
HAL Id: hal-02270490
https://hal.science/hal-02270490

Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and Generating Tailored Distribution
Middleware for Embedded Real-Time Systems

Thomas Vergnaud, Irfan Hamid, Khaled Barbaria, Elie Najm, Laurent
Pautet, Sylvie Vignes

To cite this version:
Thomas Vergnaud, Irfan Hamid, Khaled Barbaria, Elie Najm, Laurent Pautet, et al.. Modeling
and Generating Tailored Distribution Middleware for Embedded Real-Time Systems. Conference
ERTS’06, Jan 2006, Toulouse, France. �hal-02270490�

https://hal.science/hal-02270490
https://hal.archives-ouvertes.fr

ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/9

Modeling and Generating Tailored Distribution Middleware for
Embedded Real-Time Systems

A. Thomas Vergnaud1, B. Irfan Hamid1, C. Khaled Barbaria1,
D. Elie Najm1, E. Laurent Pautet1, F. Sylvie Vignes1

1: GET-Télécom Paris — LTCI-UMR 5141 CNRS

École nationale supérieure des télécommunications

46, rue Barrault, F–75634 Paris Cedex, France

Abstract: Distributed real-time embedded (DRE)
systems are becoming increasingly complex. They
have to meet more and more stringent requirements,
either functional or non-functional. Because of this,
DRE systems development makes use of formal
methods for verification; and, in some cases,
generation of proven code. The distribution aspects
are typically handled by a middleware, which must
meet the system constraints. In this article, we
describe our approach to model and generate
middleware-based distributed systems for DRE
applications. Our methodology is a three-step
approach. First, we model the high-level inter-
component interactions using connectors. We then
use the Architecture Analysis and Design Language
(AADL) as a pre-implementation description
language to capture all the non-functional aspects of
the system. Finally, we generate actual application
code and the appropriate middleware from the AADL
description. In order to demonstrate the feasibility of
our approach, we created an application generator,
Gaia. It is part of the Ocarina AADL tool suite and
generates application source code for use with the
PolyORB middleware.

Keywords: connectors, AADL, Ocarina, middleware,
PolyORB, real-time systems

1 Introduction

The design of distributed real-time embedded (DRE)
systems is a very difficult task. The designing
process must capture many requirements and
constraints. Some are functional, such as algorithms
to implement; others are non-functional, such as
constraints on memory footprint for each node of the
distributed application, or transmission times
between nodes. All these parameters are specific to
each system.

Most distributed systems rely on a middleware to
mediate communications. As it is the keystone of the
application, the middleware has to satisfy all the
requirements regarding both functional and non-
functional properties of the application.

The best way to achieve these performance and
reliability objectives is to build a specifically designed
middleware for each application. A general purpose
middleware would drag numerous components that
are not needed to perform the specific functions of a
given application. Conversely, a dedicated
middleware would only embed the needed
mechanisms and components. However, it is
impossible for cost and maintenance reasons to
maintain one middleware per application. Therefore,
a tailorable middleware [6] is required to ensure
flexibility at a reasonable cost.

In order to configure the middleware, the designer
has to capture the communication and non-
functional application specifications. Semi-formal
methods such as architecture description languages
(ADLs) [10] typically address the issues regarding
the capture process. The entire distributed system
could hence be described using abstract semi-formal
methods, thus gathering all information regarding the
application requirements. The functional aspects of
the systems are a result of the capture of the
application requirements; they do not imply any
assumption on the actual implementation. On the
contrary, non-functional aspects are tightly related to
the technical solution used to implement the system.
Hence, even if these two aspects are related, they
can be addressed at different stages of the design
process.

The concept of connectors provides a formal support
to describe the interactions between the different
entities of an application. Since it is a very abstract,
high-level notion, it is perfectly suited to capture the
mediation functions required by the application. We
present a method to model connectors using UML.

The abstract model must be injected into a more
concrete semi-formal description; such a lower-level
description integrates the deployment parameters
and non-functional constraints (location of the nodes
and network connections, memory footprint, etc.).

The concrete description constitutes a pre-
implementation model: it integrates all the
information describing the application. Thus, various

ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/9

tools can process it, to perform verification,
simulation on the architecture etc. ADLs such as the
AADL are well-suited for these manipulations.

The concrete description can then be used to
generate the actual system, with respect to the
requirements primarily described in the connector
definition phase. The generated code needs a
runtime that provides communication and execution
features (threading and tasking). This runtime has to
fulfill the requirements captured in the connector and
AADL modeling phases. Therefore, it must rely on a
highly tailorable and verifiable middleware. The
schizophrenic middleware architecture [6] provides a
good solution for such a runtime.

In this article we describe our methodology to
achieve such a design and generation process. We
especially focus on the middleware, as it is the key
component of the distributed application. We first
describe high-level, abstract modeling techniques
that rely on the connector concept. Second, we
provide an overview of the AADL, which we use for a
pre-implementation, concrete description. We then
describe the schizophrenic middleware architecture.
This architecture allows the generation of
middleware instances as a function of the target
application needs; on the other hand, it also allows
the reuse of proven components and eases formal
verification thereof. We describe PolyORB, our
implementation of the schizophrenic architecture.
Finally, we explain our approach to automatically
generate application source code from AADL
descriptions. We describe our application generator,
Gaia, which is part of the Ocarina tool suite. It uses
PolyORB as a basis for the distribution runtime.

2 Formalizing inter-component interaction

During the ‘90s, the software engineering research
community introduced the concept of connectors as
elements of the architecture description of a system.
Shaw defines a connector as follows [1]:
“Connectors mediate interactions among
components; that is, they establish the rules that
govern component interaction and specify any
auxiliary mechanisms required”

This is, understandably, an abstract definition;
concrete examples of connectors that most software
practitioners are familiar with are

1. Remote procedure calls

2. Shared variables
3. Pipes

In the world of ADLs, the main artifact has been and
continues to be the component. But, in the last
decade, the architecture research community has
been emphasizing the need to make connectors
first-class citizens of the architecture description
modeling phase. In [2], Mehta et. al. provide a
taxonomy of connectors, classifying them on the

basis of the service provided and the type. In [3], the
authors introduce the method of using process
algebrae to specify connectors. In [4], this approach
is extended to allow protocol transformations and
composability of connectors.

The literature generally identifies the end-points of
the connector that interact with the components as
roles, the corresponding end-points on components
are usually called interfaces.

Figure 1: A connector links components together

From figure 1, it is obvious that a connector
encapsulates a certain piece of the functionality of a
distribution middleware. The roles, and their
definitions, can serve to specify formally the legal
alphabet of a connector, i.e.: the operations allowed
on a connector and their sequence of invocation.
We define four different views of connectors

1. Problem statement view

2. Service view

3. Computational view

4. Deployment view

Each view corresponds to a different abstraction
level of the problem. The problem statement, service
and computational views are defined using UML,
whereas the deployment view is defined using a
dedicated ADL. Our primary objective in using the
UML to define connectors is to generate code for
them, with an eventual transformation towards an
ADL. We take the view of assuming that the
underlying distribution middleware provides a set of
primitive connectors, on top of which we can build
more complex ones. In fact, the ultimate aim is to be
able to rapidly build complex real-time services (like
consensus) on top of an existing middleware.

2.1 Problem Statement View

In this view we are not concerned with how the
connector performs its intended function, only what
that intended function is. In other words, we are
concerned neither with the algorithms involved, nor
any artifacts such as interfaces, messages or ports.
This view is defined using the UML. We are
interested only in describing the effects of the global
coordination function of the connector. We can
describe these using the OCL (Object Constraint
Language), which is a part of the UML.

In figure 2, we represent the class diagram for the
problem statement view of a message queue
connector (represented as a class). The two roles

ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/9

(the sender and the receiver) are also represented
as classes. The classes of the connector are the two
roles and the connector itself, these are adorned
with stereotypes of <<role>> and <<connector>>
respectively. We will use stereotypes such as these
to enhance the UML meta-model [5] with meta-
attributes to express properties specific to
connectors. Generally, roles will be specified as
being an aggregation of the connector in the
problem statement view (as shown in figure 2). This
implies that the lifetime of the roles may be
independent of each other. Note that the message
queue connector is simply an example, almost all
middleware implementations do provide it as a basic
service.

Figure 2: The problem statement view

As an example, the constraints on the message
queue connector might specify that messages
handed over by the sender role must eventually be
delivered to the receiver role. Or that the receiver
role hands messages over to its associated
component following a certain priority scheme rather
than in simple FIFO order. Generic OCL does not
support timing constraints. But temporal extensions
to OCL, such as those proposed in [8], could be
used to describe real-time properties of the
connector in the problem statement view.

2.2 Service View

The service view is where we will describe the
connector as a monolithic UML entity. The connector
is described as a single UML class in this view, with
the roles being represented as ports on that class.
The behavior of the connector will be described as
the behavior of the connector class (in the form of
State-charts).

Figure 3: The service view

In figure 3, we give the composite structure diagram
of the service view of our message queue connector.
The connector consists of two roles; sender and
receiver, here signified by the ports on the
MessageQueue class. The algorithm of

MessageQueue consists of simply taking elements
submitted to the sender by the producer component
and manifesting them at the receiver for eventual
delivery to the consumer component.

The presence of a distribution middleware is
assumed in the service view, as we simply give the
centralized algorithm in this view. This view will be
used in the early stages of development of the
system, as the distributed algorithm may not have
been developed or may not have been implemented
at this stage.

2.3 Computational View

The computational view is where we will split the
connector up into distributed entities and attach
these to the participating components. The
distributed algorithm, if there is one (as in the case of
a consensus protocol), will be implemented within
the roles which will be attached to the components.

Figure 4: The computational view

In case there is no (or a trivial) algorithm, as is the
case with our example message queue connector,
then the roles will only call upon the functionality
provided by the middleware.

In figure 4, we provide the composite structure
diagram representation of the computational view for
the message queue connector. The middleware is
abstracted out as the bus object, which we use for
simulations. This object provides functions such as
broadcast and message transmission. The final goal
is to have a UML model for our middleware which we
will be able to plug in place of the bus object. The
roles, which are now objects themselves, are
embedded inside container components (C1 and C2)
which contain the application components producer
and consumer. The interfaces of these two
application components are linked to the
corresponding roles.

Figure 5: Equivalence among views

For verification purposes, we can easily see that
there must be a kind of observational equivalence
between the message traces obtained at the role
ports of the service view (figure 3, sender and
receiver ports) and the component side ports of the
role objects in the computational view, as shown in

ERTS 2006 – 25-27 January 2006 – Toulouse Page 4/9

figure 4. This point is illustrated diagrammatically in
figure 5.

2.4 Deployment View

This is the final view for the application architecture.
It is described using an implementation ADL. The
UML components are transformed to ADL
components, and the connectors are embedded into
these, with dependencies stipulated on the
middleware portion of the architecture.
ADLs provide constructs to represent standard
distribution mechanisms such as shared variables,
message queues, and remote procedure calls.
These will be used to model the connectors that will
be transformed from UML to the ADL. The meta-
attributes applied to the connectors in UML will
become properties of the ADL artefacts such as
connections and end-points that will be used to
represent them.

3 AADL: a pre-implementation language

As we saw in the previous section, the concept of
connectors can be used to describe the
communication between the components of a given
architecture. Before producing source code, we have
to describe the actual architecture from a
deployment point of view. Thus, there is an
intermediate step, in which we will describe the non-
functional aspects, such as memory footprint
constraints, execution times etc, and also the actual
components to implement within the application. The
UML does not quite fit this purpose, since it provides
rather fuzzy semantics.

The AADL [9] has been defined and standardized by
the Society of Automotive Engineers (SAE). It is an
architecture description language targeted to
describing DRE systems. Thus, it focuses on the
definition of clear block interfaces, and separates the
implementations from those interfaces. The AADL
allows for the description of both software and
hardware parts of architectures. It can be expressed
using graphical or textual syntaxes; a UML meta-
model of AADL is defined which provides the XMI
serialization, a UML profile is also available to allow
practitioners to define their models using familiar
UML tools and notations.

3.1 Overview of the AADL

An AADL description is made up of components.
The AADL standard defines software components
(data, threads, subprograms, processes…),
execution platform components (memories, buses,
processors…) and hybrid components (systems).
Components model clearly identified elements of the
actual architecture. Subprograms model procedures
such as those in C or Ada. Threads model the active
part of an application, i.e.: the units of execution;

processes are memory spaces that host executing
threads. Processors represent microprocessors and
a minimal operating system (mainly a scheduler).
Memories model hard disks, RAMs, etc. Buses
model all kinds of networks, wires, etc. Unlike other
components, systems do not represent anything
concrete: they actually create building blocks to help
structure the description.
Most components can have subcomponents; thus,
an AADL description is hierarchical. Component
declarations have to be instantiated as
subcomponents of other components in order to
model architectures. At the top-level, a system
component contains all the component instances
that make up the application.
Each component has an interface (called component
type) that provides features (e.g.: communication
ports). Components communicate with each other by
connecting their features.

To a given component type correspond zero or more
implementations. Each of them describes the
internals of the component: subcomponents,
connections between those subcomponents, etc.
Besides that, implementations of threads and
subprograms can specify call sequences to other
subprograms. Thus it is possible to describe the
totality of execution flows in the architecture model.
The AADL defines a set of standard properties that
are applied to most entities (components,
connections, features, etc.). Standard properties are
used to specify things such as the clock frequency of
a processor, the execution time of a thread, the
bandwidth of a bus etc. In addition, it is possible to
add user-defined properties to express application-
specific constraints.

The AADL does not allow the description of
completely dynamic architectures: all the component
instances that are present in the architecture must
be described; there are no implicit elements. Yet, it is
possible to define modes within each component
implementation. AADL modes allow for the
description of different component configurations:
properties, connections, subcomponents, etc can
depend on modes. The AADL syntax also describes
the switching conditions between modes. Thus, the
AADL provides support for a limited amount of
dynamism: architectures can describe sets of known
configurations that can be verified; the switching
operation between modes is described in the AADL
standard.

By default, all elements of an AADL description are
declared in a global namespace. To avoid possible
naming conflicts in the case of a large description, it
is possible to gather components within packages.

A package can have a public part and a private part;
only the elements of the package can access the
private part. Packages can contain component

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/9

declarations. Thus, they can be used to structure the
description from a logical point of view. Unlike
systems, they do not impact the architecture.

3.2 Using the AADL to model distributed systems

Architecture models described with the AADL are
semantically precise and concrete; the AADL is
meant to model components very accurately. Hence,
AADL descriptions represent the actual system
structure: deployment information is provided by the
execution platform and software components;
constraints on the architecture and component
characteristics are expressed by properties.

Since all the elements of an AADL description are
explicitly described, it is possible to perform analysis
on the described architecture, such as thread
schedulability; or check whether the memory
footprint of the application elements are consistent
with the constraints of the execution platform.

The AADL syntax provides the ability to describe
message passing, remote procedure calls,
distributed objects, and distributed memory. Hence,
the language can be used to describe most
distributed architectures. The AADL is thus able to
describe distributed architectures that are subjacent
to connector-based functional descriptions.

Figure 6: The deployment view

Figure 6 is a graphical representation of one of the
possible AADL models that could correspond to the
UML model of figure 4. The producer and consumer
component objects have been transformed to AADL
threads; whereas C1 and C2 have been transformed
to AADL processes that contain the threads. They
are linked together by event data ports (AADL
equivalents of message queues). The message
transfer functionality will be provided by a distribution
middleware. In case the connector requires
algorithmic functionality that is not present in the
existing implementation of the middleware, it will be
represented as AADL subprograms in our model, the
behavior of which will be given by the UML model of
the computation view.

The AADL can be seen as a “pre-implementation”
language, which can be used to describe all the
architectural parameters. The description of the
algorithms is not in the scope of the AADL, since the
language only focuses on architectural concerns.
Yet, it is possible to use the AADL properties to host
the behavioral descriptions of the components (e.g.:
by identifying the piece of source code that
implements the algorithm). Therefore, the AADL can
be used as a backbone to host all the aspects of the

system description, both functional and non-
functional.

3.3 Requirements for an AADL runtime

AADL is precise enough to allow the description of
the application structure (using software
components) and the deployment information (using
the execution platform components). Given a precise
enough description, we can then aim to
automatically generate and deploy a complete
application from its AADL description.

Such an application is likely to run on top of a
runtime that provides the functionalities required to
ensure correct execution. An AADL runtime should
at least support the execution of threads. Since we
design distributed applications, the AADL runtime
should also provide support for the different
distribution models that can be described in the
AADL.

Thus, the AADL runtime is an execution middleware
which provides two main services:

• The management of the AADL threads that
support the execution of the AADL application on
each node

• The management of the communication between
the application nodes

This underlying middleware has to provide
guaranties regarding its reliability and its ability to
meet the constraints described in the AADL
description (typically memory footprint).

4 Framework for an adaptable AADL runtime

An AADL runtime has to provide traditional
middleware functionalities such as distribution as
well as thread management. Different middleware
architectures have been proposed to allow the
middleware to be configured as a function of
application requirements. In [11], the authors
proposed the means to configure the middleware. In
[12], the authors proposed the concept of generic
middleware that is configurable and which allows the
selection of a distribution model to suit the
application. Schizophrenic middleware extends the
idea of configurable and generic middleware by
defining an adaptable architecture that allows for the
verification of middleware properties.
The schizophrenic architecture allows the adaptation
of the middleware to meet the needs of the target
application. The schizophrenic architecture enforces
the principle of separation of concerns, and allows
for proven code and the reuse of components.
Thanks to its clear structure, it lends itself well to
formal verification of properties.

 producer consumer

C1 C2

ERTS 2006 – 25-27 January 2006 – Toulouse Page 6/9

4.1 A three-layer architecture

The schizophrenic architecture comes with the
concept of personalities and with the notion of
canonical middleware services. In this architecture,
middleware functions are decoupled into application
and protocol level personalities connected to the
neutral core, on which all personalities rely.

Application personalities constitute the adaptation
layer between the application components and the
middleware. They provide APIs to register
application entities with the neutral core layer.
Application entities can interoperate with the core to
allow the exchange of requests with remote entities
(like CORBA or DDS APIs).
Protocol personalities handle mapping of requests
(representing interactions between application
entities) onto messages exchanged through a
communication network, according to a specific
protocol. The requests are received either from
application entities (through an application
personality and middleware core), another protocol
personality or a node in the middleware instance.

Figure 7: the three-layer schizophrenic architecture

The Neutral Core acts as an adaptation layer
between application and protocol personalities. It
manages execution resources and provides
necessary abstractions to transparently pass
requests between protocol and/or application
personalities in a neutral way. It is completely
independent from both application and protocol
personalities, enabling the selection of any
combination of them. Figure 7 depicts this first view
of the schizophrenic architecture.

Building an AADL runtime based on the
schizophrenic architecture actually consists of
building an application personality. The exact
structure of this personality depends on the
distribution features used in the AADL architecture
model of the application.

4.2 Configurability

The neutral layer provides common services that are
typically part of all middleware implementations.
Seven canonical services are isolated, each of which

implements one fundamental aspect of a
middleware:

• The addressing service gives a unique identifier
within the distributed system to each entity

• The binding service provides mechanisms to
associate the interacting objects with the
resources supporting this interaction.

• The representation service allows the translation
of data into a representation suitable for
transmission over the network

• The protocol service allows entities present in
different nodes to communicate

• The activation service associates implementing
objects to incoming requests

• The execution service assigns execution
resources to process incoming requests

These services are shown in figure 8.
The services defined in the schizophrenic
architecture can be reduced to well-known
abstractions (mainly pipes and filters). The µBroker
coordinates these services. It is in charge of
resource allocation, and of data propagation through
the middleware. It is the most critical component in
the middleware since it manipulates tasks and I/O.
All the behavioral properties of the middleware are
satisfied in this central component; the services are
reactive.

The combination of the selected implementations of
the services allows for the instantiation of a
middleware tailored to the needs of the application.
As an example, the activation service can manage
incoming requests according to priorities rather than
with a simple FIFO protocol. This selection of service
implementations impacts non-functional properties
such as memory footprint and execution time.

4.3 Reliable execution middleware

The schizophrenic middleware architecture allows
for proven components and reuse of basic services,
and aims to conserve proofs. These components
can be separately modeled and generated; the
models can be verified using formals methods (e.g.:
colored Petri nets). This helps produce a verified,
reliable middleware instance.

Besides, as the µBroker handles all the behavioral
aspects of the middleware, it manages the
scheduling and dispatching of threads. Thus, a
schizophrenic middleware satisfies the two
requirements stipulated for an AADL runtime;
namely, that it be a distribution middleware and
manage threads.

PolyORB1 is an implementation of the schizophrenic
middleware architecture. Thanks to this architecture,

1 http://polyorb.objectweb.org/

ERTS 2006 – 25-27 January 2006 – Toulouse Page 7/9

PolyORB has been modeled and formally verified
using colored Petri nets. They were used to model
the µBroker. The work done in [7] proved some
essential properties such as absence of deadlocks,
absence of buffer overflows, and fairness.

Figure 8: PolyORB services

Thus, PolyORB is a highly tailorable middleware that
proposes a canonical architecture and a
methodological guide to building a specific
distribution platform. CORBA, and also DDS, MOM,
DSA and advanced specifications like FT-CORBA
and RT-CORBA are already available.

5 From AADL description to application

PolyORB constitutes an appropriate basis to
implement an AADL runtime. It provides all the
required functionalities regarding thread scheduling
and communication management. Since it is
tailorable, it can thus be instantiated to meet the
exact application requirements. Its clear architecture
facilitates the verification against different properties
such as no deadlocks, no buffer overflows etc.
In this section, we explain how to generate an
executable application from an AADL description.

5.1 Separation of concerns

In the generation process, we must handle two
different things:

• The generation of the application code

• The generation of a configured AADL runtime to
support the execution of the AADL application
on each node

The AADL subprograms model the application itself,
while the AADL threads and processes represent the
runtime. Indeed, all communications are described
by the thread features; and the thread
implementations contain the call sequences that

drive the application subprograms. The processes
define the application nodes in which the threads are
executed. The execution platform components
describe the deployment information for the runtime:
location of the nodes, constraints on the
communications between the nodes, etc. Thus we
have a clear separation of concerns in the
architecture description.
In order to ensure consistency between the AADL
description and the actual executable system, the
application generator should process the AADL
components. In order it is the runtime that controls
the application and not the other way round,
application components should be enclosed in
wrappers. The runtime is the key element of the
executable system, since it is the active part—the
application is the passive part.

5.2 Design of the AADL runtime

In order to set up an appropriate runtime, the
generator has to take into account two kinds of
parameters:

• The structure of the application on each node,
e.g.: the required communications, the number
of AADL threads, etc

• The deployment information, e.g.: location of
the other nodes, the protocols to use according
to the configuration of the other nodes, the
thread scheduling policy to use, etc

� Application
data (AADL)

Deployment
data (AADL)

configuration
tool

Runtime
configuration

runtime
generator

Repository of PolyORB
components (AADL)

Source code of
PolyORB

Configured source of the
AADL runtime

Figure 9: Generation process for the AADL runtime

Protocol personality

Application personality

addressing

execution
activation

binding

protocol

representation transport

µBroker

ERTS 2006 – 25-27 January 2006 – Toulouse Page 8/9

Thus, the generation of the AADL runtime should be
a two-step process (see figure 9):
1. Gather the deployment information in order to

select the proper components to use in the
execution middleware

2. Generate the middleware by assembling the
selected components, and generate an
adaptation layer to control the application
wrappers

There are different ways to perform the component
selection. We can rely on the existing configuration
process of PolyORB. This allows for the selection of
various implementations for the fundamental
services and the configuration of the µBroker
structure. This approach provides an efficient way to
build a prototype of the middleware. We can also
model the different parts of the middleware in the
AADL.

Since the schizophrenic architecture provides a clear
and modular structure, it greatly facilitates the AADL
modeling process. The middleware is then a set of
AADL subprograms that are called by the µBroker.
The µBroker itself cannot be described in AADL,
since it mainly consists of behavioral elements.
Following this approach, the major part of the
middleware can be seen as being a part of the
application. The µBroker is then the actual AADL
runtime. Since the middleware components are
modeled in AADL, we can integrate them in the
verification and simulation process of the application.
Thus, each application node is structured in two
parts: a minimal runtime (the µBroker) which is
modeled in Petri nets to ensure properties regarding
the execution of the local node; and the application,
which can be processed to compute worst-case
execution times, total memory footprint, etc.

5.3 Gaia, an application generator for AADL

In order to experiment on application generation
from AADL descriptions, we created an application
generator named Gaia. Gaia is part of the Ocarina
tool suite, developed at Télécom Paris2. It provides a
set of lightweight tools to describe distributed
architectures in AADL; the descriptions are then
transformed to distributed systems driven by a
tailored runtime based on PolyORB.

Gaia is structured in two parts: a translator from
AADL to programming language and a runtime
generator. The translator handles the AADL
subprograms and only depends on the target
programming language. The runtime generator is to
be used in two ways: either to use PolyORB or only
the µBroker. In the first case, we generate an AADL
application personality and configuration files for
PolyORB; this way we use PolyORB as a high level

2 http://ocarina.enst.fr/

runtime to prototype applications. In the second
case, the generator expands AADL threads to create
AADL models of the schizophrenic services from the
thread properties; thus we have a complete model of
the application in AADL. This enables architecture
analysis and verification; the architecture can then
be transformed to source code, using the µBroker as
a runtime.

6 Conclusion

Building DRE systems requires the capture of a wide
range of requirements, either functional (algorithms
to use etc.) or non-functional (execution time
constraints etc.). We therefore need a methodology
based on a formal approach to assist the design
process.

We proposed a three-step methodology. We first
design the system from a very abstract point of view,
to identify the functional properties of the system.
Architectural constructs such as connectors provide
good support to model interactions between the
nodes of a distributed application. They can be
described using semi-formal syntaxes such as the
UML.

We then have to describe a concrete model of the
distributed application in order to capture the non-
functional aspects of the system design. One of the
objectives of our research is to be able to provide
rules to automate the transformation of models from
UML to AADL. The AADL perfectly matches the
requirements of such descriptions: it allows the
representation of both software and hardware parts
of a system, all entities of the language have clear
semantics and properties can be associated to every
element of the architecture to capture the system
characteristics. Thus, the AADL can be used as a
pre-implementation language to have a very
concrete representation of the whole system. It is
then possible to generate source code from the
AADL description. This source code is to be
executed by a runtime that handles the
communications and the scheduling of the
application threads.
In order to support the execution of the application,
we extended the concept of middleware to consider
execution middleware, which can be compared to a
virtual machine. The execution middleware
schedules application threads and manages
communications.
In order to build an efficient system, the middleware
structure (i.e.: its actual configuration) must fit the
application requirements. We introduced the
schizophrenic middleware architecture as a solution
to tackle the middleware specialization problems.
We tested our approach using Gaia and PolyORB to
generate distributed applications. Our results have
been encouraging in that we have been able to

ERTS 2006 – 25-27 January 2006 – Toulouse Page 9/9

generate applications in a short time-frame. All
Ocarina tools and PolyORB are free software.

7. References

[1] M. Shaw: “Procedure Calls Are the Assembly
Language of Software Interconnection: Connectors
Deserve First-Class Status”, Workshop on Studies of
Software Design, 1993.

[2] N. R. Mehta, N. Medvidovic and S. Phadke: “Towards
a taxonomy of software connectors”, International
Conference on Software Engineering, 2000.

[3] R. J. Allen and D. Garlan: “A Formal Basis for
Architectural Connection”, ACM Transactions on
Software Engineering and Methodology, 1997.

[4] B. Spitznagel and D. Garlan: “A Compositional
Formalization of Connector Wrappers”, International
Conference on Software Engineering, 2003.

[5] C. Atkinson and T. Kühne: “Rearchitecting the UML
Insfrastructure”, ACM Transactions on Modeling and
Computer Simulation, 2002.

[6] T. Vergnaud, J. Hugues, L. Pautet and F. Kordon:
“PolyORB: a schizophrenic middleware to build
versatile reliable distributed applications”.
Proceedings of the 9th International Conference on
Reliable Software Techologies Ada-Europe 2004
(RST'04), volume LNCS 3063, pages 106 - 119 June
2004.

[7] J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S.
Baarir, and T. Vergnaud: “On the Formal Verification
of Middleware Behavioral Properties”. Proceedings of
the 9th International Workshop on Formal Methods for
Industrial Critical Systems (FMICS'04), volume
ENTCS 133, pages 139 - 157, Linz, Austria,
September 2004.

[8] S. Flake: “Temporal OCL Extensions for
Specification of Real-Time Constraints”,
Specification and Validation of UML Models for
Real-Time and Embedded Systems, 2003.

[9] SAE: “Architecture Analysis & Design Language
(AADL)”. Available at http://www.sae.org, 2004

[10] N. Medvidovic and R. N. Taylor: “A Framework for
Classifying and Comparing Architecture Description
Languages”, Proceedings of the Sixth European
Software Engineering Conference ESEC/FSE 97,
Springer–Verlag, 1997.

[11] D. Schmidt and C. Cleeland: “Applying Patterns to
Develop Extensible and Maintainable ORB
Middleware”. Communications of the ACM, CACM,
1997.

[12] A. Singhai, A. Sane, and R. Campbell: “Quarterware
for Middleware”. Proceedings of ICDCS’98. IEEE,
May 1998.

8. Glossary

AADL: Architecture Analysis & Design Language

CORBA: Common Object Request Broker Architecture

DDS: Data Distribution Service

DRE: Distributed Real-Time Embedded

DSA: Distributed Systems Annex (for Ada95)

FT-CORBA: Fault Tolerant CORBA

GIOP: General Inter-ORB Protocol

MOM: Message Oriented Middleware

OCL: Object Constraint Language

PolyORB: An implementation of the schizophrenic
middleware architecture

RT-CORBA: Real-time CORBA

SAE: Society of Automotive Engineers

SOIS: Spacecraft Onboard Interface Services

UML: Unified Modeling Language

