
HAL Id: hal-02270442
https://hal.science/hal-02270442

Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Style Guidelines for Embedded Code Generation
T Erkkinen

To cite this version:
T Erkkinen. Model Style Guidelines for Embedded Code Generation. Conference ERTS’06, Jan 2006,
Toulouse, France. �hal-02270442�

https://hal.science/hal-02270442
https://hal.archives-ouvertes.fr

Model Style Guidelines for Embedded Code Generation

T. Erkkinen

The MathWorks, Inc., Novi, MI 48375
tom.erkkinen@mathworks.com

Abstract: Embedded systems are increasingly being developed using models. These models
may have started with the system engineer or algorithm developer as an executable specification
or algorithm description. However, these models also now serve as the entry point for software
engineering, thanks to automatic embedded code generation. As a result, software engineers
want to take advantage of these same models, adding constraints on system behavior; describing
characteristics that are needed for implementation, such as fixed-point details; or linking
components in the design to relevant parts of requirements and specification documents.

This paper describes model style guidelines for automatically generating fixed-point and floating-
point code for embedded systems. The guidelines are based on best practices and techniques
derived from actual industry examples in aerospace and automotive companies worldwide.

Keywords: Model-Based Design, Production Code Generation, Simulink

1. Introduction

The model structure and code generation
configuration options significantly impact the
efficiency, clarity, and traceability of the
automatically generated code. While model
style and verification may not be a top issue
for early algorithm development or rapid
prototyping, it is extremely important for
embedded system development, especially
flight software applications. Furthermore,
the composition of the model also eases the
process integration with the “test-in-the-loop”
(e.g., SiL, PiL, HiL) phases that are needed,
while improving component reusability and
Intellectual Property management.

Increasingly, companies that use model-
based design approaches -- particularly in
aerospace and automotive -- are
collaborating to define model style
guidelines, which they can individually tailor
and apply as a key aspect of their software
development processes.

This provides system engineers and
algorithm developers greater freedom to
innovate early in the process, while resulting
in models that can be augmented, refined,
and constrained with implementation details
for efficient embedded code generation later
in the development process.

2. Discussion

A system model has components for
modeling both the algorithm and the
environment where the algorithm executes.
The algorithm may be a control law or a
signal processing algorithm. The
environment may include actuators, sensors,
and the plant. Or, the environment may
represent a communication transport layer
with varying latencies and noise.

The algorithm model will eventually be
deployed as embedded software on a
microcontroller, a digital signal processor, or
a multi-core device. The plant model may
eventually be deployed on a test system for
HiL testing and system validation.

A typical model is comprised of block
diagrams, state machines, and embedded
language scripts. Examples of system
models are shown in Figures 1 and 2. The
examples use MathWorks products.

Note that the system models are comprised
of individual components. The components
may be subsystems pulled from libraries,
which have dependencies based on the
system model they are placed in. Or the
components may be separate models that

are atomic and isolated from the properties
of the system model they are placed in.

Figure 1: Vehicle and ECU System Model

Figure 2: Radar Application System Model

2.1 Simulation

In order for the model to be clearly
understood, it needs to simulate. Successful
simulation requires that the model compile
and execute based on the values
established for the model’s diagnostic
settings, such as array out-of-bounds error
checking.

The simulation results can be shown in
many ways such as scopes, gauges, and
virtual animation. See Figure 3 for an
example of an aircraft system simulation
interfaced to a flight simulator. The results

can also be produced as massive amounts
of data that are reused as test suites during
detailed design and implementation.

Figure 3: Aircraft System Model Animation

The simulation model can also be used as
an executable specification. The fidelity of
the model dictates whether or not the model
specification is high-level or low-level.

There are other aspects in addition to model
fidelity to be considered during the model
development process. Some aspects span
multiple groups or even different companies,
such as OEMs and suppliers. For example,
Toyota Motor Corporation and DENSO
Corporation discussed important aspects
that guide their modelling and production
code generation environments [1].

Toyota needs automatic code generation
tools that are system development-oriented:

• Ease of simulation

• Easy operation

• Seamless linkage with other system
development tools and data

DENSO needs code generation tools that
are software development-oriented:

• Conformance to coding rules

• Well defined software structure

• Seamless linkage with other
software development tools and
data

One of the keys to a successful model style
is to develop models that allow for fast,
easy, and seamless transitions between
system engineering and software design.

2.2 Detailed Design

Technology improvements starting in the
late 1990s have allowed high-level models
to be refined and elaborated to great levels
of detail. Software design details such as
fixed-point data type, scope and storage
class, function and file partitioning, and
explicit identifier control are now possible.

Back and forth transition between model
fidelities improves system and software
communication and also fosters a
development approach that encourages
iterations for optimizing code, addressing
derived requirements, and improving design
integrity.

Data type design is a good example of this
back and forth flow. Early during high-level
specification, numerical accuracy involving
data types is not a major consideration. The
models typically use double precision data
for assessing algorithm performance.

Once the performance is deemed
satisfactory, however, detailed data type
design should occur. Single precision or
fixed-point types are then derived for each
signal and parameter in the model based on
embedded target resources or other factors.
Once the data types are assigned, it is
important to compare the detailed types with
the original high-level specification.

Data type override is one way to accomplish
this comparison. With data type override, a
developer is able to make the simulation and
code generation tool ignore the detailed data
types and act upon the model as if all data
elements were specified as a specific
floating point type (e.g., double precision
real). This greatly facilitates comparison and
verification of the detailed design with its
higher-level representation.

One could also use a data dictionary driven
approach. For example, a floating point data
dictionary could be loaded and used for
rapid prototyping simulation, while a fixed-
point data dictionary could be loaded for

embedded, mass-production target
environments. To do this, the model needs
to be developed in a style that supports
inheriting data types from an external or
workspace data dictionary. The external
data dictionary could be provided, for
example, using a corporate database tool,
Excel, or XML file.

An example of a data dictionary and a data
dictionary element for a lookup table is
shown in Figure 4.

Figure 4: Data Dictionary Showing Lookup
Table using Structure Data Types

Visteon Corporation has described their data
dictionary driven approach for ECU software
using automatic production code generation
in an SAE paper [2]. This paper also
includes code metrics comparing hand-
written production code with automatically
generated code as shown below.

Figure 5: Visteon Production Code Metrics

General Motors Powertrain also described
their use of data dictionary driven
development and code metrics at a recent
conference [3]. They also presented hand
vs. automatic code metrics as shown below
in Figure 6.

Figure 6: General Motor Powertrain
production code metrics

2.2 Code Generation

For companies trying to maximize code
efficiency, it is important to have a good
understanding of the appropriate blocks,
appropriate block parameters settings, and
the appropriate code generation settings.

As with any language, teams should agree
on the language aspects to use or not use
for a particular project. The aspects may be

based on the target environment, the
software integrity level, or other criteria.
Model tool documentation such as the block
data types table shown in Figure 7 guides
developers on which constructs to use.

Figure 7: Block Data Type Table for
Production Code Generation

In addition to the blocks, the block settings
heavily influence the format of the generated
code. One of the key settings in a fixed-point
environment is the check for numerical
overflow involving fixed-point calculations.
The block parameter form for a simple gain
block in Figure 8 shows this setting.

Figure 8: Saturation on integer overflow
block setting enabled

The Visteon metrics shown in Figure 5 noted
that this saturation setting determined
whether or not the automatically generated
code was smaller, larger, or equal to hand
code. If the setting was used “where

necessary” the automatic code was
approximately equal to hand code.

The code generation configuration settings
also have a great influence on the generated
code. One of the major groups of settings
that is important involves the hardware
implementation pane. This pane is where
one establishes the target specific settings
not defined by ANSI/ISO-C, such as integer
word sizes.

By selecting the appropriate target hardware
developers may realize significant code
efficiency improvement. See Figure 9.

Figure 9: Production hardware settings used
to deploy the automatically generated code

Taking the time to establish these and other
model and code generation guidelines can
lead to impressive results beyond code
efficiency. Honeywell Aerospace
Corporation presented that they generated
over 1.6 million lines of certified flight code
within the past year using a COTS tool-
based environment [4]. Honeywell also
noted that their software process produced
greater than six-sigma code quality.

It is important to note that Honeywell’s
automatically generated software was
developed in accordance with criteria per
DO-178B Level A software integrity [5].

2.3 Verification and Validation

Using Model-Based Design, verification and
validation activities occur throughout
development. A number of new technologies
have recently been introduced that assist
with this such as model advisor, model
coverage tools, and in-the-loop testing.

One of the key benefits to establishing
model guidelines is that they can be
automated. The model advisor analyzes the
model and checks for areas that may
impede its use in production software
environments. Some of the checks focus on
the simulation aspects, others on code
generation.

For example, one of the checks makes sure
that model interface ports are well defined
and do not inherit important characteristics
such as data type and sample rate. Another
check informs users if they are missing
important code optimization settings. Figure
10 shows checks based on the model, the
code generation settings, and customized
user-provided settings.

Even if one does not use the model analysis
tool itself, developers should inspect the
many guidelines that it offers. Note that the
model advisor also has an API for an
organization to add their model checks.

Figure 10: Interactive model coverage
reporting

Another important verification step is to
design and execute model tests. For safety-
related systems, it is important that the test
cases be based on the requirements. Bi-
directional links between the model and the
systems requirements in documents, data
bases or requirements management tools is
important and available. Requirements-
based comments can also appear in the
generated code.

In addition to supporting requirements-
based testing and bi-directional traceability,
the model should support test coverage

analysis. One way to determine test
coverage is to use a model coverage tool.
Figure 11 shows such a tool and highlights
areas where the model was not exercised.

Figure 11: Interactive model coverage
reporting

Once the model has satisfied its test and
coverage requirements, code can be
automatically generated, as described
earlier. As code implementation and
integration moves forward, there are several
opportunities to verify the implementation
using SiL or HiL.

DaimlerChyrsler Trucks noted the
importance of using SiL testing [6] with
automatically generated code:

SIL based function development brought a
high state of maturity before the vehicle
tests start. Desktop debugging instead of
debugging in the vehicle allows high test
efficiency. The Embedded Coder meets our
demands concerning code efficiency,
structure, and automatic coding.

There are many other sources of guideline
information including C code guidelines [7],
automotive model guidelines [8], large scale
model guidelines [9], and fixed point tips
[10].

Developing a complete modelling and code
generation environment takes some time
and effort but the rewards are worth it.

Consider what Lockheed-Martin presented
regarding their use of automatic flight code
generation for the Joint Strike Fighter
program flight controls [11].

It is proven in CDA Phase:

• Successful flight tests of all variants
with one OFP

• Reduced Software Defects (Early
checkout in Engineering
Simulations)

• Overall reduction in
Manhours/SLOC of ~40%

3. Conclusion

This paper presented a few important
guidelines and industry trends for using
modelling and automatic code generation for
production software. It was not possible to
provide numerous detailed examples in the
space provided but several references were
provided containing numerous guidelines,
examples, and tips.

This paper also discussed approaches for
verification and validation of the models and
generated code. Industry examples were
referenced.

7. References

[1] T. Katayam, A. Ohata, Toyota; Y.
Uematsu DENSO; ”Production Code
Generation for Engine Control
System”, International Automotive
Conference, Stuttgart, 2004
http://www.mathworks.com/company/
events/programs_de/iac2004/present
ations/08_pp_toyota.pdf

[2] Grantley Hodge, et al, Visteon Corp,

“Multi-Target Modeling for Embedded
Software Development for Automotive
Applications”, SAE Congress
Technical Paper No. 2004-01-0269,
Detroit, 2004
http://www.mathworks.com/products/rt
wembedded/technicalliterature.html

[3] L. Michaels, General Motors

Powertrain, "Automatic Code
Generation Process", MathWorks
International Automotive Conference,
Dearborn MI, 2005
http://www.mathworks.com/industries/
auto/iac/presentations/michaels.pdf

[4] B. Potter, Honeywell; ”Achieving Six
Sigma Software Quality Using
Automatic Code Generation”,
Mathworks International Aerospace
and Defense Conference, Manhattan
Beach CA, 2005
http://www.mathworks.com/industries/
aerospace/miadc05/presentations/pott
er.pdf

[5] RTCA Inc., "Software considerations

in airborne systems and equipment
certification", RTCA/DO-178B, Dec.
1992 http://www.rtca.org/

[6] M. Wünsche, et al. DaimlerChrysler

AG; “Model based development of
Cruise Control for Mercedes Benz
Trucks”, Mathworks International
Automotive Conference, Stuttgart,
2004,
http://www.mathworks.com/company/
events/programs_de/iac2004/present
ations/11_doc_IAC_DaimlerChysler.p
df

[7] Motor Industry Software Reliability

Association (MISRA), “Guidelines for
the Use of the C Language in Vehicle
Based Software", ISBN 0 9524156 9
0, April 1998. http://www.misra.org.uk/

[8] MathWorks Automotive Advisory

Board (MAAB), “Controller Style
Guidelines for Production Intent Using
MATLAB®, Simulink® and
Stateflow®,” April 2001,
www.mathworks.com/industries/auto/
maab.html.

[9] Rob Aberg and Stacey Gage;

“Strategy for Successful Enterprise-
Wide Modeling and Simulation Using
COTS”, American Institute of
Aeronautic and Astronautics GN&C
Conference, August 2004.
http://www.mathworks.com/company/
events/aiaa_04/

[10] Siva Nadarajah and Vinod Reddy:

“Fixed-Point Modeling and
Code Generation Tips”, MATLAB
Central, 2005,
http://www.mathworks.com/matlabcent
ral/fileexchange/loadFile.do?objectId=

7197&objectType=FILE

[11] D. Nixon, Lockheed Martin; ”Flight

Control Law Development for the F-35
Joint Strike Fighter”, Mathworks
International Aerospace and Defense
Conference, Newton MA, 2004,
http://www.mathworks.com/industries/
aerospace/miadc/presentations/10_F
35_Flight_Control_DevelopmentDave
Nixon.pdf

8. Glossary
SiL Software-in-the-Loop
PiL Processor-in-the-Loop
HiL Hardware-in-the-Loop
ECU Electronic Control Unit
OEM Original Equipment Manufacturer
FAA Federal Aviation Agency
API Application Program Interface
OFP Operational Flight Program
SLOC Source Lines of Code

