation localizes at the right-hand side edge of the upper mantle boudin
(Figure 3c). As a result, the latter becomes progressively offset to the left of the rift center (compare Figures 3g
and 3h). Within the crust, a new fault corridor, which will become the locus of crustal necking, appears in
the center of the keystone (Figures 3c and 3d). As a result, the latter is split into two blocks of relatively thick
crust (∼ 25 km), which become increasingly offset on either side of the main rift as extension progresses
(Figure 3n). These blocks of thick crust tend to remain at shallow depth (< 500 m below the reference level)
during the entire simulation (Figure 3m). After 4.5 Myr of extension, the intensity of upper mantle flexure
outside the necking zone has largely increased, with significant compressional horizontal deviatoric stresses
(lower than −65 MPa) in the topmost 6 km of the mantle (at x < −25 and x > 25 km in Figure 3g). High
extensional deviatoric stresses (> 150 MPa) still affect the lower part of the upper mantle along the entire
model, but the thickness of this high-stress layer is extremely reduced (less than 1 km) on each side of the
mantle boudin (Figure 3g). At this stage, the 1300 ◦C isotherm reaches a depth of 75 km in the model center
(Figure 3k; initial depth was 125 km).
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From approximately 4.5 Myr onward, the ∼ 25-km thick crust in the model center begins to thin at a rel-
atively high rate, reaching 10 km after 7.3 Myr of extension (Figure 3n). This marks the onset of crustal
necking. Crustal necking is achieved via conjugate shear zones that are offset to the left by ∼ 15 km from the
active mantle shear zones (Figure 3d). The onset of significant crustal thinning at the model center coincides
with the moment when the strong upper mantle has been first fully attenuated (at x = −48 km; see green
curve in Figure 3p). In contrast, high compressional and extensional deviatoric stresses are still occurring
in the upper and lower parts of the upper mantle outside the main rift zone, respectively (Figure 3h). This
indicates that the upper mantle is still undergoing upward flexure. From approximately 5 Myr onward, the
Moho temperature at the model center starts increasing rapidly, while the base of the two blocks of thick
continental crust on either side cools down to 650–675 ◦C (Figure 3o). Simultaneously, surface topography
starts rising on either side of the rift center, culminating with emersion of parts of the future distal margin
at ∼ 6 Myr (Figure 3m and blue curve in Figure 3p). Note that the location of emersion on the left-hand side
of the main rift is consistent with the location of the left-hand side block of thick continental crust but is
not a region of highest temperature (Figure 3n). Conversely, the right-hand side region of emersion is con-
sistent with the region of highest temperature but not with that of the thickest crust (Figure 3n). These local
uplifts do not correspond to the rift shoulders, since the latter are located ∼ 100 km laterally away from the
rift center and reach an altitude of more than 1 km (Figure 3m).

By the end of the simulation at 7.3 Myr, when the crust has been thinned to 10 km in the model center, the
1300 ◦C isotherm is at a depth of 40 km (Figure 3l). At this time, the basin floor is at a depth of ∼ 2 km in the
model center. The surface of the left-hand side block of thick (25–27 km) continental crust is still emerged,
while the other has subsided to a depth of 100 m below the reference level.

5. Discussion
The model presented in this study displays the two key features characterizing the Briançonnais evo-
lution described in section 2. Based on the combined analysis of our model results, field observations,
thermochronological data from the fossil Alpine Tethys margins, and interpreted seismic data from the
literature, we propose a conceptual model that illustrates the consecutive phases of what we name a
Briançonnais-type behavior (Figure 4).

During the early stages of extension, our numerical model shows a phase of widely distributed deformation
(Figure 3a), similar to other models devoid of a single prominent weak seed (e.g., the model with “white sta-
tistical noise” of Huismans & Beaumont, 2007; Jammes & Lavier, 2016; Lavier & Manatschal, 2006; Naliboff
et al., 2017). This phase of distributed deformation is well recognized in the Alps (e.g., Beltrando et al., 2015;
Eberli, 1988; Lemoine, 1985) and is a ubiquitous behavior of early rifting stages worldwide (e.g., Ball et al.,
2013; Withjack et al., 2012). This phase of distributed extension is illustrated in Figure 4a. During this stage,
no significant temperature, stress, or topographic change occurs along the rift system (Figures 4d–4f).

As extension progresses, necking of the upper mantle starts first, asynchronously with crustal necking
(Figure 4b). Necking of the upper mantle starts first because this layer has the largest effective viscosity and
consequently the largest associated deviatoric stresses (see the depth-dependent stress profiles of Figures 2
and 3f). Yet the strongest level in the lithosphere corresponds to the “intrinsic necking depth” of Braun and
Beaumont (1989), which tends to remain horizontal during the necking process and stymies the buoyancy
forces (see also Kooi et al., 1992). In our model, because the intrinsic necking depth is below the Moho, the
latter is overdeepended with respect to its isostatic equilibrium. The competition between the deep necking
level and the buoyancy forces translates into upper mantle flexure, which is highlighted by the compres-
sional deviatoric stress in the uppermost mantle (Figure 4f; see also Figures 3g and 3h and green curve in
Figure 3p). Because of the efficient mechanical decoupling between the crust and the mantle and active flow
of the weak lower crust, the strong brittle/plastic upper crust remains largely unaffected by the necking in
the upper mantle.

This lower crustal flow process was already evidenced by Huismans and Beaumont (2011; their Figure 3a)
and Brune et al. (2017; their Figures 10 and 13), among others. Crustal flow occurs when part of the crust
is ductile, either because it is made of a compositionally relatively weak material (for instance dry or wet
quartz) and/or because the geothermal gradient is high. In the absence of a significant decoupling layer
within the crust, crustal and mantle necking are synchronous, and only progressive subsidence is recorded
at the surface (e.g., Figure 8 in Chenin et al., 2018).
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Figure 4. Conceptual model for the evolution of a mechanically decoupled lithosphere during extension: (a) phase of
distributed extension; (b) upper mantle necking phase; and (c) crustal necking phase (see text for discussion). The
depth-dependent stress profile to the right of each panel schematized the rheology at the rift center; the blue, black, and
red markers point to specific locations of the future distal margins whose surface topography and Moho temperature
are schematized in graphs (d) and (e). (f) schematic evolution of the horizontal deviatoric stress in the uppermost
mantle along the model. Abbreviations: cont. = continental; compress. = compressional; detach. = detachment;
dev. = deviatoric; exten. = extensional; horiz. = horizontal; keyst. = keystone; lithos. = lithospheric.

In our model, only limited subsidence occurs in the center of the rift system due to the insignificant crustal
thinning above the upper mantle necking region (Figure 4d; see also Figure 3m). This stage can be linked
with the shallow-water nature of the sediments affected by the unconformity in the Briançonnais domain
(i.e., Triassic to early Jurassic platform carbonates; e.g., Bourbon, 1980; Lemoine et al., 1986).

The early necking of the upper mantle with respect to the crust causes an increase in temperature (up to
750 ◦C) at the base of the crustal keystone (Figure 4e; see also Figures 3j and 3o). This behavior was already
noticed by Huismans and Beaumont (2011), Svartman Dias et al. (2015), and Hart et al. (2017). The lat-
ter related the high heat flow at the base of the modeled keystone to the thermal pulse recorded in the
Mauléon Basin, in Corsica, and in the Southern Alps. Our model supports the conclusion presented by these
authors. We go further by suggesting that viscoelastoplastic necking of the upper mantle alone can explain
the existence of a heat pulse during early stages of crustal necking, without the need of large-offset normal
faults. Indeed, as our model does not include strain-softening processes, deformation is relatively diffuse,
resembling pinch-and-swell formations (Fletcher & Hallet, 1983; Smith, 1977). In contrast, the models from
Huismans and Beaumont (2011), Svartman Dias et al. (2015), and Hart et al. (2017) employ intense strain
softening that generates three to seven major normal faults with offset of more than 10 km. Such localized
structures facilitate high-amplitude differential movements and hence both uplift and subsidence within
the crust and the mantle. In other words, we suggest that the heat pulse recorded at the base of the keystone
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is not primarily controlled by localized brittle faulting but by regional viscoplastic upper mantle necking,
although strain softening may intensify the heat pulse.

As necking of the upper mantle progresses, the latter looses its strength (Figures 4c and 4f; see also Figures 3g
and 3h and green curve in Figure 3p). As a result, the flexural stresses can play, propelling the overdeepened
Moho upward toward an isostatically compensated depth. This flexural isostatic rebound (represented by the
orange arrows in Figure 4c) triggers the uplift and emersion of the two adjacent blocks of thick continental
crust (Figure 3m; compare also green and blue curves in Figure 3p). Necking of the upper mantle is achieved,
and crustal necking starts in its wake (Figure 3d). We suggest that the reason for emersion of parts of the
future distal margin is the flexural rebound beneath thick, and thus relatively buoyant, continental crust
(Figures 3m, 3n, and 3p).

The existence of regions of thick crust in rifted margins can be observed on several seismic sections (e.g.,
the Galicia, Hatton, Rockall, and Porcupine Bank in eastern North Atlantic and the Flemish Cap in western
North Atlantic). Recently, Clerc et al. (2018) suggested that crustal-scale boudinage may be at the origin of
the large-scale thickness changes in the crust at, for instance, the Iberia, Barrent Sea, Møre, Vøring, Namibia,
and South China Sea margins. We underline that large-offset normal faults due to strain softening, which
promote differential uplift (see above), are not required to account for the transient emersion of the distal
domain.

The phase of transient emersion of the distal domain observed in our model can be linked with the karst
affecting the Briançonnais unit, which attests to subaerial exposure. It can also explain the erosional uncon-
formities reported in the outer hinge of the Campos Basin (Lewis et al., 2014) and at the second terrace of
the East India margin (Haupert et al., 2016), both of which lie in the distal part of the margin, in a position
comparable to that of the Briançonnais domain in the former European margin of the Alpine Tethys.

As the two blocks of thick continental crust are progressively advected away from the rift center, they cool
down and thus keep record of the thermal pulse (Figures 4e and 3o) and begin to subside (Figures 4d
and 3m). Subsidence of the future distal margin will presumably accelerate during the subsequent stage
of coupled deformation (i.e., hyperextension), as the initial keystone is going to be increasingly thinned by
extensional detachment faults (e.g., Florineth & Froitzheim, 1994; Nirrengarten et al., 2016; Pérez-Gussinyé
et al., 2003; Reston, 2007).

Our model results indicate that the following features are important to generate transient synrift emersion
of distal parts of rift systems in numerical simulations:

1. A mechanically strong upper mantle to generate significant necking and downward movement of the
Moho; the use of a weaker (wet olivine) mantle decreases initial subsidence but does not generate a late
necking flexural rebound (Figures B2b, B2d, and B2f).

2. A mechanically weak crustal layer between the upper mantle and brittle-plastic upper crust to generate
mechanical decoupling and lateral crustal flow; stronger crustal rheologies, due to either a stronger mate-
rial and/or a lower geothermal gradient, result in lower uplift and thus not necessarily in emersion of
distal domains (sections B2 and B3).

3. A sufficiently high numerical resolution in space and time to accurately calculate the free surface
deformation and the lateral flow in the weak crustal regions.

Previous modeling studies that did not report emersion of the future distal margin may have lacked one of
the above features. Transient synrift emersion of the distal domain is still observed in simulations that do
not include shear heating, diffusion creep, or Peierls creep and in simulations that include strain softening
(section B4). Thus, these processes can be regarded as of second-order importance with respect to emer-
sion. High extension rates promote uplift of the distal domain (section B5) because they favor brittle-plastic
behavior; yet as mentioned in point 1 above, the thicker the brittle-plastic upper mantle, the more important
its flexural rebound.

6. Conclusion
We present a thermomechanical numerical model that predicts transient emersion of distal parts of a rift
system during advanced stages of extension and after an initial phase of subsidence. Our results show
that asynchronous necking of first the upper lithospheric mantle and then the crust can account for two
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characteristic features observed in the former distal European margin of the Alpine Tethys (i.e., the Bri-
ançonnais domain), namely, (1) an intense regional heat pulse at the base of the crust, and slightly later
and/or contemporaneously (2) a transient and regional phase of emersion that does not affect the proximal
domains. This synrift emersion is enabled by the flexural isostatic rebound of the upper mantle following
its necking beneath a largely unthinned crust. These results may also explain the enigmatic local erosional
unconformities reported in distal parts of several present-day rifted margins.

Appendix A: Numerical Model Formulation
The applied numerical algorithm is based on the finite-difference/marker-in-cell method (e.g., Duretz et al.,
2016; Gerya & Yuen, 2003; Schmalholz et al., 2019). The governing equations for 2-D incompressible defor-
mation of viscoelastoplastic material coupled with heat transfer and gravity are described in detail in the
next section. The diffusive terms in the force balance equations and in the heat transfer equations are dis-
cretized on a Eulerian staggered grid, while advection and rotation terms are treated explicitly on Lagrangian
markers using a fourth-order in space Runge-Kutta time integration (Duretz et al., 2016). The topography
in the model is a material interface defined by a Lagrangian marker chain, and this interface is displaced
with the numerically calculated velocity field. With ongoing deformation, this marker chain needs to be
locally remeshed, which is achieved by adding marker points in the deficient chain segments. The applied
numerical mesh consists of 600 nodes in the horizontal direction (resolution of 500 m) and 800 nodes in
the vertical direction (resolution of 250 m). The models were run with a Courant number of 0.45 and a
maximum allowed time step of 4,000 years.

The applied numerical algorithm solves the partial differential equations of continuum mechanics for 2-D
slow deformations (no inertia) coupled with heat transfer under gravity. The force balance equations are as
follows:

𝜕𝜎i𝑗

𝜕x𝑗
= −𝜌bi (A1)

where i and j are indexes of either 1 or 2 and represent the horizontal x direction (i, j = 1) and vertical y
direction (i, j = 2), b1 = 0 and b2 = g. 𝜎ij are the total Maxwell-viscoelastic stress tensor components, which
are expressed using a backward-Euler rule (e.g., Schmalholz et al., 2001) by

𝜕𝜎i𝑗 = −P + 2
(

1
𝜂
+ 1

GΔt

)−1
.
𝜀i𝑗 +

(
1 + GΔt

𝜂

)−1

𝜎o
i𝑗 + Ji𝑗 (A2)

where P corresponds to the pressure, .
𝜀i𝑗 are the components of the deviatoric strain rate tensor, G is the

shear modulus, 𝜂 is the effective viscosity, t is the numerical time step, 𝜎o
i𝑗 are the stress tensor components

from the previous time step, and Jij includes all the corresponding terms resulting from the Jaumann rate of
the stress tensor (e.g., Beuchert & Podladchikov, 2010).

The rheological model is based on the additive decomposition of the deviatoric strain rate tensor .
𝜀i𝑗 :

.
𝜀i𝑗 =

.
𝜀el

i𝑗 +
.
𝜀

pe
i𝑗 + .

𝜀dis
i𝑗 + .

𝜀
di𝑓
i𝑗 + .

𝜀
pe
i𝑗 (A3)

where .
𝜀el

i𝑗 ,
.
𝜀

pl
i𝑗 ,

.
𝜀dis

i𝑗 ,
.
𝜀

di𝑓
i𝑗 , and .

𝜀
pe
i𝑗 correspond to the strain rate contributions arising from elasticity, plasticity,

and viscous creep (dislocation, diffusion, and Peierls), respectively. This strain rate equation is nonlinear
and solved locally on cell centroids and vertices in order to define the current effective viscosity and stress
(e.g., Popov & Sobolev, 2008). The viscosity for dislocation creep is a function of the dislocation creep strain
rate invariant, .

𝜀dis
II = 𝜏II∕2𝜂dis

𝜂dis = 2
1−n

n

3 1+n
2n

A
( .
𝜀

di𝑓
II

) 1
n −1

exp
(

Q + PV
nRT

)
(A4)

where the ratio involving the stress exponents to the left of A results from the conversion of the experimen-
tally derived 1-D flow law to a general flow law for tensor components based on invariants (e.g., Gerya, 2010;
Schmalholz & Fletcher, 2011). Applied parameters are displayed in Table 1. Diffusion creep is taken into
account in the lithospheric and asthenospheric mantle, and its viscosity is expressed as

𝜂pe = Adm exp
(

Q + PV
nRT

)
(A5)
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where d = 1.0e−3 m is grain size and m is grain size exponent (Table 1). Peierls creep (i.e., low-temperature
plasticity) is applied in both the lithospheric and asthenospheric mantle with parameters from Evans and
Goetze (1979) using the approach from Kameyama et al. (1999). The viscosity corresponding to Peierls creep
takes the following form:

𝜂pl = 2
1−s

s

3 1+s
2s

A
( .
𝜀dis

II
) 1

n −1 (A6)

where the A for this formulation is

A =
[

Ap exp
(
−Q(1 − 𝛾)2

RT

)]− 1
s
𝛾𝜎p (A7)

and where s is an effective stress exponent that depends on the temperature:

s = 2𝛾 Q
RT

(1 − 𝛾) (A8)

where 𝛾 is a fitting parameter from the Peierls flow law (Table 1).

The stress of all material phases is limited by a yield stress, 𝜏y, defined by the Drücker–Prager criterion:

𝜏𝑦 = Co cos(𝜙) + P sin(𝜙) (A9)

where Co is the cohesion and 𝜙 is the angle of internal friction (Table 1). In case of yielding, the effective
viscosity is iteratively reduced until the corresponding stress invariant equals the yield stress (e.g., Lemiale
et al., 2008; Schmalholz & Maeder, 2012). Therefore, the effective viscosity for plasticity is computed only
for 𝜏II − 𝜏y ≥ 0 and takes the form of

𝜂pl =
𝜏𝑦

2 .
𝜀

pl
II

if𝜏II − 𝜏𝑦 ≥ 0 (A10)

where .
𝜀

pl
II is the second invariant of the plastic strain rate tensor having components .

𝜀
pl
i𝑗 (equation (A3)).

At the end of the local iteration cycle, the effective viscosity is equal to the harmonic mean of the viscosities
of each dissipative deformation mechanism:
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−1

(A11)

Equation (A11) indicates that each viscosity is calculated with the respective second strain rate invariant,
which is calculated from the strain rate tensor components of the corresponding deformation mechanism
(equation (A3)).

The applied 2-D equation for heat transfer is

𝜌c DT
Dt

= 𝜕

𝜕xi

(
k 𝜕T
𝜕xi

)
+ HD + HR (A12)

with D∕Dt representing the total time derivative, HR being the radiogenic heat production and HD = (𝜏2
11 +

𝜏2
22+𝜏

2
12)∕2𝜂 being the heating due to viscous and plastic dissipative work. Here we assume that all dissipative

work is converted into heat (i.e., the so-called Tayloruinney coefficient is 1) since we do not model grain size
reduction, which consumes typically only a minor fraction of the dissipative work.

Appendix B: Additional Numerical Simulations
B1. Resolution Test
Running simulations with identical configurations as our main model (Figure 2) but using various reso-
lutions of the numerical grid highlights the consistency of the modeling results (Figure B1). The general
topographic evolution along the margin is similar among the four simulations, although synrift emersion of
the distal domain is more pronounced in the two models with highest resolution (Figures B1c and B1d): in
these simulations, emersion occurs on either side of the rift center, while it is limited to the right-hand side
in the model with lowest resolution (Figure B1a) and lacking in the model with a 1-km × 500-m resolution
(Figure B1b).
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Figure B1. Evolution of the surface topography with time along the model for four models with identical
configurations as our main model (Figure 2), except the numerical grid resolution (h × v: horizontal × vertical):
(a) 1 km × 1 km; (b) 1 km × 500 m; (c) 500 m × 500 m; (d) 500 m × 250 m.

B2. The Impact of Crustal and Mantle Rheology: Monophase Crust Models
Figure B2 shows that models with a stronger crust and/or a weaker mantle compared to our reference model
(Figure B2e) do not show synrift emersion of the distal domain. The uplift of the distal parts of the rift system
seems to be facilitated by both weak crustal and strong mantle rheologies. The reasons are, on the one hand,
that weak crustal rheologies allow for significant lower crustal flow and thus delayed crustal thinning above
the upper mantle necking zone. On the other hand, strong mantle rheologies induce a significant overdeep-
ening of the Moho during upper mantle necking and thus a vigorous flexural rebound. In such cases, the
maximum uplift occurs during the latest stages of the necking phase (Figures B2a, B2c, and B2e). In con-
trast, in models with weaker mantle rheologies, the late necking uplift of the distal domain is extremely
limited (Figure B2b) or even lacking (Figures B2d and B2f).

B3. The Impact of Crustal and Mantle Rheology: The Impact of a Strong Lower Crust
Figure B3 shows that, when a 6-km thick lower crust made of mafic granulite is modeled at the base of a
dry or wet quartz continental crust, no emersion of the distal domain occurs any more. Nevertheless, the
simulation with a wet quartz upper crust and a dry olivine mantle (Figure B3c) shows a transient uplift of
the distal domain to extremely shallow depth (less than 100 m) during the latest stages of the necking phase.

B4. The Impact of Other Processes
We tested the impact of various parameters that are not necessary used in numerical models in order to
facilitate comparison with simulations from other studies. We notice that all models presented in Figure B4

CHENIN ET AL. 13



Geochemistry, Geophysics, Geosystems 10.1029/2019GC008357

Figure B2. Evolution of the surface topography with time along the model for six models with a comparable
configuration as our main model (Figure 2) but with various crust and mantle rheologies and a numerical resolution of
1 km × 1 km. (a) Felsic granulite crust and dry olivine mantle. (b) Felsic granulite crust and wet olivine mantle. (c)
Anorthite60 crust and dry olivine mantle. (d) Anorthite60 crust and wet olivine mantle. (e) Dry quartz crust and dry
olivine mantle. (f) Dry quartz crust and wet olivine mantle. Felsic granulite flow law from Ranalli (1995); Anorthite60
from Rybacki and Dresen (2004); dry quartz from Ranalli (1995) and Ranalli (1997); dry and wet olivine dislocation
and diffusion creep from Hirth and Kohlstedt (2003); Peierls creep from Evans and Goetze (1979) using the approach
from Kameyama et al. (1999).

show transient synrift emersion of the distal domain. When shear heating is not modeled (Figure B4b),
the topographic evolution of the rift system is largely similar to that of our reference mode (Figure B4a),
except that emersion of the distal domains occurs only on the left-hand side of the rift center. The timing
of distal domain emersion is earlier in the simulation where diffusion creep is not modeled since it occurs
between 3 and 4 Myr, that is, at half of the necking time. When Peierls creep is not modeled (Figure B4d),
the topographic evolution of the model is again very similar to that of the reference model. Parts of the
distal domains are transitorily uplifted above the reference level on either side of the rift center during late
stages of the necking phase; however, the duration of emersion is slightly less than in our reference model
(Figure B4a). The use of strain softening (Figures B4e and B4f) facilitates differential uplift/subsidence by
favoring large offset movements on a limited number of faults; as a result, the modeled rift systems display a
sharper and more pronounced relief. We notice that the use of a weak seed to trigger the initial localization
of deformation may significantly impact the topographic evolution of the model during the entire simulation
(B4f).
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Figure B3. Evolution of the surface topography with time along the model for four models with a comparable
configuration as our main model (Figure 2) but with a 6-km thick lower crust made of mafic granulite (Ranalli, 1995)
and various upper crust and mantle rheologies. (a) Dry quartz upper crust and dry olivine mantle. (b) Dry quartz upper
crust and wet olivine mantle. (c) Wet quartz upper crust and dry olivine mantle. (d) Wet quartz upper crust and wet
olivine mantle. Dry and wet quartz flow laws are from Ranalli (1995) and Ranalli (1997); dry and wet olivine
dislocation and diffusion creep flow laws are from Hirth and Kohlstedt (2003); Peierls creep flow law is from Evans and
Goetze (1979) using the approach from Kameyama et al. (1999).
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Figure B4. Evolution of the surface topography with time along the model for six models with a comparable
configuration as our main model (a) but (b) no shear heating; (c) no diffusion creep; (d) no Peierls creep; (e) with strain
softening consisting in a linear decrease of the internal angle of friction from 30◦ to 15◦ and of the cohesion from 10 to
1 MPa when accumulated plastic strain increases from 5% to 50%, after which both the internal angle of friction and
the cohesion remain constant; (f) strain softening (see e) and a circular weak seed of 4-km diameter located at a depth
of 34.5 km in the model center (i.e., just beneath the Moho) made of dry olivine with reduced angle of friction (15◦)
and cohesion (1 MPa) with respect to those of the encompassing mantle (30◦ and 10 MPa, respectively.
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Figure B5. Evolution of the surface topography with time along the model for four models with a comparable
configuration as our main model (Figure 2) but with a resolution of 1 km × 1 km and different extensional strain rates:
(a) 0.528e−15 s−1; (b) 1.056e−15 s−1; (c) 1.584e−15 s−1; and (d) 2.113e−15 s−1.

B5. The Impact of the Extensional Strain Rate
Figure B5 displays the results of a series of models with identical initial configurations but extended at
various strain rates, namely, (a) 0.528e−15 s−1 (∼ 0.5 cm/year), (b) 1.056e−15 s−1 (∼ 1 cm/year—our reference
model), (c) 1.584e−15 s−1 (∼ 1.5 cm/year), and (d) 2.113e−15 s−1 (∼ 2 cm/year). This series highlights that
the higher the extension rate, the more important the emersion of the distal domain during late necking
stages. The reason is that high extension rates favor brittle-plastic behavior in all the modeled materials. As
a consequence of the thicker brittle-plastic upper mantle, the intrinsic lithospheric necking depth is deeper.
The Moho overdeepening is more important during upper mantle necking, and thus its flexural rebound is
also more intense when the upper mantle has lost most of its strength.
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