
HAL Id: hal-02270466
https://hal.science/hal-02270466

Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ISAAC, a framework for integrated safety analysis of
functional, geometrical and human aspects

O Akerlund, P. Bieber, E Boede, M Bozzano, M Bretschneider, C. Castel, A.
Cavallo, M Cifaldi, J Gauthier, A Griffault, et al.

To cite this version:
O Akerlund, P. Bieber, E Boede, M Bozzano, M Bretschneider, et al.. ISAAC, a framework for
integrated safety analysis of functional, geometrical and human aspects. Conference ERTS’06, Jan
2006, Toulouse, France. �hal-02270466�

https://hal.science/hal-02270466
https://hal.archives-ouvertes.fr

ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/11

ISAAC, a framework for integrated safety analysis of functional,
geometrical and human aspects

O. Akerlund1, P. Bieber2, E. Boede3, M. Bozzano4, M. Bretschneider5, C. Castel2, A. Cavallo6,
M. Cifaldi7, J. Gauthier8, A. Griffault9, O. Lisagor10, A. Lüdtke3, S. Metge5, C. Papadopoulos5, T.
Peikenkamp3, L. Sagaspe2, C. Seguin2, H. Trivedi5, L. Valacca7

1 Prover Technology AB, Rosenlundsgatan 54, 118 63 Stockholm, Sweden
2 ONERA, 2 avenue E. Belin, 31055 Toulouse, France
3 OFFIS, Escherweg 2 - 26121 Oldenburg, Germany

4 Istituto Trentino di Cultura, Via Sommarive 18, Povo, 38050 Trento, Italy
5 Airbus France, Germany, UK

6 Alenia Aeronautica S.p.A., Strada Malanghero 17, IT-10072 Caselle, Turin, Italy
7 Societa' Italiana Avionica S.p.A., Strada Antica di Collegno, 253 - 10146 Turin, Italy

8 Dassault Aviation, Saint-Cloud, France
9 LaBri, Université de Bordeaux, France

10 Department of Computer Science, The University of York, YO10 5DD, UK

Abstract: This paper aims at presenting methods
and tools that are developed in the ISAAC project
(Improvement of Safety Activities on Aeronautical
Complex Systems, www.isaac-fp6.org), a
European Community funded project, to support the
safety assessment of complex embedded systems.
The ISAAC methodology proposes to base as much
of the safety analyses as is feasibly possible on
simulable and formally verifiable system models that
include fault models and can be shared both by
safety and design engineers. On one hand, tools
were developed to support safety assessment of
Simulink, SCADE, Statemate, NuSMV and AltaRica
models. On the other hand, formal models are
coupled with additional models to address the
problems of common cause analysis and human
error analysis.
Keywords: system safety assessment, certification,
formal methods

1. Introduction

This paper aims at presenting methods and tools
that are developed in the ISAAC project
(Improvement of Safety Activities on Aeronautical
Complex Systems), a European Community funded
project, to support the safety assessment of complex
embedded systems.

Typical avionic systems studied in ISAAC are
heterogeneous systems made up of computer-based
controllers (e.g., real-time controllers) and
mechanical components. Moreover, for safety and
operational reasons, these systems are often
reconfigurable, thus making it difficult to master the
numerous combinations of cases and the system
dynamics during the safety analysis activity. ISAAC
aims at improving the classical safety analysis
means, such as fault tree analysis, which are

devised to cope with the system structure without
taking into account the system dynamics.
Furthermore, ISAAC wants to improve the sharing of
information, which is specific to safety engineers,
with system designers.

These objectives have been partly tackled by a
previous European project called ESACS (Enhanced
Safety Assessment for Complex Systems, 2001-
2003). The ESACS project proposed to base the
safety analysis on dynamic formal system models
that include fault models and the ESACS teams
used more specifically the following formal
languages for modelling reactive systems: Simulink,
SCADE, Statemate, NuSMV and AltaRica [1]. Safety
assessment tools were developed based on existing
proof engines. On the one hand, these tools enable
to search for sequences of events that lead to failure
conditions of interest. On the other hand, they
enabled the assessment of qualitative safety
requirements such as no single failure shall lead to a
critical failure condition. The ESACS methodology
and tools were applied to several case studies
provided by the aircraft manufacturers.

On the basis of these promising first results, the
ISAAC project aims at generalizing the use of
numerical simulable models to support a more
comprehensive set of safety analyses. On the one
hand, new tools are being developed to extend the
use of formal models on their own. In particular, they
support safety requirement allocation, failure mode
and effect analysis, testability analysis and mission
reliability analysis. On the other hand, formal models
are coupled with additional models to address the
problems of common cause analysis and human
error analysis. In the case of common cause
analysis, common cause failures, due to the

ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/11

geometrical layout, are found through the use o f 3D
models (e.g., CATIA models) and are injected into
the formal model that specifies the functional
behaviour of the system. Similarly, in the case of
human error analysis, plausible pilot errors are
investigated by coupling flight simulators and models
of pilot mental states and operation procedures.
Then, the emerging pilot errors are injected in the
formal model to take into account not only faults due
to the physical components, but also the human
factor.

In this paper, we give an overview of the
comprehensive set of methods and tools developed
so far and we sum up the lessons learnt after the
application of our approach to several significant
case studies.

2. Building simulable formal models of complex
system and their failures

The first step of the ISAAC methodology is to build a
formal system model that includes fault models with
one of the following notations: Simulink, SCADE,
Statemate, NuSMV and AltaRica. Two ways of
building such formal failure propagation models were
envisaged. In the first scenario, models are specially
built for safety analysis purpose. So details regarding
the normal behaviour are not modelled but rather a
nominal abstract behaviour is modelled allowing for
the focus to be placed on failures and their
propagation. In the second scenario, formal design
models exist because they were provided to support
system functional analysis. They depict the expected
system behaviour. These models are extended to
deal with the failure propagation.

The following sections show how the ISAAC
methodology and tools support both scenarios.

2.1 Failure propagation models based on predefined
components

In the first scenario, we propose to assist the
construction of a failure propagation model with the
use of predefined libraries of formal components.
The library of components is a collection of formal
models of basic system components that are
immediately suitable for safety analysis. Thus, each
formal model describes both nominal and faulty
behaviour of a specific system component and the
model granularity is defined according to the safety
analysis purpose.

In the earliest phases of the system design, details
of physical components are not fixed and safety
engineers work with simple functional blocks and
functional failure modes, (eg. function permanent
loss). Usually, a block offers a service (outputs)
provided that some inputs and resources are
available in the nominal case (see figure in section

4.1). Only permanent failures are considered and,
after a failure, the block no longer provides an
output. Some other blocks do not require inputs or
resource to play their role (e.g., source of energy), or
they do not provide any output (receptor). The library
contains a first family of such generic blocks.

During the Preliminary System Safety Assessment
(PSSA, [2], [3]), the system architecture is
developed, there is a greater understanding with
regards to the behaviour of components, hence
safety engineers take into account more specific
failure modes. At this stage, the library currently
contains two other families of components. One is
dedicated to components of hydraulic systems
(reservoir, pump, valve, pipe, …) and deals with
failure modes such as total loss, leak in a
component, leak propagation, … Second is
dedicated to components of electrical systems
(generator, bus, switch, receptor, …) and handle
failures such as total, short-circuit, … A third family
of components is under development to deal with a
flight control system.

Whatever are the development phases, all these
failure propagation models are qualitative ones. For
instance, inside the hydraulic library, three levels of
fluid (empty, low, normal) are considered instead of
a real value, that measures the fluid pressure. The
library is currently written in the AltaRica language
[4]. Basically, each AltaRica model consists of two
parts. An automaton describes which failure or
nominal mode may be activated when a failure or a
normal event occurs. Then, a set of logical
assertions describes the relationship between the
input/output of the components according to the
current modes (see for instance [5]). The library is
implemented within the Cecilia-OCAS graphical
toolkit. A translator from AltaRica to Lustre language
has been developed1 and will allow the ability to
have similar libraries written in the Lustre language,
usable in the SCADE environment

2.2 Failure mode extension

In the second scenario, the process is initiated by
the design engineer, who provides a formal model of
the design, the System Model (SM for short), at a
given level of granularity. Initially the model includes
only the nominal behaviour of the system, that is, all
the components of the system are assumed to
behave as expected. This model may be used by the
design engineer to verify the functional requirements
of the system, and it is then passed to the safety
engineer for safety assessment.

The validation of the SM with respect to the safety
requirements is performed by assessing the system
behaviour in degraded conditions. To this aim, the

1 See http://altarica.labri.fr/Tools/AltaLustre/

ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/11

safety engineer enriches the SM with the definition of
the failure modes, that is, a specification of how the
various components of the system can fail. This step
yields a model, that we call Extended System Model
(ESM for short). The ESM is an executable
specification of the design model in which all the
components of the SM can fail according to the
specified failure modes. This step of the process is
called Failure Mode Injection, and it is performed
automatically through an extension facility.

The failure mode types to be injected into the SM
can be stored and retrieved from a library of generic
failure modes, the so-called Generic Failure Modes
Library (GFML for short). This library contains the
definition of the failures that can be attached to
system model variables. Examples of typical failure
modes are, e.g., stuck at (output stuck at a particular
value), inverted (corruption of a Boolean output),
ramp-down (decrease of a given amount at each
execution step, down to a given value), random (non
deterministic output), noise (a random offset in a
given range is added to the nominal output).
Attaching a failure mode to a system variable may
require specifying additional parameters that affect
the behaviour induced by the failure (e.g., the value
which the variable is stuck at). The GFML may be
extended to include user-defined failure modes.

Figure 1: Safety task consisting of system model,
safety requirement and injected failures.

The scenario based on failure mode extension is
supported by the SCADE-based, Statemate-based

and NuSMV-based platforms. As an example figure
1 shows a (part of a) Statemate design together with
a safety requirement definition (on the left) and the
injected failures (on the right). The SM together with
the safety requirements and the injected failures
constitute a safety task. Grouping these three types
of information together allows for easy re-evaluation
of a safety assessment in case of design changes.
An application of the method to a Flap Control
System is given in [6].

3. Generic safety assessment activities revisited
thanks to formal behavioural models and

associated tools

We present now how to formally check whether a
failure propagation model meets a safety
requirement. Typical safety requirements are
qualitative ones such as “no single failure shall lead
to a failure condition” or quantitative ones such as
the “the probability rate of the failure condition shall
be less than 10-9 per flight hour”.

Traditionally, safety analysts use a deductive
approach to assess such requirements: starting from
a failure condition (e.g. “function loss”) as top level
event, they progressively built a Boolean tree or a
diagram that catches the combination of elementary
events that caused the top level event. Then fault
tree tools can compute the probability rate of the top
level event to assess the quantitative requirements.
They can also compute the set of minimal
combinations of elementary events that lead to the
top level to assess qualitative requirements.

With the ISAAC approach, the basic event
dependencies are stored in the formal failure
propagation model independently from any top level
event. We use two basic techniques to exploit the
formal models: model checking and generation of
fault trees or sequences of events. Model checking
enables to proof qualitative requirements whereas
the generation tools extract from the model the set of
causes of a failure condition. Let us give more
details about these two techniques.

3.1 Model checking
Model checking is one method for the exhaustive
verification of embedded reactive systems [7]. It
helps to find bugs that are difficult to find by testing,
since they tend to be non-reproducible. This
verification approach requires having at disposal
three elements:
1. A system model SM. It is described within a
framework for modelling the reactive system, e.g.
description languages such as Statemate2, SCADE3.

2 see: http://www.ilogix.com/
3 see: http://www.esterel-technologies.com/

ERTS 2006 – 25-27 January 2006 – Toulouse Page 4/11

2. A safety requirement Req. It is formally written in a
specification language for describing the properties
to be verified.
3. A verification engine to establish whether the
description of the system satisfies the specification.

In the ISAAC context, the system model SM (1) is
built as described in section 2. Whatever is the
modelling framework, SM can be considered as a
transition system that depicts how the system
evolves from state to state. SM can also be viewed
as streams of values for a period of time steps.

The specification Req (2) is usually given in some
logical formalism. It is common to use temporal logic.
The idea of temporal logic is that a logic formula is
not statically true or false in a model SM. Instead the
models contain several states and a formula can be
true in some states and false in others. Thus, the
static notion of truth is replaced by a dynamic one, in
which the formulas may change their truth values as
the system evolves from state to state.

The model checker (a programme) (3) is applied to
the system SM and the property Req to be verified. It
outputs the answer ”yes” if SM satisfies Req (the
definition of “satisfies” depends on the semantics of
the temporal logic [7]) and “no” otherwise; in the
latter case the model checker produces a trace of
the system inputs which causes the violation of Req.
This automatic generation of such “counter-
examples” (CEX) is an important tool and will be
applied in the following chapters.

3.2 Fault tree and sequence
Let ESM be a formal failure propagation model that
depicts how system variables X1, X2, … evolve in
the course of time in nominal mode or when a failure
mode FM1, FM2, … is active. Let SR be a safety
requirement expressed by some temporal formula.
Let TLE be the top level event corresponding to the
violation of SR. Then, the cause (fault-tree or
sequence) generation analysis aims at finding out
which combinations of FM can cause the violation of
SR. The computation is based on the counter-
example (CEX) generation of the proof engine
previously described. One tries to prove that ESM
fulfils SR. If ESM violates SR, then each CEX is a
possible cause.

Thus, the analysis is done in the same fashion as
traditional fault tree analysis (FTA), - i.e. one
identifies minimal combinations of failures (Minimal
Cut Sets) violating SR - but with the difference that
traditional FTA is static whereas the ISAAC
approach can also include temporal aspects. The
figure 2 illustrates this difference.

Notice that input and output variables to ESM and
SR represent streams of values for a period of time
steps. This makes it possible to represent analysis
results, see Figure 2, showing a sequence of values
for each variable. When SR is violated it is of special
interest to notice the FM’s, which are included in the
CEX.

Figure 2 Temporal vs. static methodology

If there is no further interest in the CEX than
observing the FM’s – i.e. no attention is paid to
which design variables (X) are included or to any
sequences – the analysis result is interpreted in a
traditional “static” way. This interpretation can be
seen as an abstraction of the temporal approach and
is illustrated in the right part of Figure 2.

Taking also the temporal information into account it
is possible to perform a number of analyses, e.g.
importance of ordering among FM’s, duration of FM,
influence of system state, etc. The CEX shown after
an execution represent one possibility to violate SR
and therefore it is of interest to concentrate and
elaborate on the cut set found.

Looking at Figure 2 we see e.g. that FM1 occur
before FM2 and we can be interested to know if their
ordering is of importance. This type of analysis is
done automatically by the ISAAC platforms.

In the CEX, in Figure 2, FM1 occurs (becomes true)
at an early time step and remains true permanently.
ISAAC platform makes it possible to induce FM1 to
become transient, i.e. once it becomes true it is only
true for a few time steps, which is decided by the
user. If analysis results in a new CEX also transient
FM1 lead to violation of SR whereas if no CEX is
found a transient behaviour of FM1 has no impact on
SR.

Another temporal aspect is to impose a "system
state" under which the analysis shall be done.
ISAAC platform makes it possible to define
sequences of values for one or more of the design
variables representing a system state. In the CEX, in

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/11

Figure 2, we may impose X1 and X2 to be constantly
set to true and still allowing only FM1 and FM2 to
become true. If SR is still violated it indicates that
FM1 and FM2 is a cut set under the specified system
state whereas if no CEX is found the occurrence of
FM1 and FM2 under the specified system state has
no impact on SR.

4. Specialized analysis based on formal
behavioural models

In the following it will be shown how the approach for
performing safety analysis in the “ESACS
environment”, described in the previous paragraphs,
has been reused during the ISAAC project in order
to cover other safety related aspects, especially
considered during the design phase, like: the safety
requirements allocation, the testability and the
mission reliability analyses.

4.1 Requirement allocation based on SAP

When designing a system, engineers have to
decompose high level system requirements into finer
requirements that will constrain system subparts.
Such allocation of requirement is indeed strongly
connected to the definition of the system
architecture. So, in order to assist the allocation of
safety requirements, we proposed to encode
experts’ know-how into formal model libraries of
typical safety micro-architectures [8].
The micro-architectures models exhibit elements of
interest for a safer design: 1) structural features (e.g.
redundancy), 2) good use condition and 3) induced
safety properties. They are indeed abstract views of
the system safety elements and will be called Safety
Architecture Patterns (SAP).
Figure 3 gives two examples of patterns. On the right
side, one can see a “testable basic block”. The
requirements allocated to this block are the
following: it shall provide a health status “f” and an
output “o” when it did not fail and it receives an input
“i”, an activation signal “a” and a resource “r”. On the
left side, one can see a cold spare redundancy
mechanism made of two testable basic blocks C1
and C2 and activated by a controller that switches
from C1 to C2.

C

a r

f
o

block
i

C1 a1

r1

f1
o1

C2

r2

o

cossap

block

block

i1

i2

1

2a2

f2
o2

C

a r

f
o

block
i

C1 a1

r1

f1
o1

C2

r2

o

cossap

block

block

i1

i2

1

2a2

f2
o2

Figure 3 − CoSSAP and Block

Such patterns are often used to tolerate one failure
(guaranteed property) under good use condition
(derived requirements for interface system) such as:

Activation of C1 and no failure of C1
always imply resource for C1

This derived requirement states that “when the
primary component C1 is operational (because it is
safe and activated), then it shall receive the
resources that are necessary to provide the output”.
In ISAAC, libraries of SAP are developed. Currently,
the expected behaviours of a SAP are described
within the AltaRica language whereas other
associated requirements (good use conditions and
guaranteed properties) are expressed by temporal
logic formulae. Each SAP is pre-proved using the
formal tools described previously, i.e. one verifies
that under the expressed assumption of the SAP
environment, the AltaRica model fulfils the
guaranteed properties. Then the system model can
be built as previously described. The novelty is that
pre-defined safety requirements are made explicit
and formal for further analysis.

4.2 Testability

With Testability we intend a design characteristic
that allows the status (operable, inoperable, or
degraded) of a system or an item to be determined
and the isolation of faults within the system or the
item to be performed in a timely manner.
The Testability characteristics of a complex system
are very important also from a safety point of view,
especially in the aeronautical field. Here Testability
plays an essential role both in flight, to guarantee
safety level (switching off or reconfiguring faulty
items or systems) and condition awareness to the
pilots (status indication), and on ground, during
maintenance and repair procedures.

The idea is then to reuse the two basic and
complementary strategies for the evaluation of the
effects of failure events on a system model that is
the inductive or “bottom-up” approach and the
deductive or “top-down” approach, to verify testability
related requirements.

In ISAAC we set as our goal the implementation of
two different kinds of testability analysis and namely
the Fault Detection and the Fault Isolation analysis.

The objective of Fault detection analysis is to find if
and how faults are detected.
With “detected” we mean the issue of a particular
signal (or set of signals) every time that the fault
shows (that is when the failure mode is activated).
The Fault Detection analysis, in the environment
described in section 2 and 3, considers as top level
event the generation of a detection signal and uses
the bottom-up approach in order to highlight if and

ERTS 2006 – 25-27 January 2006 – Toulouse Page 6/11

how a given failure mode (or combination of failure
modes) is detected in all the possible system’s
states.
A sub-case of Fault Detection Analysis is the False
Alarm Analysis that consists in analysing if it is
possible to activate a detection signal without the
activation of any failure mode.

On the contrary the deductive approach (top-down
approach) is followed in order to perform a Fault
isolation analysis, that is, to see which combination
of failure modes can lead to the activation of the
given detection signal.
The result of this analysis is a “causal tree”, that is, a
tree that relates the issuing of a detection signal with
the causal failure modes.
Starting from the “causal tree”, one or more re-
ordering strategies (based on, for instance, the
failure rate, the time to re-test each failure mode and
so on) could be used in order to identify the most
appropriate fault isolation sequence.

4.3 Mission reliability analysis
Mission analysis’ target is to determine the impact
of degraded situations on the system operational
modes and over pre-defined missions that define the
scenarios in which the system being developed will
be used.

Data representation
In case of mission analysis, not only the “system”
has to be represented, but also the “mission”.

The suggested model architecture is indicated in the
following figure where two main “charts” are
represented in parallel.

Figure 4: Model architecture for Mission Analysis

The first chart represents the system model.
A system that operates in a mission can be in
different configurations depending on the mission
phase. The “formal” model under this chart should
therefore represent the system configurations and
the transitions among them.

The second chart represents the mission model.

The mission has to be represented with its attributes:
phases, transitions among them, duration and
requirements.

An example of mission model, “Mission Manager”, is
indicated in the following figure.

Figure 5 : Mission Manager structure

Qualitative analysis and results representation
The techniques described in paragraph 3 can be
used to find failure mode sequences responsible for
mission failure or leading to violation of specific
mission requirements.
For the mission analysis purpose, the techniques are
scaled up in order to include the possibility to define
“observables” (e.g. mission phases) that are then
used in the representation of the results.
See the following figure.

Figure 6: Results representation

Quantitative analysis
The failure modes sequences leading to the mission
unsuccess with the relevant values for the failure
rates can be used for performing the calculation of
the Mission Reliability quantitative figure.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 7/11

Other aspects
In an operational context other aspects are relevant:
like the occurrence of a particular risk (e.g. an
engine disk burst) or a pilot error.

Therefore a comprehensive environment for mission
analysis integrates also the techniques that are
described in the following paragraphs 5 and 6.

5. Coupling bevioural models of complex system
and geometric models for particular risk analysis

5.1 Analysis of geometrical models

Geometric installation models of systems are
created as the system is developed. Abstract blocks
that serve as placeholders for components are
initially introduced with subsequent refinements as
more details regarding the components shape
become available.

Particular risk models and trajectories are agreed
with the authorities. The level of detail included in the
models varies for each particular risk model.

3D modelling tools such as Catia or more
specialised tools such as IRIS are used to cohabitate
the systems installation geometry with the particular
risk models and carry out a collision analysis.

The particular risk analysis type determines the
parameters that are used to characterise each
collision.

An example of a particular risk analysis model is
uncontained engine rotor failure (UERF). Here the
critical parameters are the Phi angle (roll angle) and
the Khi angle (angle that the trajectory vector has
with reference to the rotor disk plane). The resolution
of the analysis depends on the distance from the
fragment point of origin, the criticality of the effect
and size of the accounted fragment. A failed rotor
fragment from the Engine affects the components
over a range of Phi and Khi angles. The risk window
is then plotted for each component over the range.
Defining the risk window for each component for the
range of Khi and Phi angle within a sub-system and
then overlaying them would give an idea of the level
of redundancy the system has for each fragment.

The useful information from such an analysis
includes the systems, structures and components
that are simultaneously affected by each instance of
a particular risk in addition to the energies that are
involved; the spacing between the affected
components, the probability of a trajectory being
followed, etc. The relevant information used within
the context of this project is related to the
identification of groups of simultaneously affected
components from all the systems that play a part in

supplying the functionality that is stipulated by the
safety requirement that is being analysed.

5.2 Coupling geometrical and behavioural worlds

We want to support the coupling of geometrical and
behavioural models in both directions. From
geometrical to functional world, we want to assess
whether a trajectory computed with a particular risk
tool is critical with respect to the system safety
requirements. The set of items impacted by a
trajectory is related with a failset i.e. a set of failures
modes that are triggered simultaneously in the
behavioural model. Once the behavioural model is
extended with failsets, ESACS tools as described in
section 3 can be used to check if the safety
requirements are still valid.

We developed tools that define failsets based on
particular risk results computed with tools as CATIA
or IRIS and a table that relates geometrical and
behavioural component names.

Work on the reverse direction (from functional to
geometrical world) is under progress. Two
capabilities will be developed: Visualisation of critical
failsets into the 3D tools, Allocation to 3D
components of requirements derived from the
functional world analysis. These new capabilities
could be used to guide the installation of equipments
into the aircraft.

6. Coupling bevioural models of complex system
and pilot models for human error analysis

The main objective of coupling behavioural models
of complex systems and pilot models in ISAAC is to
adopt the ESACS methodology to the requirements
of an industrial Human Error Analysis (HEA). HEA in
aerospace generally covers a multitude of areas
from design, maintenance through to pilot behaviour.
The general target of HEA in this project is to identify
potential pilot errors and the safety impact on the
overall flight.

Specific to ISAAC is the definition of a formal
cognitive architecture of generic pilot behaviour. This
architecture is capable to interpret/execute formal
procedure models like takeoff or approach.
Furthermore it is able to modify the procedure model
based on a psychological plausible cognitive
learning mechanism. These learned modifications
may lead to pilot errors. Thus in the ISAAC-HEA the
normative procedure models, also called mental
models (MM), are extended by means of the learning
mechanism, this leads to an extended mental
models (EMM).

The focus is on mode errors, where an action is
performed that is correct in some modes but not in
the present one. Mode errors lead to "automation

ERTS 2006 – 25-27 January 2006 – Toulouse Page 8/11

surprises", where an operator no longer understands
what the system is doing. During the design the
need for modes has to be balanced against the
probability of mode errors. Generally a mode may be
understood as a system configuration with a specific
functionality. Modern avionics systems are equipped
with a huge number of different modes. This allows
the use of systems in a variety of different operating
condition, but at the same time it becomes difficult
for the operators to retain “mode awareness”.

Lüdtke and Möbus [9] performed a simulator study
with four pilots at the Lufthansa Flight Training
Center. As a result they found that a subset of mode
errors may be explained by “learned carelessness”.
This psychological theory [10] states that humans
have a tendency to neglect safety precautions if this
has immediate advantages, e.g. it saves time.
Careless behaviour emerges if safety precautions
(like checking the actual mode before pressing an
auto pilot button) have been followed several times
but would not have been necessary, because no
hazards occurred. Then, people deliberately omit
safety precautions because they are considered a
waste of time. The absence of hazardous
consequences acts as a negative reinforcer of
careless behaviour. Learned carelessness is a
process which is characteristic for human nature
because we have to simplify in order to be capable
to perform efficiently in a complex environment. We
implicitly degrade our mental model to optimise it for
routine situations. Unfortunately this may be
disastrous in slightly deviating scenarios. Thus it is
crucial to consider this process in system design.

Learned carelessness was modelled inside a
cognitive architecture based on the mechanism of
rule composition and tested by comparing the model
behaviour and real pilot behaviour in different flight
procedures. These trials showed that the model
commits errors that comply with errors observed in
the empirical study [9].

Starting from these initial results the cognitive
architecture and simulation platform are investigated
in ISAAC with further more complex procedures, like
arrival and takeoff. With regard to learned
carelessness the specific analysis question will be
answered, if during the interaction with the design
under investigation in specified scenarios the pilot is
likely to simplify his knowledge about certain flight
procedures and if these simplifications may lead to
pilot errors and violations of safety requirements. In
ISAAC this question is tackled by simulation and
verification. A simulation platform is developed that
integrates the cognitive architecture, a system
design and a flight simulation software (for the
environment) and allows to simulate the dynamic
interaction of these models with different procedures

(e.g. takeoff or approach) and scenarios (e.g.
standard profile takeoff and extreme weather and
terrain takeoff).

A procedure has to be uploaded onto the cognitive
architecture. At the beginning of the analysis this
procedure contains only normative rules allowing to
always reach the procedure goal successfully. After
each simulation run, that means after a procedure
has been simulated and the goal was reached, the
pilot model simplifies the procedure model according
to learned carelessness. This leads to an EMM with
potentially hazardous procedure rules leading to pilot
error. After the EMM has reached a stable state it is
translated into the formal notation of the system
model. This enables to perform a fault tree analysis
with the techniques described in paragraph 3 in
order to identify all possible scenarios where the new
procedure rules lead to pilot errors with an impact on
the overall safety of flight. The resulting fault tree
contains human errors as basic events and
violations of procedure goals (e.g. the aircraft does
not reach and maintain the initial altitude after
takeoff) as TLE.

In ISAAC extensions of the cognitive architecture will
be investigated. The architecture is extendible,
because of its modular structure and because it is
based on an established cognitive core components,
that have been applied by various researchers to
model a number of different cognitive mechanisms.

An additional benefit of having mental models and
system models represented in a uniform framework
is the ability to investigate mismatches between the
two. In the ISAAC context this exploited by the
identification of “cognitive inadequate system
structures”, i.e. system patterns that, although
correct, are too difficult to operate on (e.g. because
too much and/or too complex information needs to
be kept in the mental model during operation). Thus,
we cannot only investigate mental models as shown
in [11], but are also able to reveal weaknesses in the
interaction between the operator and the system in
terms of system features.

7. Applicability of the approach

The system modelling approach and the first version
of the generic safety assessment tools presented in
sections 2 and 3 were successfully applied to
several case studies during the ESACS project.
Currently, new tools versions and the extension
presented in section 4, 5 and 6 are under test in
ISAAC project. The lessons learnt so far are the
following.

The case studies are extracted from existing aircraft
systems. Regarding, ESACS/ISAAC basic
techniques, the sequences or cuts of failures

ERTS 2006 – 25-27 January 2006 – Toulouse Page 9/11

computed in ESACS/ISAAC projects seem to have
at least the same accuracy than the pre-existing
ones. This is due to two factors. First, the tools can
deal automatically with numerous detailed failure
modes. The issue is rather to find out which level of
details is the most appropriated with respect to the
analysis purpose. Second, the tools can also provide
more details about the temporal order between
events that lead to a top level event.

Moreover, the approach really eases the dialog
between safety engineers and system designers.
Consider the possibility to show sequences of
failures directly in a simulation model. This would
help, in respect of usually huge Fault Trees, with the
understanding of the system behaviour, providing
evident support that the design satisfies the safety
objectives.

It is worth noting also that the set of case studies is a
significant sample of safety critical embedded
system. It includes not only command systems that
control aircraft mechanical components (e.g. flight
control or landing gear systems) but also systems
that provide resources for the others (e.g. hydraulic
and electrical power generation and distribution).
Thus the method seams to be applicable for a wide
range of systems embedded not only in aircrafts but
also on board of cars, trains or space vehicles.

Regarding newer experiments of ISAAC, they may
testify of a wider application range. For instance,
mission reliability analyse or the human error
analysis require to deal with human models. Today,
only results of preliminary tests are available. They
shown the feasability of the new concepts; further
results are expected to discuss the concept maturity
and applicability in an industrial context.

Last but not least, the project partners promote the
new methods towards the Authorities as applicable
means of compliance for Certification purposes. For
civil aircraft, the Certification process, as indicated in
the Aerospace Recommended Practice - ARP 4754
“Certification Considerations for Highly Integrated or
Complex Aircraft Systems”, requires evidence that
the safety requirements and objectives are satisfied
by means of safety assessment analyses that are
performed during all system development cycles.
Usually Fault Trees, FMEAS… constitute the main
elements for this evidence. ISAAC proposes formal
models and the associated tools as additional means
of compliance; these means are not referred today in
the ARP documents.

Nevertheless, several general presentations of
ESACS/ISAAC were already performed with good
feedback from representatives of the certification
authorities or in the SAE group in charge of updating
the relevant ARP documents.

 Moreover, Dassault Aviation chose to certify the
flight by wire system of the Falcon 7x using the
system model based approach. New steps in the
certification process were defined and agreed both
by European and American certification authorities.

This is a first acceptance step. The next step is to
register the underlying methodology in a forthcoming
update of the ARP 4754/4761 document guide.
DASSAULT AVIATION and AIRBUS will jointly
support this activity in the next SAE comity session.

8. Conclusion

This paper has presented a safety assessment
methodology based on formal modelling and
reasoning methods. The methodology consists of
two alternative approaches. First, the analysis can
be performed directly on system design models (e.g.
SCADE, Statemate or Simulink models) and merely
extended, by analysts, by the injection of failure
behaviour into model variables. Alternatively, the
analysis can be based on formal safety models
constructed by analysts; such models (normally
expressed in AltaRica language) abstract from the
“nominal” behaviour of the system and, instead,
explicitly capture system behaviour in presence of
failures. Both approaches allow automating
traditional safety analyses (e.g. FTA). They also
allow users (analysts) to undertake numerous “what
if” investigations, for example to investigate whether
the effect of a particular cut set is dependent on the
order and/or duration of failure modes in the set.

This paper has also described extensions to the
baseline methodology that are being addressed in
the ongoing ISAAC project.

There are two types of extensions. The first type
further utilises the capabilities of model checkers and
exploits the information contained in the models in
order to deliver new types of analyses. This
includes: assistance in allocation of derived safety
requirements based on formal safety models and
libraries of pre-defined “building blocks” – safety
architecture patterns, mission reliability analysis that
utilises the structure of the mission tree in order to
provide more accurate predictions on reliability
characteristics of the system and analyses
concerned with the coverage achieved by health
monitors and properties of such monitors (testability
and detectability analyses). The purpose of this type
of extensions is to maximise applicability of the
ISAAC methodology at different stages of the design
and assessment processes of safety critical
systems, starting from early design, through to the
later detailed stages of the PSSA.

The goal of the second type of methodology
extensions studied by the ISAAC project is to extend
the methodology to include different types of

ERTS 2006 – 25-27 January 2006 – Toulouse Page 10/11

analyses in order to achieve better integration with
what is often perceived as relatively independent
and auxiliary analyses (e.g. CCA, PRA, etc) and in
order to take advantage of the benefits gained from
the use of formal methods in such analyses.
Therefore, these extensions focus on increasing the
scope of the models being analysed, or, to be more
precise, by linking “core” behavioural models with
both geometrical and cognitive models to allow
analysis to cover the effects of common causes (due
to the layout of equipment) and human errors (e.g.
due to particular training procedures and typical
operation profiles) respectively.

Finally, the ISAAC project is undertaking a number
of purely methodological investigations in order to
prepare theoretical grounds for yet further
extensions. This includes a possibility to further
utilise and extend capabilities of tools to analyse
temporal aspects of the system behaviour and, thus,
to provide analysts with a more detailed and precise
description of how individual failure modes
propagate and combine in the system eventually
leading to unsafe conditions or behaviour. The
investigations cover not only extensions to the tools
but also extending traditional combinatorial analysis
methods (e.g. FTA).

Both ESACS and ISAAC projects have included a
variety of industrial partners – all leaders in
European aeronautics market. Consequentially, the
methodology has been applied to real industrial case
studies and the results from the evaluation were
quite positive and encouraging.

Furthermore, one of the industrial partners has
successfully negotiated with the European Aviation
Safety Authority precise conditions for using the
methodology to produce evidence for aircraft
certification.

To conclude, it is important to note that although the
project has focussed on aeronautics domain, nothing
in the safety assessment methodology presented
here cannot be successfully reused in any other
industrial context that is concerned with safety
critical systems, safety engineering and assurance.

9. Acknowledgement

• The European Union that sponsored and funded
ESACS and ISAAC projects

• Several other people contributed to the work
presented in this paper. We wish in particular to
thank: M. Delpiano and M. Fabbri from Alenia
Aeronautica, M. Mahrun, M. Fortes Da Cruz, M.
Frisk, L. Goutal, D. Javeaux, C. Jourdan, F.
Rezeaux, from Airbus, J. Karlsson and P.
Persson from SAAB, L. Borgne from Prover, A.

Sboner from IRST. We would also like to thank
B. Lawrence and R. Knepper from Airbus for
helping us improve this paper.

10. References

1. M. Bozzano, A. Villafiorita, O. Åkerlund, P. Bieber, C.
Bougnol, E. Böde, M. Bretschneider, A. Cavallo, C.
Castel, M. Cifaldi, A. Cimatti, A. Griffault, C. Kehren,
B. Lawrence, A. Lüdtke, S. Metge, C. Papadopoulos,
R. Passarello, T. Peikenkamp, P. Persson, C. Seguin,
L. Trotta, L. Valacca, G. Zacco "ESACS: an integrated
methodology for design and safety analysis of
complex systems", in proceedings of ESREL 2003,
Balkema publisher.

2. Society of Automotive Engineers Inc, Aerospace
Recommended Practice (ARP) 4754: Certification
Considerations for Highly-Integrated or Complex
Aircraft Systems, November 1996.

3. Society of Automotive Engineers Inc, Aerospace
Recommended Practice (ARP) 4761: Guidelines and
methods for conducting the safety assessment
process on civil airborne systems and equipment,
December 1996.

4. A. Arnold, A. Griffault, G. Point and A. Rauzy. “The
AltaRica formalism for describing concurrent
systems”. Fundamenta Informaticae, 40(2-3): 109-
124, 1999.

5. C. Kehren, C. Seguin, P. Bieber; C. Castel, C.
Bougnol, J.-P. Heckmann and S. Metge. Advanced
Multi-System Simulation Capabilities with AltaRica,
proceedings of Safety Critial System Conference,
Rhodes Island, USA, august 2004.

6. T. Peikenkamp, E. Böde, I. Brückner, H. Spenke, M.
Bretschneider, and H.-J. Holberg. Model-based Safety
Analysis of a Flap Control System. In Proceedings of
the INCOSE 2004 -- 14th Annual International
Symposium, Toulouse, 2004.

7. Huth, Michael R.A. and Ryan, Mark D.: Logic in
Computer Science – Modelling and reasoning about
systems, Cambridge University Press, 2001

8. C. Kehren, C. Seguin, P. Bieber, C. Castel, C.
Bougnol, J.-P. Heckmann, S. Metge, "Architecture
Patterns for Safe Design", AAAF 1st Complex and
Safe Systems Engineering Conference (CS2E 2004) ,
21-22 juin 2004, Arcachon (France)

9. Lüdtke, A., Möbus, C.: A Cognitive Pilot Model to
Predict Learned Carelessness for System Design. In
A. Pritchett and A. Jackson (Ed.). Proceedings of the
International Conference on Human-Computer
Interaction in Aeronautics (HCI-Aero), 29.09.-
01.10.2004, Toulouse, France. CD-ROM, 2004

10. Frey, D., Schulz-Hardt, S.: Eine Theorie der gelernten
Sorglosigkeit. In H. Mandl (Hrsg.), 40. Kongress der
Deutschen Gesellschaft für Psychologie, 604-611.
Göttingen, Seattle: Hogrefe Verlag für Psychologie,
1997

11. Rushby, J.: Using model checking to help discover
mode confusions and other automation surprises, in
‘Proceedings of the Workshop on Human Error,
Safety, and System Development (HESSD) 1999',
Liège, Belgium

ERTS 2006 – 25-27 January 2006 – Toulouse Page 11/11

11. Glossary

CCA: Common Cause Analysis
CEX: Counter Example
COSSAP Cold Spare Safety Architecture Pattern
EMM: Extended Mental Model
ESM: Extended System Model
FM: Failure Mode
FMEA: Failure Mode and Effect Analysis
FTA: Fault Tree Analysis
MM: Mental Model
PRA: Particular Risk Analysis
PSSA: Preliminary System Safety Assessment
SAP: Safety Architecture Pattern
SM: System Model
SR: Safety Requirement

