
HAL Id: hal-02270281
https://hal.science/hal-02270281

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of an IMA software architecture on legacy
avionic software

Thomas Brixel

To cite this version:
Thomas Brixel. Impact of an IMA software architecture on legacy avionic software. Embedded Real
Time Software and Systems (ERTS2008), Jan 2008, Toulouse, France. �hal-02270281�

https://hal.science/hal-02270281
https://hal.archives-ouvertes.fr

Impact of an IMA software architecture on legacy avionic software
Thomas Brixel

EADS Deutschland GmbH – Defence and Security, Rechliner Strasse, 85077 Manching, Germany

Abstract: The paper discusses the performance and
timing issues when migrating legacy avionics
software to an Integrated Modular Avionic (IMA).
The software in question is running on a mission
computer equipped with several Motorola 68020
processors and two dual redundant databusses. A
new hardware was introduced due to obsolescence
problems. To reduce risk the legacy software should
be migrated to the new hardware with possibly no
changes. Therefore a software stack with
standardised software interfaces according to IMA
concepts was introduced that provides additionally
the software interfaces required by the legacy
software on top of IMA.
On the original mission computer the software
accesses the databusses directly via memory
mapped I/O. This is no longer possible with a
layered software architecture. With the implemented
IMA software stack I/O is transmitted to a dedicated
module via VME backplane. Calls to the hardware
specific I/O drivers are handled on that module and
responses replied back to the application software.
The paper presents the results of timing and
performance measurements with both the legacy
and new software architectures on the respective
target hardware.
The points that need special interest when specifying
the hardware, supplier provided software and when
implementing the IMA software stack are discussed.
Keywords: avionic software, migration, integrated
modular avionic, performance measurement

1. Introduction

The avionics software that is analysed is a mission
software running of a proprietary avionic computer in
a military fighter aircraft. The avionics system is a
federated architecture where the avionic computers
are connected via busses. The avionic computers
have a high functional integration and complete
subsystem functionality may be allocated to a single
computer. With this kind of architecture changes and
extensions are expensive and time consuming. An
enormous effort is spent on integration.
For avionics the rapid development of computer
technology is both a blessing and a curse. On one
side it provides the computing power necessary to
utilize advanced algorithms. On the other side the
lifetime of computer components is much shorter

than that of an aircraft, especially a military fighter
aircraft. The lifetime of aircrafts is measured in
decades whereas the components may become
obsolete during development.
To improve reusability of software and ease
migration to new platforms a software stack
according to IMA concepts is introduced that allows
the mission software to become hardware
independent. This is realised on a new hardware
platform that is free of obsolescence and provides
the required processing capabilities for future
enhancements. To reduce risk the legacy software
should be migrated with possible no changes.

2. Hardware Architecture

The mission computer interfaces comprise two dual
redundant databusses, direct digital links (discretes)
and power supply. The databusses are realised
according to STANAG 3838/3910. The discretes
specification is STANAG 3909. The new and legacy
mission computers have the same shape and
connectors.

Figure 1: Mission Computer

Legacy Hardware: The legacy computer is equipped
with two different kind of modules on a VME
backplane. The processing modules have a Motorola
68020 processor. The memory mapped I/O registers
of the passive bus interface module is accessible by
each processor.
New Hardware: The new computer is equipped with
processing modules and an active bus interface unit
on a VME backplane. The bus interface module is
operated with a PowerPC 405 processor. The
processing modules have a PowerPC 750
processor.

 Page 1/6

Bus interface
module - passive

68020

6802068020

VME Backplane

Legacy Hardware

New Hardware

Bus interface
module – PPC405PPC750

VME Backplane

…

Figure 2: Hardware Architecture

3. Mission Software Architecture

The mission software is designed for optimal
resource utilisation, flexibility and hardware
independence. It is implemented in Ada.
The software is decomposed into modules that can
be allocated to any processor. Each module is
controlled by one or more Ada tasks and
communicates with other modules via message
queues. The complete software is input triggered.
So called Target Specific Ada Packages (TSAP)
allow full control of the STANAG 3838/3910 bus.

Bus controlling
and moding

Input OutputFunctional
module 2

Functional
module 3

Functional
module 1

Target Specific Ada Packages

Figure 3: Example of Software Modules

The hardware independence of functional modules is
reached by the software design. The modules Input
and Output that access the external bus have a low
dependency to the underlying hardware. Due to the
mode of operation of a STANAG 3838/3910 bus the
Bus controlling and moding is highly dependent not
even to the hardware but also to the other computers
that are connected to the bus.

4. Runtime Environment

4.1. Legacy Ada Runtime and TSAP

Ada Runtime: On the legacy hardware the mission
software is compiled and linked with a bare board
Ada runtime that provides hardware initialisation and
task scheduling.
TSAP: The TSAP operations directly access the bus
interfaces via memory mapped I/O. Interrupts can be
generated by the bus interface module and are
routed via backplane to the respective processing
module.

4.2. Message Queues

On the legacy hardware the mission software is
evenly distributed to several 68020 processors. The
message queues are implemented using global
memory that is accessible for each processor.
On the new hardware the complete mission software
is running in one program on a single processor.
This allows to use an analogue message queue
implementation with local memory. The
communication between software modules is not
affected by the introduction of the IMA architecture.

4.3. IMA Architecture

An open standardised software architecture is
introduced with the new hardware based on a
commercially available real time operating system
(RTOS) that provides time and space segregation.
The IMA software follows Allied Standard Avionics
Architecture Council (ASAAC) standards that are
under consideration as NATO Standard Avionics
Architecture (STANAG 4626, reference [1]).

Operating System

Run-Time
Blueprints

Module Support Layer
Network Independent Interface

Communication
Services

Mission Software

Real-Time
Operating System

Generic System
Manager

Fault Manager

Health Monitor

Configuration
Manager

Mission Software…..

Figure 4: ASAAC Software Architecture

The RTOS is integral part of the IMA software
implementation as it provides vital services such as

 Page 2/6

hardware initialisation, memory management and
scheduling.
The communication services provide virtual channels
that are independent from the location and number
of receivers. A protocol between instances of the
Operating System Layer ensures that this is fulfilled.
The instances of the Operating System Layer that
reside on different processors communicate via
transfer connections that are accessed via the
Network Independent Interface.
A virtual channel can be configured in a way that
every message is acknowledged to the sender when
it was successfully written to the receivers message
queue. An instance of the IMA software stack runs
on each processing module and on the bus interface
module.

4.4. IMA Implementation of Target Specific Ada
Packages

The Target Specific Ada Packages required by the
mission software are implemented utilising virtual
channels. Two different implementations exist with
respect to the virtual channel usage. In either case
the actual bus access is performed on the bus
interface module.
Remote Procedure Call Implementation: The first
implementation provides the TSAP operations as a
remote procedure call. In and out parameters of the
TSAP operations are encapsulated into messages
that are transmitted via virtual channel. There is a
single virtual channel to send commands to the bus
interface module. A dedicated virtual channel to
receive responses for a command is assigned to
each task that calls TSAP operations. The complete
error handling is performed by the mission software.

Target Specific Ada Packages

Bus interface module

single virtual channel
for commands

dedicated virtual
channel for each
task to receive
responses

1 .. n 1

Input Output

Figure 5: TSAP Implementation as RPC

Mapping of Bus Messages to Virtual Channels: The
second implementation directly maps input and
output messages to dedicated virtual channels. The
mapping of virtual channel identifiers to STANAG
3838/3910 bus messages is part of the IMA runtime

configuration. Input messages are sent from the bus
interface module to the respective virtual channel
without acknowledgement. The virtual channels
operate overwriting. Any message that arrives
overwrites the previous one as it is also the case in
the receive buffer on the bus interface module.
There is no interaction with the mission software, so
error handling needs to be performed by the IMA
software stack.
Output messages are sent by the called TSAP
operation to the respective virtual channel. The
mission software gets a feed back from the bus
interface module by acknowledgement. The error
handling of output messages can still be performed
by the mission software.

Input Output

Target Specific Ada Packages

Bus interface module

dedicated virtual
channel for each
bus message that
is received

1 .. m dedicated virtual
channel for each
bus message that
is transmitted

1 .. n

Figure 6: Direct Mapping of Bus Messages to Virtual

Channels

5. Measurement Method

5.1. Statistics Calculation

Time measurement and calculation of statistics is
implemented in a generic Ada package, which is
instantiated for each task to avoid parallel access. It
can be used to measure an arbitrary number of
individual timings that are distinguished by an
element index. The element index can be an integer
or enumeration (suitable as array index), the type is
specified at package instantiation. The package
provides the following operations.

• START_TIME
(ELEMENT_INDEX):

• END_TIME
(ELEMENT_INDEX):

• CONTROL_TASK.START
(START_DELAY, PROFILING_DURATION)

The CONTROL_TASK waits for the time of
START_DELAY before time measurement is
enabled. This assures that the precision of results is
not polluted by start up and initialisation of tasks in

 Page 3/6

the mission software. When
PROFILING_DURATION is elapsed the
CONTROL_TASK disables time measurement for all
instances running on the same CPU before the
results are printed.
Start and end times of calls are obtained from
operation CALENDAR.CLOCK that is provided by
the Ada runtime. Operation START_TIME stores the
time obtained from CALENDAR.CLOCK as start time
for the given ELEMENT_INDEX. Operation
END_TIME again takes the current time from
CALENDAR.CLOCK and updates the statistics.
The calculated statistics values for each individual
ELEMENT_INDEX are
n : number of calls

dt : average (arithmetic mean) duration of calls

dt : mean deviation of call duration to average

maxdt : maximum duration of a call

mindt : minimum duration of a call

Average and deviation are calculated incrementally.
timestarttimecurrentdt __ −= [1]

For the first call of END_TIME:
1=n [2]

dtdt = [3]

0=dt [4]

dtdt =min [5]

dtdt =max [6]

For succeeding calls of END_TIME:
1+= nn [7]

n
dtndtdt n

n
+−

= −)1(*1 [8]

n
dtdtndt

dt
nn

n

−+−
= −

)1(*
1 [9]

),min(minmin dtdtdt = [10]

),max(maxmax dtdtdt = [11]

The incremental calculation achieves the best results
when values are near the average from the
beginning, which is likely for this measurement.

5.2. Measured Operations

During the migration of the mission software to the
new IMA software architecture access to the
STANAG 3838/3910 bus has been identified as a
possible performance bottleneck. Therefore the

measurement focuses on reading and writing data
on the bus.
The TSAP provides four operations to read and
write.

• GET_MIL
• PUT_MIL
• GET_EFABUS
• PUT_EFABUS

The operations can be used in synchronous and
asynchronous mode. In synchronous mode the
operation blocks until the data is actually transmitted
by the bus. Therefore only asynchronous mode is
suitable for timing and performance measurements.
The majority of calls to the operations is performed
by modules Input and Output. Calls by module Bus
controlling and moding are not significant for this
analysis. In module Input two tasks are reading
different bus messages. In module Output there is
one task that updates the bus messages after it
collected the data from the functional modules.
The duration and frequency of asynchronous calls in
dependency to the data size were measured. The
message size in 64 Byte blocks is used as element
index in calls to the profiling package.
The duration is measured by taking the start time,
performing the call, taking the end time and updating
the statistics.

• Take start time
• Perform asynchronous call
• Take end time
• Update statistics

The frequency is the duration between two calls. It is
measured by taking the end time, updating the
statistics, taking the start time and performing the
call.

• Take end time
• Update statistics
• Take start time
• Perform asynchronous call

In this way for the first call the interval measured for
the frequency is the time since initialisation of the
time measurement. This introduces a deviation that
is negligible for the large number of calls.
The measurement starts 30 seconds after start up of
the mission software and is performed over 300
seconds.

6. Measurement Results

At a first view on the measurement results the new
hardware with the IMA software architecture looks
worse than the legacy hardware. Why this is not the
case is discussed in detail in the next section.

 Page 4/6

0

200

400

600

800

1000

1200

Legacy HW IMA Impl. 1 IMA Impl. 2µs

64 Byte 128 Byte 192 Byte 256 Byte 320 Byte
384 Byte 448 Byte 512 Byte 896 Byte

Figure 7: Average Times of Output Task

0
100
200
300
400
500
600
700
800
900

Legacy HW IMA Impl. 1 IMA Impl. 2µs

64 Byte 128 Byte 192 Byte 512 Byte
Figure 8: Average Times of Input Task 1

0
100
200
300
400
500
600
700
800

Legacy HW IMA Impl. 1 IMA Impl. 2µs

64 Byte 256 Byte 320 Byte
Figure 9: Average Times of Input Task 2

0

100

200

300

400

500

600

700

Legacy HW IMA Impl. 1 IMA Impl. 2

Minimum Deviation Average
Figure 10: Times for 64 Byte Output Message

7. Analysis of Measurement Results

The frequency of calls for the various message sizes
is similar in the three result sets. Approximately the
same number of messages and amount of data is
transmitted in each case.

7.1. Legacy Hardware

On the legacy hardware the TSAP operations
directly access the bus interface. There is no latency
due to context switches or signalling to another
processor. The processor is occupied during the
complete TSAP call transferring data to the bus
interface. The deviation of the call duration is small.
The existing deviation and the maximum call
duration results from tasks with higher priority
competing for processing time. The maximum call
duration is a multiple of the average.

7.2. IMA Implementation 1

With the IMA implementation 1 the bus messages
are transferred to / from the bus interface module.
The processor is not fully occupied during the call.
The request to read / write a message is transmitted
via transfer connection to the bus interface module.
The processor is free for other tasks while the calling
task is waiting for the response. So the call duration
is not pure processing time but includes the
communication with the bus interface module. The
minimum call duration that is approximately half of
the average denotes that requests are queued. This
queuing adds to the deviation that is generated from
multi tasking already observed on the legacy
hardware. As a result the deviation is higher
compared to the legacy hardware.
The call duration for input messages with the IMA
implementation 2 gives an impression of the
processing time that is required on the processing
module.

7.3. IMA Implementation 2

Input and output have to be distinguished for IMA
implementation 2 as they are different in operation.
Input Messages: To process the TSAP call the latest
message received from the bus interface module is
read from the local virtual channel buffer. The
transmission from the bus interface module to the
processing module happens in the background and
is not measured. This implementation makes best
use of the new hardware and the IMA software
architecture. The lowest minimum and average call
duration is measured here. Maximum call durations
that are a multiple of the average can still be
observed due to tasks competing for processing
time.

 Page 5/6

Output Messages: The implementation and
measurement results are similar to the first IMA
implementation. Even when using a dedicated virtual
channel for each output message the requests are
queued for transmission through the transfer
connection and processed sequentially on the bus
interface unit. The small improvements in the call
duration may result from the reduced load of the bus
interface module due to the different handling of
input messages. Another reason may be that the
adaptation of TSAP calls to the hardware device
driver of the bus interface module is performed on
the processing module, which has a higher
performance.

8. Conclusion

The mission software runs successfully on the
legacy hardware and on the new hardware with both
of the IMA implementations. The bus messages are
read and written with the required rates. There is
sufficient processing time for functional modules.
The measurement provides indications for the
optimisation of both the mission software and IMA
software stack.
The limiting factor on the legacy hardware is
processing power and bandwidth. The call duration
increases significantly with growing message sizes.
Therefore the software is optimised for small
message sizes to a certain extent. On the new
hardware the size of messages is no longer a
problem. Modern hardware has the ability to handle
higher amounts of data. Despite the higher
processing power of new hardware a layered IMA
software architecture introduces latencies. As a
consequence the number of messages becomes
more relevant, which conflicts with the optimisation
of the mission software for small but many
messages.
The latencies can be minimised by the design of the
IMA software stack. The duration for reading input
messages with the second IMA implementation
displays that, bearing in mind that the transmission
of messages from the bus interface unit to the
receiver of the virtual channel is no longer
measured. Only a small improvement in access
times can be observed for output messages in the
second IMA implementation because writing the
output messages still implies waiting for the
acknowledgement from the bus interface module. To
get an acknowledgement enables the mission
software to detect errors and handle them
adequately with a situation awareness that an
generic software like the IMA software stack can not
achieve. The error handling implemented in the
legacy mission software can be reused and provides
a safety that can not be designed into the IMA
software stack without modifications to the mission
software as well.

The hardware specification needs to address the
requirements of the IMA software architecture. The
hardware must be capable to handle a high number
of interrupts and task switches with low latency.
The IMA implementation must be designed that it
requires as few as possible context switches. On the
other hand it must ensure safety and reliability,
which may mean to accept the latencies this implies.

9. Acknowledgement

Special thank goes to the colleagues at
EADS Deutschland GmbH:
Markus Moser and Mark Beerling for the active
support of the time measurement
Gert Wiegert for his helpful annotations.

10. References

[1] "STANAG 4626 - Modular And Open Avionics
Architectures , Part II – Software, Draft 1",
North Atlantic Treaty Organisation (NATO), 2004

11. Glossary

ASAAC: Allied Standard Avionics Architecture Council
IMA: Integrated Modular Avionic
I/O: Input / Output
NATO: North Atlantic Treaty Organization
RPC: Remote Procedure Call
RTOS: Real Time Operating System
STANAG: Standardization Agreement
TSAP: Target Specific Ada Package
VME: Versa Module Europe

 Page 6/6

	Impact of an IMA software architecture on legacy avionic software
	1. Introduction
	2. Hardware Architecture
	3. Mission Software Architecture
	4. Runtime Environment
	4.1. Legacy Ada Runtime and TSAP
	4.2. Message Queues
	4.3. IMA Architecture
	4.4. IMA Implementation of Target Specific Ada Packages

	5. Measurement Method
	5.1. Statistics Calculation
	5.2. Measured Operations

	6. Measurement Results
	7. Analysis of Measurement Results
	7.1. Legacy Hardware
	7.2. IMA Implementation 1
	7.3. IMA Implementation 2

	8. Conclusion
	9. Acknowledgement
	10. References
	11. Glossary

