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Abstract: This paper presents an approach to 
testing software-intense embedded systems using 
simulations of the target hardware instead of actual 
target hardware. Simulation can be used as an 
alternative to the actual target hardware for a 
significant portion of the testing effort, saving 
developers time and money, as well as increasing 
test coverage and providing better debugging 
facilities. We cover the technical issues involved in 
creating simulated test systems, as well as the 
business aspects and benefits.  
Keywords: Verification, Validation, Simulation, 
Business models 

1. Introduction 

Simulation as a tool for testing and debugging 
software has a long history going back to the very 
first electronic computers [1]. Simulating a system 
has always carried the advantage of increased 
insight and flexibility, at a cost in execution speed 
and timing fidelity visavi the real machine. However, 
until recently, use of simulation technology for large-
scale embedded systems software development and 
testing has been fairly limited.  
Hardware designers for processors, supporting chip 
sets, systems-on-chip, and servers have always 
made use of simulation in order to model hardware 
early. Simulation is used for performance evaluation, 
to test various ideas for implementation, and to 
validate that a system works as intended [2][3]. 
Providers of software development systems 
(especially for 8-bit and 16-bit processors) have 
always provided instruction-set simulators (ISS) for 
the target systems. However, such solutions have 
been limited to only simulating the processor and not 
the surrounding hardware, making them suitable for 
simple initial software test but not for running 
operating systems or software that interacts with 
hardware.  
Initial firmware bring-up and ports of operating 
system codes to new embedded and other 
computers is quite often performed using simulation 
tools, as the real hardware is typically not available 
early enough [4][5].  
Some software work can be performed on the 
developer workstation using API-level simulations of 
the embedded operating system [6]. For final 
verification of functionality, it is necessary to use the 

actual binary that would be used in the real system, 
which is not possible in an API-level simulation.  
Overall, however, for the volume work of embedded 
software development, embedded developers have 
relied on development boards and instances of the 
real target hardware boards1.  
We introduce a simulation tool that can replace the 
use of hardware to a large extent, by providing a 
simulation model that is faithful enough that all 
software for the target can run on it, and fast enough 
that it can be used in daily work. This paper 
describes this tool, Virtutech Simics, and how it is 
applied to a number of tasks in embedded software 
testing and development, with a focus on testing.  

2. Simics 

Our simulation tool, Virtutech Simics (see 
www.virtutech.com), is capable of simulating large 
computer-based systems and complete networks. 
The simulation approach used is full-system 
simulation, where the processor, memories, 
peripheral devices, and environment of a target 
computer system are all simulated in such detail that 
the target software cannot tell the difference from a 
real target system. The full-system model runs the 
same binary software as would run on the real 
target, including device drivers and firmware, as 
illustrated in Figure 1.  
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Figure 1: The concept of full-system simulation 

At its core, Simics is an event-driven simulator where 
processors are treated specially for performance 
reasons. All I/O and other peripheral devices on a 

                                                           
1 In this paper, we use the term “board” to mean any 
complete computer unit used in an embedded 
system. This can be a rack-mounted card, a stand-
alone box, or some other package.  
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board (and thus all interconnects between boards in 
a system) are simulated in a transaction-based style. 
This means that accesses to devices are handled as 
a synchronous unit, rather than simulating the actual 
bus traffic required to perform the request in the real 
hardware. Networks are simulated on a packet level, 
where entire packets are sent and received as units. 
This simplification is key to gaining simulation speed.  
Simics is based on very fast instruction-set simu-
lators (ISS), which are bit-accurate in the results of 
all instructions, including supervisor-level operations, 
floating-point operations, and model- and hardware-
specific registers. The use of an ISS provides the 
user with total virtualization of the target system; For 
example, Simics can execute operating systems and 
applications for PowerPC or MIPS targets on an x86 
PC or a SPARC workstation, as illustrated in Figure 
2. Simics handles endianness and word length 
differences, and can simulate a 64-bit little-endian 
system on a 32-bit big-endian host.  
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Figure 2: Simics provides full virtualization 

Simics does not require any special hardware or 
particular operating system; it is a pure software 
application that can run on regular Solaris, Linux, 
and Windows workstations and servers. This also 
makes the virtual (simulated) hardware future-proof. 
As illustrated in Figure 3, the same simulated hard-
ware will continue to be available as host machines 
change and evolve, as long as Simics is available for 
the new host.  
The behaviour of the simulated hardware remains 
the same over time, allowing for maintenance and 
development of code for a platform for extended time 
frames. Unlike real hardware, the simulated hard-
ware will not break or become unavailable.  
Simics is designed to be a fast simulator, and can 
currently achieve speeds exceeding 2000 MIPS 
when running single-processor workloads on top of 
full simulated systems with a real operating system 
(measured when simulating a single PowerPC 750 
processor running on a 2GHz Opteron PC). Such 
high execution speed allows for real workloads to be 
run in simulation, including operating systems, 

network stacks, and complex applications. This is a 
crucial enabler for using simulation in testing large 
real-world codes and real-world test suites, in a 
completely virtual environment [7].  
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Figure 3: Simics provides insulation to host change 

2.1. Using Simics in Software Development 

The Simics framework has been specifically 
designed to facilitate software development and test 
on simulated machines, and has a number of handy 
features that aid in performing, automating, and 
diagnosing tests. 
Simulation in Simics is guaranteed to be deter-
ministic – from the same initial state, the simulation 
will simulate the exact same execution path every 
time the simulation is run. If variation is desired (in 
order to test multiple code paths that depend on 
target timing, for example), it can be provided by 
adjusting simulation parameters for a particular run. 
Simics supports checkpointing, where the complete 
state of a system is written to disk. This checkpoint 
can later be restarted at the precise instant where it 
was saved. Together with determinism, this allows 
for executions to be repeated any number of times, 
using any workstation running Simics.  
When simulating multiple processors and/or 
machines (for example, in a distributed system), 
Simics provides global synchronization and stop. If 
one part of one machine is stopped, the entire 
simulation is stopped. This makes it feasible to 
single-step interrupt handlers and perform deter-
ministic debugging and analysis of multi-processor 
and distributed systems [8].  
Scripting in Simics is very powerful, with a full 
Python language interpreter as well as an extensible 
command-line interface. Scripts can react to output 
from the simulated machine and to events inside the 
simulated machine (breakpoints, exceptions, device 
accesses, etc) and provide scripted intelligent input 
to the simulation.  
All target state is accessible without probe effects, 
including information which is hidden and hard to get 
to on real hardware, such as TLB tags and the 
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contents of supervisor-level registers. This ability to 
observe also provides the ability to trace and log 
everything that happens in the system.  
Tracing can be used to profile and perform code 
coverage analysis without having to instrument the 
target code. Even very detailed code coverage 
analyses like decision and condition coverage can 
be implemented transparently to the code being 
executed; it is all handled by looking at the execution 
trace and noticing which instructions are executed 
(and which are not).  
All target state can be manipulated. If the state can 
be observed it can also be changed. For example, 
for fault injection, transient and permanent faults can 
be easily simulated [9][10]. 
Simics supports source-level debugging of software 
running on the simulated machine, including firm-
ware and operating systems. Any code can be 
debugged, as the simulator has complete control 
over the state and execution.  

2.2. Network Simulation 

As noted above, Simics simulates not only individual 
machines but also networks of machines. Each 
machine in this instance runs a complete software 
stack, including operating-system drivers for the 
network devices. In network simulation, network 
traffic is sent as entire packets. It is possible to 
inspect (and modify or destroy) network packets as 
they travel across the network, as illustrated in 
Figure 4. 
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Figure 4: Network simulation with Simics 

There are no limitations as to how machines can be 
combined in a simulated network: it is possible to 
combine many different machines of different types 
and speeds, and Simics simulates the relative 
execution speed of the different machines. For more 
information on Simics network simulation, we refer to 
[8]. 

2.3. Simulation Timing 

In order to gain simulation speed, Simics simplifies 
the timing of the target system. In the basic model, 
processor instructions are assumed to have a fixed 
execution time, and device accesses provide simple 
time models for when transactions complete. The 
function is identical to a real machine (which is 
necessary in order to run real binaries), but the 
timing might be different.  
This makes Simics suitable for testing the functional 
correctness of code, and coarse-grained timing. 
Simics is not intended to analyze or predict the 
precise cycle timing of processor pipelines or 
caches. Since building precise timing models of real 
hardware is very difficult, such detailed timing 
analysis has to be validated on the real target 
platform [11].  
Simics provides a single global virtual time. All 
processors and device models are synchronized to 
this time base, across processors and machines in a 
simulated network.  
The progress of this time in relation to the real-world 
time is variable. It is quite possible for a simulation of 
a slow system to be many times faster than the real 
world. Also, if a system is mostly idle, simulation can 
run very quickly. For example, we have run a 
network of 100 small sensor nodes2 at five times 
real-world speed. In the tested case, the software 
tested had the sensor nodes spend about 99% of 
their time sleeping, making it possible for the total 
simulation to run faster than the real world, as very 
little processing was done in each node.  
The simulated system might also run slower than a 
real system if the simulation is heavily loaded or 
contains many processors. It is obviously very hard 
to simulate ten high-speed processors as fast as 
real-time on a single host processor. In the most 
extreme case, simulation execution can be paused 
for some reason, in which case time does not 
advanced at all.  
Real-time simulations where simulated boards are 
mixed with real-world systems are possible, as long 
as the simulated system is slow enough that the 
simulation will always run faster than real life. Then, 
the simulation can be stalled when it runs ahead of 
real-time, creating a simulation which runs at real-
time speed [12]. 

2.4. System Model Creation 

A key part of using Simics for a particular target 
system is creating the model of the target hardware. 
As noted above, Simics models the full system 
hardware, and thus more than just a processor ISS 

                                                           
2 A ”Telos Mote” is a small wireless sensor node 
containing an 8Mhz 16-bit processor [14]. 
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is needed in order to create a working simulated 
system.  
First, any components already available for Simics 
can be reused. In processor arena, Simics has fast 
models available for all the most common embedded 
processor families, including PowerPC, MIPS, 
MIPS64, ARM, x86, and SPARC, along with system 
controllers, FLASH memories, IDE disks, I2C buses, 
network controllers, serial ports, timers, and other 
common components.  
Second, any new components present in the system 
in question have to be modelled. This task can be 
performed by Virtutech, the Simics user, or by a third 
party. In order to speed and simplify the modelling of 
new systems, a domain-specific language called 
DML has been created for writing Simics device 
models. DML is many times more productive than 
using C or C++ for model construction.  

2.5. Simics Uses 

Simics is currently in use at many commercial 
customers and more than 1000 universities world-
wide. Simics has been used for a large spectrum of 
activities, including computer architecture research & 
design, firmware development and test, operating 
system ports to new hardware, application develop-
ment for distributed systems, and system testing for 
telecoms systems. Simics has been a commercial 
product since 1998. Version 3.0 shipped in October 
of 2005 [13], and development and enhancement of 
the product continues.  

 
Figure 5: Screenshot of a Simics session 

The technology has proven very flexible and 
scalable, being used for simulation of everything 
from single aerospace boards to networks of storage 
boxes to multiprocessor database servers and rack-
based telecom systems with tens of processors.  
As an example, Figure 5 shows a screenshot of 
Simics running a network containing one x86-based 
PC with Linux, one PowerPC 750-based embedded 
computer with Linux, and one PowerPC 440GP-

based development card running Linux. Each target 
machine has its own text console available for 
interaction, and there is also the main Simics window 
from which the simulation is controlled.  
In the remainder of this paper, we will primarily 
address the uses of Simics in testing of embedded 
software, with an eye towards general embedded 
software development. 

3. Unit Testing 

A straightforward use of Simics is to replace real 
target hardware for unit testing of programs. This is 
done either with or without deploying an operating 
system on the target machine, depending on the 
characteristics of the code and system being tested. 
In the simplest case, a simplified target system is 
setup containing only a single processor ISS with 
memory (to store code and input data), and a special 
test output device. The program under test has to be 
able to run on a naked machine with no operating 
system, and to write its results to a “port” in memory.  
Typically, the input data is loaded into the simulated 
machine together with the program, while the result 
is a stream of characters which is collected into a file 
on the host machine, and then analyzed in a 
separate post-processing phase. The proposed 
setup is illustrated in Figure 6.  
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Figure 6: Setup for simple unit testing 

In this setting, simulation is used as a replacement 
for development cards used to perform unit testing of 
binaries for a specific target architecture, without 
using any operating-system calls or particular input 
or output. The goal is to ascertain the correct 
function of a small unit of compiled target code, 
using some a test bench compiled into or with the 
program.  
An alternative setup is to run an operating system on 
a complete simulated machine, mimicking the setup 
of a real development board. In this case, the 
simulated target will be connected using simulated 
networking to the driver application on the host, and 
interfaced and used just like a real development 
board. If the test cases use operating-system calls, 
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such a setup is obviously necessary. An illustration 
of this setup is given below in Figure 7. 

3.1. Benefits of simulation 

Using simulation for unit testing has several benefits 
compared to using real hardware.  
First of all, loading and executing tests is more 
convenient than on real hardware. Code to be tested 
is put in place when the simulation starts by writing it 
directly to simulated memory. There is thus no need 
to download code over a serial line or network and 
running a monitor on the target.  
The simulated hardware is also perfectly 
controllable; resetting the state of the target is 
achieved by simply restarting the simulation, without 
a need to physically touch any hardware. Test 
scripts can supervise the execution and use time-
outs to kill off any tests that seem to have crashed 
and not produced any results.  
Tests can be easily automated and scripted. A test is 
started by running a program or script on a host 
workstation, and the entire test runs under control 
from the simulator. A test engine can easily run a 
series of tests without user intervention. There is no 
need for manual intervention to reset the target 
hardware between tests or when a test crashes, thus 
freeing test engineer time for more productive work. 
As test execution is performed by starting a regular 
software program (the simulator) on the host 
workstation, the execution of test suites containing 
many individual test cases can be easily parallelized 
across multiple host machines. As each test is run in 
isolation, we can expect perfect linear speedup in 
overall test suite execution time. The only overhead 
in such parallel simulation is the work involved in 
starting Simics on remote machines. This makes it 
possible to run large test suites faster than in real 
life, shortening test turn-around time.  
Simics determinism makes it easy to run regressions 
tests. Any change in the output of an execution 
compared to previous executions of other versions of 
the same program can only be caused by 
differences in the tested program, not by hardware 
glitches or other random variations.  
As pointed out above, Simics can also do code 
coverage analysis and execution profiling on the test 
cases, without instrumenting the code.  

4. Function Testing 

Broadening the scope from unit tests, the next step 
is typically to test a complete function consisting of 
several software units working in concert. Here, we 
assume that such testing is carried out for a single 
target board at a time (testing networked systems in 
a network configuration is addressed later).  

For function testing, Simics is used with a full simula-
ted machine running an operating system (and 
various supporting libraries or middleware systems, 
where such are employed), as illustrated above in 
Figure 1. Thus, the program under test is expected 
to be using OS and library API calls. Interrupt 
occurrences and OS scheduling will behave as on a 
real machine, allowing the test of tasks prioritization 
and execution modes. Memory management and 
usage can be tested, as well as the interaction 
between parallel tasks or threads in a system. 
The testing can be driven by test bench code loaded 
with the program under test, or it can use external 
testing tools that communicate with the program. In 
both cases, testing is performed in the same way it 
would be on a real target board. The simulation does 
not necessitate changes to methodology or tool use 
for testing, it just changes the means used to 
execute the code.  
For example, a networked target machine can be 
tested by connecting existing network testing tools to 
the simulated network, communicating with the 
simulated board just like with a real board. Both in 
the real and simulated cases, the testing tool is given 
a network address to communicate with (typically, an 
IP address + port number), and is thus oblivious to 
the nature of the target (whether it is real or simula-
ted). The test program and simulated board with the 
program under test can both be run on the same 
host workstation, as illustrated in Figure 7. 
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Figure 7: Network test on a single machine 

Note some care regarding timing is needed when 
mixing real-world testers with simulated machines. 
Timeouts for determining when a crash has occurred 
in the program under test are usually set in terms of 
real-world time, and this is not always appropriate for 
a simulated system. As noted above in Section 2.3, 
the timing of the simulation is different from that of a 
real system. Thus, for best results, testing tools 
should use a time feed from the simulated system to 
determine time-out conditions based on the virtual 
time of the simulation [8].  
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4.1. Benefits of Simulation 

All the benefits of simulation that apply to unit testing 
also apply to function testing. In addition, some new 
benefits apply. 
Thanks to the easy configuration of a simulated sys-
tem, multiple versions of a run-time environment can 
be used in testing. Different versions of the operating 
system and other supporting software can be 
canned as memory images or disk images, and 
instantaneously brought up for use.  
Deterministic simulation offers a very powerful tool in 
a multithreaded environment. Rerunning a test case 
will result in the same sequence of interrupts, task 
switches, and inter-task communications every time 
a test is run. This greatly simplifies diagnosing errors 
found in testing, and in communicating errors to the 
developers from the test group. A failed test case will 
fail on the developer’s workstation just like it failed in 
the test lab, making error reproduction trivial. 
Testing can begin before the hardware is available. 
A common use of full-system simulation is to provide 
a development and software test environment for 
hardware in development, allowing for parallel soft-
ware and hardware work for new generation sys-
tems; such use of Simics is common [2][7][15]. 

5. System Testing 

Beyond the testing of individual units or functions, 
simulation can also be used to test the functionality 
and correctness of a complete system involving 
multiple processors and networked boards 
[2][3][7][8].  
In this case, full-system models are constructed for 
all nodes in a network, and several target board 
models connected using a simulated network, as 
discussed in Section 2.2. The machine models 
themselves are the same as used for function 
testing, but typically using multiple instances of a 
particular type of simulated machine, with identical or 
different software loads.  
In system testing, the simulation is used to execute a 
complete real software load, including multiple 
programs running in parallel and software relying on 
communicating with other machines in a network. A 
complete distributed system is easily simulated, 
providing a realistic environment for the software on 
each node in the system.  
For embedded systems controlling physical systems, 
mechanical or physical simulations of the environ-
ment can be interfaced to the Simics simulation of 
the computer system. Such models rely on the 
virtual time in Simics, computing the evolution of the 
environment in the same time-domain as Simics 
executes the software. 
In order to enable the simulation of large systems, 
Simics can distribute the simulation of a network 

across multiple host processors or host machines. 
This lets large simulation take advantage of added 
CPU cycles and memory resources to handle really 
large simulated systems [8].  
A recent example of system testing with Simics is 
the simulation of Iridium satellites. Using virtual 
satellites, software is developed and tested on the 
ground in an environment corresponding to what it 
would meet in an actual satellite in orbit [16].  

5.1. Stimulus 

When doing full-system testing, the problem of how 
to inject stimulus to the system becomes very 
important. The goal is to execute the software in use 
cases taken from the real world, and this is realized 
by providing relevant stimulus as input to the system. 
The system configuration itself can be the stimulus. 
One example of this is a real-world case where 
Simics was used to test self-configuration of large 
networks by simulating several hundred network 
nodes connected in various ways. Booting up all the 
machines on the network tested that they correctly 
elected leaders, obtained network addresses, and 
established communication.  
A simulation of the physical environment provides 
good test input for control software, as discussed 
above. 
In network simulation, stimuli can be provided by 
traffic generators in the classic sense that provide a 
stream of packets from a given distribution. It is also 
possible to use behavioural models of network 
nodes, i.e. small programs describing the network 
behaviour of a node without all internal details. 
Existing network testers can also be interfaced with 
the simulated system. Figure 8 shows how these 
types of stimuli are combined with regular Simics 
simulations running complete software stacks.  
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Figure 8: Network testing using a variety of 

simulation styles for different nodes 

5.2. Benefits of Simulation 

Using simulation, the setup time for system-level 
tests can be greatly reduced. Configuring a network 
using a set of scripts is much faster than plugging in 
cables and configuring network devices. Once a 
setup has been created, it can be stored and reused 
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instantly. This saves significant amounts of setup 
and turn-around time.  
The test coverage will increase, as more systems 
become available for testing thanks to the cost 
savings and flexibility of simulation (see also Section 
7 below). Network tests are typically difficult and 
expensive to perform on real hardware, as each test 
requires multiple development or prototype boards 
and long system setup times. Also, network testing 
usually requires booking time in a special lab, which 
also makes turn-around times longer.  
With simulation, hardware availability is no longer a 
problem, system setup is much faster, and tests can 
be performed on any workstation, making it much 
easier and cheaper to perform full-network tests.  
Just like for function testing, deterministic simulation 
makes it easier to communicate between testing and 
development groups.  
Since simulation provides full control over all data 
exchange and input and output of a system, it is also 
possible to record and replay input and output 
(network traffic, user interaction, other external 
events) in a simulation. This makes it possible to 
perform isolated error diagnosis on a single machine 
in a multi-machine setup, by recording the whole 
system and replaying the external events for a single 
machine in the system.  

SimicsSimicsSimicsSimics

Machine 1

OS

Program
Machine 2

OS

Program

Machine 3

OS

Program

Network simulation

SimicsSimicsSimicsSimics

Machine 2

OS

Program

Replay

(a) Record all input & output of a machine (b) Replay recording  
Figure 9: Record and replay in a network 

Figure 9 illustrates this idea. Machine 2 in the three-
machine network has all its input and output 
recorded, later to be replayed using just a simulation 
of machine 2. This can also be done for all machines 
simultaneously, allowing for analysis of the network-
ed behaviour of each machine in isolation following a 
single networked simulation run.  

6. Fault Injection Testing 

Simulation can also be used to test the behaviour of 
a system in the presence of faults [9][10].  
Fault injection in simulation requires the creation of 
appropriate fault-injection modules inside the 
simulated system, modules that are attached to 
buses, networks, memories, devices, and 
processors, and perform the actual injection of faults. 
These fault-injection modules have to be tailored for 
each component, but it is easy to reuse models for 
memory components, processors, networks, and 

similar common devices. In addition, it is necessary 
to establish a way to specify which faults occur 
when, so that fault injection campaigns can be 
specified and executed using a single point of 
control. Usually, a master fault injection module is 
used which reads a file specifying which faults are to 
be injected where and when.  
Some faults can only be reasonably studied on real 
hardware, for example electrical effects of pulling 
cables and cards out of racks and radio disturbances 
caused by interference from electrical systems. 
Similarly, radiation effects on chips have to be tested 
in irradiation chambers.  
However, once physical studies of fault behaviour 
have been performed, simulation can be used to 
replicate the effects on the computer system. Data 
from the physical experiments, such as the 
frequency and nature of transient and permanent 
faults, can be used to guide the faults to be tested in 
simulated fault injection campaigns. 
Fault injection in simulation is typically used to check 
that fault detection and recovery mechanisms work 
as designed. This might mean testing voting 
mechanisms or redundant failover, or just that a 
system correctly logs errors. Fault injection can also 
be used to diagnose problems – it allows an 
engineer to test a hypothesis as to which hardware 
problem causes a particular software error.  

6.1. Benefits of Simulation 

Simulation has a range of advantages for fault 
injection studies compared to using real hardware.  
Simulated fault injection is non-destructive. The 
system under test does not suffer permanent 
damage from being tested with faults, unlike physical 
experiments where hardware components are quite 
often damaged (intentionally and unintentionally) in 
testing.  
Simulation offers repeatability of fault injection, as 
replaying the same fault injection script will inject the 
precise same faults and the precise same point in 
time. Achieving precise repetition with physical fault 
injection is very difficult.  
Fault injection in simulation will allows increased 
fault-injection coverage, as faults are easy to 
program and introduce, and fault-injection 
campaigns are simple to execute; just run the 
simulator, no special lab needed.  
Since faults are easy and precise to program and 
tailor, corner-case testing is enabled. With the help 
of simulation, it is thus possible to script and repeat 
known hard cases in the system, such as multiple 
board failures close in time and babbling idiot 
failures. 
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7. Business Aspects 

Using simulation for testing in a real production 
environment requires considering the business 
aspects of simulation as a testing tool.  

7.1. Costs 

The costs involved in introducing simulation consist 
of four parts. First, the development of the simulation 
framework, which should not be needed as it can be 
bought off-the-shelf.  
Second, the cost of developing the necessary 
hardware models to model the system or systems of 
interest. Depending on the nature of the system, 
many standard parts are typically available from the 
simulation vendor. Developing new standard parts of 
custom parts requires a one-time investment by the 
vendor or the customer. 
Third, there is a licensing and continued support cost 
associated with the simulation tool. 
Fourth, there is an initial need to train users on the 
simulation tool and introduce the simulation into the 
workflow. As we have already noted, simulation in 
testing can often slip into an existing workflow, using 
the same methodologies and tools as used with real 
hardware. Full-system simulation really does provide 
virtual hardware that can be used instead of real 
hardware.  

7.2. Benefits 

The benefits from introducing simulation are both 
direct costs savings, and indirect economic benefits 
from faster development and better quality products.  
First, buying a single simulation license is usually 
cheaper than buying a single development card or 
custom product board. Since several boards can be 
simulated in a single simulation instance, there are 
obvious cost reductions from simulation. These cost 
savings can either translate to lower overall costs or 
more systems deployed at the same cost.  
Simulation also provides increased flexibility. There 
is no fixed inventory of available boards. Any users 
can setup any board or combination of boards, 
without allocating physical boards. Any workstation 
can be used to run target code for any target system, 
greatly improving hardware availability for develop-
ers and test engineers. There is no need to ship 
hardware around to supply each developer with the 
particular hardware needed at a given moment. 
Second, simulation makes it possible to develop 
software in parallel with the hardware, and to deploy 
more hardware earlier in the development cycle. 
This translates to a shorter time to market for new 
products, as the software teams can start working 
earlier than if they have to wait for hardware. 
Removing the dependence on hardware also means 
that more developers can work in parallel on the 

same project, as hardware availability is no longer a 
bottleneck.  
Third, simulation brings a number of technical 
benefits for the actual execution of tests, as detailed 
above. These cumulative benefits lead to better 
product quality thanks to more and better testing and 
easier fault identification and correction. Shorter 
setup times and turn-around times, as well as more 
convenient execution environment makes test 
engineers more efficient.  
Our experience is that the cost of introducing a 
simulation are usually far outweighed by the 
advantages it offers, especially for companies 
building and integrating complex embedded systems 
based on custom hardware and with large value 
deriving from the software running on these systems. 

8. Summary 

This article has presented the use of simulation in 
general (and the Simics simulation product in 
particular) for testing and developing embedded 
software.  
Simulation does not replace all testing on real 
hardware, but it offers a very good complement to 
real hardware, with potential for great improvements 
in development and test process efficiency and 
overall cost. Simulation can be used within existing 
work flows and tool environments, making such 
benefits quite easy to realize. 
We have reviewed a number of typical usages of 
simulation for embedded software testing, and for 
each case, how the simulation would be setup and 
the resulting benefits.  
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