N. S. Lewis and D. G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proceedings of the National Academy of Sciences, vol.103, issue.43, pp.15729-15735, 2006.

V. R. Stamenkovic, D. Strmcnik, P. P. Lopes, and N. M. Markovic, Energy and fuels from electrochemical interfaces, Nature Materials, vol.16, issue.1, pp.57-69, 2016.

W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich et al., Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis, Energy & Environmental Science, vol.8, issue.5, pp.1404-1427, 2015.

J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo et al., Materials for solar fuels and chemicals, Nature Materials, vol.16, issue.1, pp.70-81, 2016.

M. W. Kanan and D. G. Nocera, In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+, Science, vol.321, issue.5892, pp.1072-1075, 2008.

A. Grimaud, K. J. May, C. E. Carlton, Y. Lee, M. Risch et al., Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution, Nature Communications, vol.4, issue.1, 2013.

J. Hong, Y. Zhou, and . Shao-horn, Nat. Commun, 2013.

J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-horn, A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles, Science, vol.334, issue.6061, pp.1383-1385, 2011.

J. T. Mefford, X. Rong, A. M. Abakumov, W. G. Hardin, S. Dai et al., Water electrolysis on La1?xSrxCoO3?? perovskite electrocatalysts, Nature Communications, vol.7, issue.1, 2016.

E. Fabbri, A. Habereder, K. Waltar, R. Kötz, and T. J. Schmidt, Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction, Catal. Sci. Technol., vol.4, issue.11, pp.3800-3821, 2014.

E. Fabbri, M. Nachtegaal, T. Binninger, X. Cheng, B. Kim et al., Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting, Nature Materials, vol.16, issue.9, pp.925-931, 2017.

S. Cherevko, A. R. Zeradjanin, A. A. Topalov, N. Kulyk, I. Katsounaros et al., Dissolution of Noble Metals during Oxygen Evolution in Acidic Media, ChemCatChem, vol.6, issue.8, pp.2219-2223, 2014.

S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A. M. Mingers et al., The stability number as a metric for electrocatalyst stability benchmarking, Nature Catalysis, vol.1, issue.7, pp.508-515, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02390894

W. T. Mingers, O. Fu, Z. Diaz-morales, T. Li, L. Oellers et al., Nature Catalysis, vol.1, pp.508-515, 2018.

M. Pourbaix and R. W. Staehle, Electrochemical Equilibria, Lectures on Electrochemical Corrosion, pp.83-183, 1973.

J. W. Ng, M. García-melchor, M. Bajdich, P. Chakthranont, C. Kirk et al., Gold-supported cerium-doped NiOx catalysts for water oxidation, Nature Energy, vol.1, issue.5, 2016.

Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-horn, Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions, The Journal of Physical Chemistry Letters, vol.3, issue.3, pp.399-404, 2012.

P. Lettenmeier, L. Wang, U. Golla-schindler, P. Gazdzicki, N. A. Cañas et al., Nanosized IrO x -Ir Catalyst with Relevant Activity for Anodes of Proton Exchange Membrane Electrolysis Produced by a Cost-Effective Procedure, Angewandte Chemie, vol.128, issue.2, pp.752-756, 2015.

A. Friedrich, Angew. Chem, vol.128, pp.752-756, 2016.

T. Reier, H. N. Nong, D. Teschner, R. Schlögl, and P. Strasser, Electrocatalytic Oxygen Evolution Reaction in Acidic Environments - Reaction Mechanisms and Catalysts, Advanced Energy Materials, vol.7, issue.1, p.1601275, 2016.

R. R. Rao, M. J. Kolb, N. B. Halck, A. F. Pedersen, A. Mehta et al., Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution, Energy & Environmental Science, vol.10, issue.12, pp.2626-2637, 2017.

C. Spöri, J. T. Kwan, A. Bonakdarpour, D. P. Wilkinson, and P. Strasser, The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation, Angewandte Chemie International Edition, vol.56, issue.22, pp.5994-6021, 2017.

P. Jovanovi?, N. Hodnik, F. Ruiz-zepeda, I. Ar?on, B. Jozinovi? et al., Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study, Journal of the American Chemical Society, vol.139, issue.36, pp.12837-12846, 2017.

. Gaber??ek, Journal of the American Chemical Society, vol.139, pp.12837-12846, 2017.

A. Grimaud, A. Demortière, M. Saubanère, W. Dachraoui, M. Duchamp et al., Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction, Nature Energy, vol.2, issue.1, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01471366

T. Li, O. Kasian, S. Cherevko, S. Zhang, S. Geiger et al., Atomic-scale insights into surface species of electrocatalysts in three dimensions, Nature Catalysis, vol.1, issue.4, pp.300-305, 2018.

O. Diaz-morales, F. Calle-vallejo, C. De-munck, and M. T. Koper, Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism, Chemical Science, vol.4, issue.6, p.2334, 2013.

M. Wohlfahrt-mehrens and J. Heitbaum, Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.237, issue.2, pp.251-260, 1987.

V. Pfeifer, T. E. Jones, J. J. Velasco-vélez, R. Arrigo, S. Piccinin et al., In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces, Chemical Science, vol.8, issue.3, pp.2143-2149, 2017.

D. F. Abbott, D. Lebedev, K. Waltar, M. Povia, M. Nachtegaal et al., Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS, Chemistry of Materials, vol.28, issue.18, pp.6591-6604, 2016.

A. Minguzzi, C. Locatelli, O. Lugaresi, E. Achilli, G. Cappelletti et al., Easy Accommodation of Different Oxidation States in Iridium Oxide Nanoparticles with Different Hydration Degree as Water Oxidation Electrocatalysts, ACS Catalysis, vol.5, issue.9, pp.5104-5115, 2015.

D. Weber, L. M. Schoop, D. Wurmbrand, S. Laha, F. Podjaski et al., IrOOH nanosheets as acid stable electrocatalysts for the oxygen evolution reaction, Journal of Materials Chemistry A, vol.6, issue.43, pp.21558-21566, 2018.

K. Klyukin, A. Zagalskaya, and V. Alexandrov, Ab Initio Thermodynamics of Iridium Surface Oxidation and Oxygen Evolution Reaction, The Journal of Physical Chemistry C, vol.122, issue.51, pp.29350-29358, 2018.

C. Costentin and D. G. Nocera, Self-healing catalysis in water, Proceedings of the National Academy of Sciences, vol.114, issue.51, pp.13380-13384, 2017.

T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones et al., Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir?Ni Oxide Catalysts for Electrochemical Water Splitting (OER), Journal of the American Chemical Society, vol.137, issue.40, pp.13031-13040, 2015.

H. N. Nong, H. Oh, T. Reier, E. Willinger, M. Willinger et al., Oxide-Supported IrNiO x Core-Shell Particles as Efficient, Cost-Effective, and Stable Catalysts for Electrochemical Water Splitting, Angewandte Chemie International Edition, vol.54, issue.10, pp.2975-2979, 2015.

H. G. Sanchez?casalongue, M. L. Ng, S. Kaya, D. Friebel, H. Ogasawara et al., In Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction, Angewandte Chemie, vol.126, issue.28, pp.7297-7300, 2014.

L. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya et al., A highly active and stable IrO x /SrIrO 3 catalyst for the oxygen evolution reaction, Science, vol.353, issue.6303, pp.1011-1014, 2016.

A. Grimaud, A. Demortière, M. Saubanère, W. Dachraoui, M. Duchamp et al., Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction, Nature Energy, vol.2, issue.1, p.16189, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01471366

O. Kasian, J. Grote, S. Geiger, S. Cherevko, and K. J. Mayrhofer, The Common Intermediates of Oxygen Evolution and Dissolution Reactions during Water Electrolysis on Iridium, Angewandte Chemie International Edition, vol.57, issue.9, pp.2488-2491, 2018.

V. A. Saveleva, L. Wang, D. Teschner, T. Jones, A. S. Gago et al., Operando Evidence for a Universal Oxygen Evolution Mechanism on Thermal and Electrochemical Iridium Oxides, The Journal of Physical Chemistry Letters, vol.9, issue.11, pp.3154-3160, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02360209

E. Willinger, C. Massué, R. Schlögl, and M. G. Willinger, Identifying Key Structural Features of IrOx Water Splitting Catalysts, Journal of the American Chemical Society, vol.139, issue.34, pp.12093-12101, 2017.

V. Pfeifer, T. E. Jones, S. Wrabetz, C. Massué, J. J. Velasco-vélez et al., Reactive oxygen species in iridium-based OER catalysts, Chemical Science, vol.7, issue.11, pp.6791-6795, 2016.

I. C. Man, H. Su, F. Calle?vallejo, H. A. Hansen, J. I. Martínez et al., Cover Picture: Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces (ChemCatChem 7/2011), ChemCatChem, vol.3, issue.7, pp.1085-1085, 2011.

N. G. Martínez, J. Inoglu, T. F. Kitchin, J. K. Jaramillo, J. Nørskov et al., ChemCatChem, vol.3, pp.1159-1165, 2011.

R. Kötz, H. Neff, and S. Stucki, Anodic Iridium Oxide Films: XPS?Studies of Oxidation State Changes and, Journal of The Electrochemical Society, vol.131, issue.1, pp.72-77, 1984.

R. Zhang, N. Dubouis, M. Ben-osman, W. Yin, M. T. Sougrati et al., Angew. Chem., Int. Ed. Engl, vol.58, pp.4571-4575, 2019.

P. E. Pearce, A. J. Perez, G. Rousse, M. Saubanère, D. Batuk et al., Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode ?-Li2IrO3, Nature Materials, vol.16, issue.5, pp.580-586, 2017.

M. G. Mavros, T. Tsuchimochi, T. Kowalczyk, A. Mcisaac, L. Wang et al., What Can Density Functional Theory Tell Us about Artificial Catalytic Water Splitting?, Inorganic Chemistry, vol.53, issue.13, pp.6386-6397, 2014.

S. J. Freakley, J. Ruiz-esquius, and D. J. Morgan, The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited, Surface and Interface Analysis, vol.49, issue.8, pp.794-799, 2017.

A. Iadecola, A. Perea, L. Aldon, G. Aquilanti, and L. Stievano, Li deinsertion mechanism and Jahn?Teller distortion in LiFe0.75Mn0.25PO4: anoperandox-ray absorption spectroscopy investigation, Journal of Physics D: Applied Physics, vol.50, issue.14, p.144004, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01486594

G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvère et al., Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes, Nature Communications, vol.8, issue.1, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01677634

C. Tarascon and . Mater, , vol.29, pp.9714-9724, 2017.

O. Diaz-morales, S. Raaijman, R. Kortlever, P. J. Kooyman, T. Wezendonk et al., Iridium-based double perovskites for efficient water oxidation in acid media, Nature Communications, vol.7, issue.1, 2016.

X. Tan, J. Shen, N. Semagina, and M. Secanell, Decoupling structure-sensitive deactivation mechanisms of Ir/IrOx electrocatalysts toward oxygen evolution reaction, Journal of Catalysis, vol.371, pp.57-70, 2019.

A. Grimaud, O. Diaz-morales, B. Han, W. T. Hong, Y. Lee et al., Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution, Nature Chemistry, vol.9, issue.5, pp.457-465, 2017.

D. N. Mueller, M. L. Machala, H. Bluhm, and W. C. Chueh, Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions, Nature Communications, vol.6, issue.1, p.6097, 2015.

A. Minguzzi, O. Lugaresi, E. Achilli, C. Locatelli, A. Vertova et al., Chem. Sci, vol.5, pp.3591-3597, 2014.

S. Geiger, O. Kasian, B. R. Shrestha, A. M. Mingers, K. J. Mayrhofer et al., Activity and Stability of Electrochemically and Thermally Treated Iridium for the Oxygen Evolution Reaction, Journal of The Electrochemical Society, vol.163, issue.11, pp.F3132-F3138, 2016.

J. L. Marshall, Scanning Electron Microscopy and Energy Dispersive X-ray (SEM/EDX) Characterization of Solder Solderability and Reliability, Solder Joint Reliability, pp.173-224, 1991.

E. Brunauer and . Teller, RELIABILITY PREDICTION OF SPECIFIC SURFACE AREA OF SUB -BITUMINOUS COAL PARTICLES USING BRUNAUER-EMMETT-TELLER (BET) DATA, International Journal of Recent Trends in Engineering and Research, vol.4, issue.6, pp.290-300, 2018.

S. Brutti, G. Balducci, and G. Gigli, A gas-inlet system coupled with a Knudsen cell mass spectrometer for high-temperature studies, Rapid Communications in Mass Spectrometry, vol.21, issue.2, pp.89-98, 2006.

, Catalytic Oxidation of Lignite to Carboxylic Acids in Aqueous H5PV2Mo10O40/H2SO4 Solution with Molecular Oxygen

D. Massiot, F. Fayon, M. Capron, I. King, S. Le-calvé et al., Modelling one- and two-dimensional solid-state NMR spectra, Magnetic Resonance in Chemistry, vol.40, issue.1, pp.70-76, 2001.

P. E. Pearce, A. J. Perez, G. Rousse, M. Saubanère, D. Batuk et al., Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode ?-Li2IrO3, Nature Materials, vol.16, issue.5, pp.580-586, 2017.

J. Suntivich, H. A. Gasteiger, N. Yabuuchi, and Y. Shao-horn, Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode, Journal of The Electrochemical Society, 2010.

F. Fauth, The crystallography stations at the Alba synchrotron, The European Physical Journal Plus, vol.130, p.160, 2015.

V. Pfeifer, T. E. Jones, J. J. Velasco-vélez, R. Arrigo, S. Piccinin et al., In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces, Chemical Science, vol.8, issue.3, pp.2143-2149, 2017.

V. Briois, ROCK: the new Quick-EXAFS beamline at SOLEIL, Journal of Physics: Conference Series, vol.712, p.12149, 2016.

J. B. Leriche, S. Hamelet, J. Shu, M. Morcrette, C. Masquelier et al., An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron Radiation, Journal of The Electrochemical Society, vol.157, issue.5, p.A606, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00477327

A. De-juan, J. Jaumot, and R. Tauler, Multivariate Curve Resolution (MCR). Solving the mixture analysis problem, Anal. Methods, vol.6, issue.14, pp.4964-4976, 2014.

D. L. Massart, Handbook of Chemometrics and Qualimetrics: Part A, vol.20, 1997.

R. J. Messinger, Revealing Defects in Crystalline Lithium-Ion Battery Electrodes by Solid-State NMR: Applications to LiVPO4F, Chemistry of Materials, vol.27, pp.5212-5221, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01200997

C. P. Grey and N. Dupré, NMR Studies of Cathode Materials for Lithium-Ion Rechargeable Batteries, Chemical Reviews, vol.104, issue.10, pp.4493-4512, 2004.

J. Rueff, J. M. Ablett, D. Céolin, D. Prieur, T. H. Moreno et al., The GALAXIES beamline at the SOLEIL synchrotron: inelastic X-ray scattering and photoelectron spectroscopy in the hard X-ray range, Journal of Synchrotron Radiation, vol.22, issue.1, pp.175-179, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01827967

J. Rueff, J. E. Rault, J. M. Ablett, Y. Utsumi, and D. Céolin, HAXPES for Materials Science at the GALAXIES Beamline, Synchrotron Radiation News, vol.31, issue.4, pp.4-9, 2018.

. Mib,