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Abstract  34 

Species distribution models (SDMs) have been increasingly used over the past decades to characterise the 35 

spatial distribution and the ecological niche of various taxa. Validating predicted species distribution is 36 

important, especially when producing broad-scale models (i.e. at continental or oceanic scale) based on 37 

limited and spatially aggregated presence-only records. In the present study, several model calibration 38 

methods are compared and guidelines are provided to perform relevant SDMs using a Southern Ocean 39 

marine species, the starfish Odontaster validus Koehler, 1906, as a case study. The effect of the spatial 40 

aggregation of presence-only records on modelling performance is evaluated and the relevance of a target-41 

background sampling procedure to correct for this effect is assessed. The accuracy of model validation is 42 

estimated using k-fold random and spatial cross-validation procedures. Finally, we evaluate the relevance of 43 

the Multivariate Environmental Similarity Surface (MESS) index to identify areas in which SDMs accurately 44 

interpolate and conversely, areas in which models extrapolate outside the environmental range of 45 

occurrence records. 46 

Results show that the random cross-validation procedure (i.e. a widely applied method, for which training 47 

and test records are randomly selected in space) tends to over-estimate model performance when applied to 48 

spatially aggregated datasets. Spatial cross-validation procedures can compensate for this over-estimation 49 

effect but different spatial cross-validation procedures must be tested for their ability to reduce over-fitting 50 

while providing relevant validation scores. Model predictions show that SDM generalisation is limited when 51 

working with aggregated datasets at broad spatial scale. The MESS index calculated in our case study show 52 

that over half of the predicted area is highly uncertain due to extrapolation. Our work provides 53 

methodological guidelines to generate accurate model assessments at broad spatial scale when using 54 

limited and aggregated presence-only datasets. We highlight the importance of taking into account the 55 

presence of spatial aggregation in species records and using non-random cross-validation procedures. 56 

Evaluating the best calibration procedures and correcting for spatial biases should be considered ahead the 57 

modelling exercise to improve modelling relevance. 58 

 59 
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1. INTRODUCTION  65 

Species Distribution Models (SDMs) have been increasingly used during the past decades. The diversity of 66 

applications has widened to include a vast panel of topics from studies of invasive species distribution range 67 

shifts to assessment of species responses to environmental drivers and conservation issues from local to 68 

global scales (Guisan and Thuiller 2005, Ficetola et al. 2007, Guisan et al. 2013, Beaumont et al. 2016, 69 

Phillips et al. 2017). In vast and remote areas such as the Southern Ocean, modelling species distributions is 70 

challenged by (1) the paucity of biotic data available (a serious constraint when describing species realised 71 

niche), (2) by the heterogeneous quality of environmental data describing environmental conditions (e.g.. 72 

missing data in coastal areas, low resolution of environmental layers, limited number of environmental 73 

descriptors available), and (3) by the sampling bias (spatial and temporal aggregation of data collection) 74 

(Barry and Elith 2006, Robinson et al. 2011, Hortal et al. 2012, Tessarolo et al. 2014, Guillaumot et al. 2018). 75 

Sampling effort has mostly been carried out offshore or in the vicinity of research stations during the austral 76 

summer while remote shallow areas are seldom accessed and dense winter sea ice conditions limit 77 

oceanographic studies (Gutt et al. 2012). 78 

Several studies have proposed model corrections or alternatives to separately mitigate the induced impacts 79 

of spatial and temporal biases on modelling performance (Phillips et al. 2009, Newbold 2010, Barbet-Massin 80 

et al. 2012, Hijmans 2012, Tessarolo et al. 2014, Guillera-Arroita et al. 2015, Guillaumot et al. 2018, Valavi et 81 

al. 2018). However, to our knowledge, no study has yet proposed methodological guidelines to address such 82 

issues when dealing with data-poor and broad spatial areas (i.e. at continental or oceanic scales). 83 

 84 

Several statistical tools such as the Area Under the Curve of the Receiver Operating characteristic (AUC), 85 

the True Skill Statistic, or the Point Biserial Correlation are commonly used to evaluate the relevance of 86 

SDMs predictions (Fielding and Bell 1997, Allouche et al. 2006). Using these indices for models performed 87 

with presence-only data has been widely discussed because background-data are usually considered as 88 

absences, leading to confusion in model interpretation and violating most test assumptions (i.e. computing 89 

AUC and TSS statistics requires the use of true absences) (Jimenez-Valverde 2012, Li and Guo 2013). 90 

These methods can also be biased when applied to limited and broadly distributed data. Machine-learning 91 

algorithms are widely used in SDMs to fit complex relationships between species occurrences and 92 

environmental data (Elith et al. 2006). The resulting models may be highly complex and poorly efficient under 93 

changing environmental conditions as they may fit a response to any variation including the random noise 94 

(=model overfitting),(Wenger and Olden 2012). Models’ ability to predict in new environmental conditions is 95 

described as the generalisation performance.by Friedman et al. (2001). 96 
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Producing reliable SDMs implies finding a good trade-off between model complexity and predictive and 97 

generalisation performances (Anderson and Gonzalez 2011, Radosavljevic and Anderson 2014). The 98 

relevance of modelling and generalisation performance, and the optimal level of model complexity can be 99 

tested using independent data. The method has been commonly applied and referred to as the cross-100 

validation procedure (Araujo and Guisan 2006, Valavi et al. 2018). The cross-validation procedure uses a 101 

training subset of occurrence data to fit the model and a separate test subset to validate the predictions and 102 

the statistical relationships between the studied variables (Fielding and Bell 1997). ‘Random cross-validation’ 103 

procedures are widely used and randomly split the occurrence dataset into training and test subsets. 104 

However, the spatial aggregation of occurrence data can lead to the violation of the independence 105 

assumption between training and test data randomly sampled, and in turn to false confidence in modelling 106 

validation performances (Hijmans 2012). The violation of the independence assumption can also lead to 107 

generate highly complex and overfitted models (Boria et al. 2014, Merow et al. 2014, Radosavljevic and 108 

Anderson 2014). Therefore, the cross-validation procedure should be adapted to each given dataset and 109 

case study, so that, different ‘spatial cross-validation’ procedures have been developed and compared in this 110 

study. The spatial cross-validation procedures aim at spatially splitting the occurrence dataset into a training 111 

and a test subset by increasing the geographical distance between the two subsets (Veloz 2009, Brenning 112 

2012, Muscarella et al. 2014, Radosavljevic and Anderson 2014, Brown et al. 2017, Valavi et al. 2018). The 113 

spatial cross-validation reduces spatial correlation between training and test data in situations where spatial 114 

autocorrelation is significant in the occurrence dataset, a common issue in ecology (Roberts et al. 2017). 115 

Uncertainties in SDMs represent another limitation to model usage that should be quantified and the effects 116 

must be specifically assessed or taken into account during model interpretation (Barry and Elith 2006, 117 

Carvalho et al. 2011, Beale and Lennon 2012, Guisan et al. 2013). Model extrapolation outside the range of 118 

the known species environmental conditions leads to misinterpretation of SDM outputs and can be a real 119 

issue when using SDM predictions as a support tool for conservation decisions. Therefore, areas of optimal 120 

predictions and limited uncertainties must be identified. This can be achieved using indicators such as the 121 

Multivariate Environmental Similarity Surface (MESS). Developed for SDMs, the MESS index highlights 122 

areas where environmental conditions are outside the range of conditions observed in data (Elith et al. 123 

2010). 124 

In the present study, model uncertainties and the performance of several spatial cross-validation procedures 125 

were analysed using the case study of the sea star Odontaster validus Koehler, 1906. Distributed over the 126 

entire Southern Ocean (< 45°S), O. validus is a common and abundant species in shallow-water benthic 127 

habitats (McClintock et al. 2008, Lawrence 2013), characterised by an opportunistic feeding behaviour (from 128 
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suspension-feeding to algivory, deposit-feeding and predation). It has been shown to play a significant role in 129 

structuring benthic communities and regulating populations of other benthic taxa (McClintock et al. 2008). 130 

The species physiology was recently modelled using the Dynamic Energy Budget approach (Agüera et al. 131 

2015) which allows for the assessment of the metabolic performance of the species under different 132 

environmental conditions. Here, SDMs were produced to interpolate the known distribution of O. validus over 133 

its entire geographic range using an available dataset of environmental descriptors. The influence of spatial 134 

data aggregation on model outputs was analysed and the performance of correction procedures evaluated. 135 

In a second step, several cross-validation procedures were assessed and compared to test for modelling 136 

accuracy, optimal level of complexity and predictive performance. A final ‘optimum’ model is proposed, which 137 

takes into account uncertainty estimates. Results are generalised and formalised as guidelines for further 138 

SDM works, showing the relevance of the approach when working at broad spatial scale with a limited 139 

number of spatially aggregated presence-only records. 140 

 141 

2. Material and methods 142 

2.1.Model selection and calibration procedures 143 

SDMs were generated using the Boosted Regression Trees (BRTs) algorithm. BRTs were selected for their 144 

ability to fit complex relationships between species records and the related environment, while guarding 145 

against over-fitting (Elith et al. 2008, Reiss et al. 2011). BRTs are also adapted to deal with incomplete 146 

datasets (Elith et al. 2008), can perform well with low prevalence datasets (Barbet-Massin et al. 2012), are 147 

weakly sensitive to species niche width (Qiao et al. 2015) and were recognised to transfer well in space and 148 

time (Elith et al. 2006, Elith and Graham 2009, Heikkinen et al. 2012).  149 

BRTs were calibrated using the method proposed by Elith et al. (2008) to select the optimal number of trees 150 

in the final model (Appendix A). The combination of parameters that minimises the optimal number of trees 151 

to build the model (reduction of complexity) while reaching a minimum predictive deviance to the test data 152 

(reduction of error) was selected. The following parameters were used to calibrate the models: tree 153 

complexity= 4, bag fraction= 0.75 and learning rate= 0.007 (Fig. S2). The number of background data 154 

sampled in the area was set at 1,000 sampled points after evaluating the optimal number of data points to be 155 

sampled (see Appendix A for details). This number constitutes the best trade-off between describing 156 

environmental conditions and being as close as possible to the number of species presence records 157 

available (Barbet-Massin et al. 2012). All background sampling was restricted in space to areas shallower 158 

than 1,500 m depth, which corresponds to the species deepest record, in order to avoid model extrapolation 159 
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at depths known as unsuitable for the species survival based on knowledge of the species ecology 160 

(McClintock et al. 2008, Lawrence 2013). Sampling was restricted to a single background data per pixel. 161 

Similarly, presence records falling on a same 0.1° grid-cell pixel were filtered before model calibration in 162 

order to reduce spatial over-weighting (Segurado et al. 2006, Boria et al. 2014). 163 

 164 

2.2. Occurrence dataset 165 

SDMs were generated using presence-only data made available for the sea star O. validus by Moreau et al. 166 

(2018). Presence-only records of O. validus are strongly aggregated in space (i.e. concentrated in “easily” 167 

accessible and frequently visited areas characterised by relatively low sea ice concentrations), a condition 168 

also prevailing in the total dataset available for Southern Ocean benthic taxa (updated from Griffiths et al. 169 

(2014), Fig. S3), making O. validus a representative case study for Southern Ocean benthic studies.  170 

Models were generated using the environmental descriptors published as raster layers by Fabri-Ruiz et al. 171 

(2017). They were collected from different sources and modified to fit modelling requirements at the scale of 172 

the Southern Ocean (from 45°S latitude to Antarctica coasts). Collinearity between environmental descriptors 173 

was tested using the Variance Inflation Factor (VIF) stepwise procedure of the ‘usdm’ R package (Naimi et 174 

al. 2014) and Spearman correlations (rs) (R Core Team, 2017). Surface temperature and roughness, a 175 

depth-derived variable, were respectively correlated to ice cover and depth. They were omitted according to 176 

the commonly used thresholds of VIF > 5 and rs > 0.85 (Pierrat et al. 2012, Dormann et al. 2013, Duque-177 

Lazo et al. 2016). A final set of 16 environmental descriptors at 0.1° resolution was compiled to build the 178 

models (Table S5).  179 

 180 

2.3. Evaluation and correction of spatial aggregation  181 

The significance of spatial aggregation of occurrence data was tested by measuring spatial autocorrelation 182 

(Legendre and Fortin 1989) on model residuals using the Moran’s I index (Segurado et al. 2006, Dormann 183 

2007, Crase et al. 2012). A positive Moran’s I value (between 0 and 1) indicates that spatially close residuals 184 

will share similar values. A negative (close to -1) or null value respectively indicates a maximal dispersion or 185 

a random dispersion of residuals in space (Cliff and Ord 1981). Detecting significant spatial autocorrelation in 186 

presence-only records will assess the degree of aggregation of species records in the studied area.  187 

Two null models were generated and their respective outputs compared to each other in order to evaluate 188 

the importance of spatial aggregation in the total Southern Ocean benthic dataset (Fig. S3). Null model #1 189 

was produced to evaluate the overall spatial aggregation of benthic records in the Southern Ocean due to 190 

sampling effort. It was generated by randomly sampling n= 309 occurrence records (corresponding to the 191 
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number of non-duplicate presence-only data available for O. validus) in the total Southern Ocean benthic 192 

dataset (Fig. S3). 1,000 background records were randomly sampled in the entire Southern Ocean. The 193 

Moran’s I score was calculated by comparing model #1 predictions to the distribution of the total Southern 194 

Ocean benthic dataset (Fig. S3). Null model #2 was built to compute a reference Moran’s I score for a model 195 

generated with randomly distributed records. 309 presence data and 1,000 background data were randomly 196 

sampled in the entire Southern Ocean. Null model #2 would provide a reference value for spatial 197 

autocorrelation scores due to the intrinsic structure of environmental data. It will serve as a reference model 198 

for comparison with Moran’s I scores of model null #1 and to assess the degree of spatial aggregation due to 199 

sampling effort.   200 

To correct for the effect of spatial aggregation on modelling performance, a target-background correction 201 

method was applied (Phillips et al. 2009). The total Southern Ocean benthic dataset (Fig. S3) was used to 202 

create a Kernel Density Estimation layer that provides an estimate of the probability to find a benthic 203 

presence data for each pixel. The Kernel Density Estimation was calculated with the ‘kde2d’ function of the 204 

MASS R package (Ripley, 2015) on the extent of the Southern Ocean (n and lims parameters defined to fit a 205 

raster layer of extent (-180,180,-80,-45) and 0.1° resolution). Null model #1 was corrected by randomly 206 

sampling 1,000 background records according to the weighting scheme of the Kernel Density Estimation 207 

layer.  208 

 209 

After evaluating spatial aggregation in the total Southern Ocean benthic dataset, spatial autocorrelation was 210 

specifically assessed for O. validus. Spatial autocorrelation was measured for two models generated without 211 

(model A) and with (model B) Kernel Density Estimation correction. Comparison between the two models 212 

aimed at assessing the efficiency of the Kernel Density Estimation correction for O. validus. Model A (without 213 

correction) was built using all presence-only data available for O. validus and 1,000 background records 214 

randomly sampled in the Southern Ocean. Model B (with correction) was built using all presence-only data 215 

available for O. validus and 1,000 background records that were sampled following the weighting scheme of 216 

the Kernel Density Estimation layer. Each model was generated 100 times and the two averaged models 217 

(average models A and B) were compared to each other. Differences between models A and B quantify the 218 

importance of spatial aggregation on model outputs.  219 

Finally, model relevance was assessed using three statistics: the Area Under the Receiver Operating Curve 220 

(AUC) (Fielding and Bell 1997), the Point Biserial Correlation between predicted and observed values (COR, 221 

Elith et al. 2006) and the True Skill Statistic (TSS, Allouche et al. 2006).  222 

 223 
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2.4. Testing different cross-validation procedures  224 

SDMs validation was performed using different cross-validation procedures. Background data were first 225 

sampled in the entire area following the Kernel Density Estimation scheme and the compilation of presence-226 

only and background data was then split into a training and a test subset to build the cross-validation 227 

procedure. Two splitting procedures were followed; they differ between each other in the spatial 228 

independence between the training and the test subset.(1) The random cross-validation procedure, 229 

commonly used in SDMs, aims at randomly splitting the dataset into training and test subsets (Fielding and 230 

Bell 1997, Hijmans 2012) which may lead to close spatial vicinity between the two datasets (Hijmans 2012), 231 

and, (2) the spatial cross-validation procedure that aims at spatially spitting the dataset in order to reduce 232 

spatial correlation and may improve independence between the two subsets (Hijmans 2012, Muscarella et 233 

al. 2014).  234 

The random procedure was therefore compared to four different spatial cross-validation procedures. (1) In 235 

the ‘BLOCK’ method developed by Muscarella et al. (2014), different subsets of equal occurrence numbers 236 

are created. For each replicate, this k-fold procedure divides the dataset into four equal subsets according to 237 

the mean latitude and mean longitude positions of occurrence data (Fig. 1C), then three of these four 238 

subsets are randomly selected to train the model (75%) and the last one is used to test the model (25%). (2) 239 

In the ‘CLOCK’ methods, the dataset was divided according to random longitudinal transects, splitting the 240 

Antarctic Circle into two parts (2-fold ‘CLOCK’ method, Fig. 1B), (3) three parts (3-fold ‘CLOCK’ method, Fig. 241 

1D) or (4) four parts (4-fold ‘CLOCK” method, Fig. 1E). In the 2-fold ‘CLOCK’ method, one subset was 242 

considered as the training subset, the second one as the test subset; in the 3-fold ‘CLOCK’ method, two 243 

subsets were defined for training and the third one for testing; in the 4-fold ‘CLOCK’ method, three subsets 244 

were considered for training and one for testing (Fig. 1). Different cross-validation procedures were tested 245 

using the ‘gbm.step’ procedure available in the dismo R package (Elith et al. 2008, Hijmans et al. 2016). 246 

Once the dataset is split in different folds, Elith et al. (2008) apply an iterative procedure that enable to find 247 

the minimum deviance to the test data, and relates it to the optimal number of trees (optimal model 248 

complexity) to generate the model. If test and training data are spatially correlated, the number of trees 249 

required to build BRTs will be overestimated. Therefore, the use of Elith et al. (2008) procedure will enable to 250 

accurately interpret and compare optimal complexity and performance scores of models calibrated with 251 

either randomly or spatially segregated folds (i.e. with contrasting distances between training and test 252 

subsets), and thus will help explain the influence of occurrence spatial aggregation on model complexity and 253 

performance. 254 



 9 

R scripts written to generate the models and the different cross-validation procedures are provided online at: 255 

https://github.com/charleneguillaumot/THESIS/. 256 

Independence between training and test subsets was evaluated using the Spatial Sorting Bias index (SSB) 257 

(Hijmans 2012). SSB compares the distance between training-presence and testing-presence data with the 258 

distance between training-presence and training-background. SSB~0 (non independence) means that the 259 

‘’distance between training-presence and test-presence sites will tend to be smaller than the distance 260 

between training-presence and test-background sites’’ (Hijmans 2012). SSB ~1 indicates that the two 261 

distances are comparable (enough independent) (Hijmans 2012). SSB was calculated with the dismo R 262 

package (Hijmans et al. 2016).  263 

SDMs evaluation was generated by computing the percentage of test data that fall on grid-cell pixels 264 

predicted as suitable. Suitable pixels were defined using the Maximum sensitivity plus specificity threshold 265 

(MaxSSS) that splits models into suitable (>MaxSSS value) and unsuitable areas (<MaxSSS value). 266 

MaxSSS is accepted as a relevant threshold for presence-only SDMs (Liu et al. 2013). The averaged optimal 267 

number of trees required to generate BRTs was compared between models and used as a proxy of model 268 

complexity.  269 

Statistical differences between models generated with the different cross-validation procedures (AUC, TSS, 270 

COR, percentage of correctly classified test data, number of trees) were tested using the non-parametric 271 

Mann-Whitney Wilcoxon pairwise comparison. 272 

 273 

 274 

 275 

 276 

 277 

 278 
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 279 

Figure 1: Comparison of the different cross-validation procedures. Dots represent Odontaster validus presence-only 280 

records and a random set of 1,000 background data, sampled according to the Kernel Density Estimation weighting 281 

scheme. Colors indicate data splitting into training (pink) and test (green) subsets. Blue background corresponds to 282 

bathymetry and grey areas to emerged lands. For each case, 100 replicates of random background-data sampling and 283 
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transects partitioning are performed.  (A) Random cross-validation procedure, with a random splitting into 75% training 284 

and 25% test data. (B) ‘2-fold CLOCK’ clustering by random spatial partition of the dataset into two groups (one training, 285 

one test). (C) ‘BLOCK’ splitting, generated according to the median latitudinal and longitudinal values (Muscarella et al. 286 

2014). After generation of four groups (corresponding to the four colors), one group is randomly defined as the test 287 

subset, the other three groups as the training subset. A different system of projection was used to represent this map to 288 

highlight the latitudinal and longitudinal definition of the transects. (D) ‘3-fold CLOCK’ clustering by random spatial 289 

partition of the dataset into three groups (2 training, 1 test). (E) ‘4-fold CLOCK’ clustering by random spatial partition of 290 

the dataset into four groups (3 training, 1 test). 291 

 292 

2.5. Assessment of model uncertainty 293 

The Multivariate Environmental Similarity Surface (MESS) index was estimated following the procedure 294 

described by Elith et al. (2010) using the dismo R package (Hijmans et al. 2016). The MESS calculation 295 

consists in extracting the environmental conditions where presence-only data were recorded and 296 

determining for each pixel of the model projection layer if environmental conditions are covered by presence-297 

only records. Negative MESS values indicate areas of model extrapolation in which the value of at least one 298 

environmental descriptor is beyond the environmental range covered by available presence-only records. 299 

Conversely, positive MESS values indicate areas of model projection in which values of environmental 300 

descriptors are within the environmental range covered by presence-only records. According to the number 301 

of environmental descriptors that are not included inside the range of presence records values, MESS 302 

outcome can strongly vary. The MESS evaluation deals with each environmental descriptor equally 303 

(unweighted analysis) and in this study, a pixel was considered as unsuitable as soon as a single descriptor 304 

value does not match the environmental range of presence-only records. On a projection map, SDMs 305 

prediction was darkened according to the MESS extrapolation range to visualise the uncertain area due to 306 

extrapolation. Extrapolation performance of SDMs was assessed by comparing the proportion of the 307 

environment predicted as suitable by the model with the total set of environmental conditions.  308 

 309 

3. RESULTS  310 

3.1. Available data and spatial autocorrelation  311 

Distribution records available for Odontaster validus display a circumpolar and patchy spatial pattern (Fig. 312 

2A). The niche occupied by O. validus does not cover the entire range of environmental conditions prevailing 313 

in the projection area (Fig. 2B). O. validus is recorded in conditions close to zero and sub-zero seafloor 314 

temperatures (Fig. 2B) and is mainly distributed in shallow and coastal areas. Most of O. validus presence 315 
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records are aggregated in regions where scientific benthic surveys are most often led and where sampling 316 

effort was privileged due to access facilities (e.g. the Ross Sea and the Antarctic Peninsula). Overall, this 317 

holds true for presence records of all benthic Southern Ocean taxa as well (Fig. S3), although, in this case, 318 

most environmental conditions are covered by the total benthic samples (Fig. 2B). 319 

 320 

Figure 2: (A) Presence-only records of the sea star Odontaster validus in the Southern Ocean. Duplicates (occurrences 321 

falling on a same 0.1° resolution pixel) were removed from the display. (B) Values of the environmental range covered by 322 

the entire benthos sampling dataset presented in Fig. S3 (black dots), by presence-only records of O. validus (green 323 

dots) in comparison with a 1,000 background dots randomly sampled according to the Kernel Density Estimation scheme 324 

(grey dots) for two environmental descriptors: mean seafloor temperature (°C) and mean seafloor salinity (PSU). A part 325 

of the environment (grey dots) does not contain benthic occurrence samples (black dots), illustrating that sampling effort 326 

is not geographically exhaustive. 327 

 328 

Spatial autocorrelation was measured for both the total Southern Ocean benthic dataset (null models) and 329 

for O. validus alone (models A and B) (Table 1). Moran’s I scores were tested significant for all models, null 330 

model #2 excepted. The absence of spatial autocorrelation (I=0.005 ± 0.004; p=0.19) in null model #2 shows 331 

that environmental data are not strongly aggregated in space. In contrast, presence-only records of the total 332 

Southern Ocean benthic dataset are spatially aggregated. The degree of spatial aggregation due to sampling 333 

effort is evidenced by the comparison between null model #1 and #2, scores of model #1 being 10 times 334 

higher than those of null model #2 (Moran’s I=0.050 ± 0.011 and 0.005 ± 0.004, respectively).  335 
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Values of Moran’s I computed for models of O. validus (models A and B) are higher than those computed for 336 

the total Southern Ocean benthic dataset (null model #1 and #1 with Kernel Density Estimation). The 337 

sampling bias is therefore more pronounced for O. validus than for the majority of other benthic species. 338 

Model correction by the Kernel Density Estimation procedure was shown to reduce spatial autocorrelation 339 

with Moran’s I values decreasing from 0.050 to 0.034 for null model #1, and from 0.085 to 0.069 for O. 340 

validus models A and B (Table 1). However, although lower, Moran’s I values remain significant after 341 

correction, indicating that the applied corrections do not entirely remove the presence of spatial 342 

autocorrelation.  343 

 344 

Table 1: Comparison between models of spatial autocorrelation values measured on model residuals (average and 345 

standard deviation of Moran’s I values computed for 100 model replicates). Moran’s I significance is indicated by p-346 

values; for p <0.05, the absence of spatial autocorrelation (null hypothesis) is rejected. Null model #1: 309 presence 347 

records were randomly sampled among occurrences of the total Southern Ocean benthic dataset (Fig. S3) and 348 

background data are composed of 1,000 points randomly sampled in the entire Southern Ocean; model #2: 309 records 349 

(to define presence records) and 1,000 background data both randomly sampled in the entire Southern Ocean; model #1 350 

with Kernel Density Estimation: similar to model null #1 but with 1,000 background data randomly sampled following the 351 

Kernel Density Estimation weighting scheme; model A: 309 presence records of Odontaster validus and 1,000 352 

background data were randomly sampled in the entire Southern Ocean; model B: similar to model A but with the 1,000 353 

background data sampled following the Kernel Density Estimation weighting scheme. AUC: Area Under the Receiver 354 

Operating Curve, TSS: True Skill Statistic, COR: Point Biserial Correlation.  355 

 356 

 Null model #1  Null model #2 Null model #1 with Kernel  
Density Estimation 

Model A Model B 

Spatial autocorrelation 

(Moran’s I)  

 

0.050 ± 0.011 

p<0.001 

0.005 ± 0.004 

p=0.19 

0.034 ± 0.011 

p<0.001 

0.085 ± 0.009 

p<0.001 

0.069 ± 0.006 

p<0.001 

AUC 0.976 ± 0.010 0.710 ± 0.014 0.964 ± 0.015 0.997 ± 0.001 0.948 ± 0.003 

TSS 0.674 ± 0.013 0.331 ± 0.020 0.660 ± 0.019 0.698 ± 0.002 0.696 ± 0.003 

COR 0.850 ± 0.028 

p<0.001 

0.336 ± 0.018 

p<0.001 

0.801 ± 0.037 

p<0.001 

0.944 ± 0.011 

p<0.001 

0.923 ± 0.015 

p<0.001 

 357 
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3.2. Comparison of cross-validation procedures 358 

For the BRT fitted with the random cross-validation procedure, all overall goodness-of-fit metrics (AUC, TSS, 359 

COR) were good with predictive accuracy Area Under the Curve (AUC) values higher than 0.9 (Table 2). 360 

However, when evaluated through spatial cross-validation procedure, the AUC scores decreased in all 361 

BRTs. These results show that BRTs tend to overfit the data if the independence between training and test 362 

data is not ensured. Indeed, the random cross-validation procedure presents SSB values close to zero, 363 

indicating that training and test subsets may be highly correlated (Fig. 1A). In contrast, all spatial cross-364 

validation procedures have SSB values close to 1, indicating a better spatial independence between training 365 

and test data (Table 2).  366 

The generalisation performance (AUC and correctly classified test data) are very high for the random cross-367 

validation procedure, with more than 89.4% of test-presence records falling correctly in areas predicted as 368 

suitable by the model (Table 2).  369 

The random cross-validation procedure generates more complex BRTs compared to the spatial methods 370 

(significantly higher number of trees for the random cross-validation procedure compared to the spatial 371 

cross-validation procedures). As the model closely fits the dataset used for its construction, high AUC, TSS 372 

and COR scores were obtained but these results may be misleading and overestimated. In contrast, spatial 373 

cross-validation procedures generate less complex models (more general), which could account for lower 374 

AUC, TSS and COR scores.  375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 
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Table 2: Average Spatial Sorting Bias (SSB) and standard deviation values for the 100 model replicates (background 389 

sampling + test/training clustering). AUC: Area Under the Receiver Operating Curve; Correctly classified test data (%): 390 

percentage of presence-test and background-test records falling on predicted suitable areas (prediction > maximum 391 

sensitivity plus specificity (maxSSS) threshold); TSS: True Skill Statistic; COR: Point Biserial Correlation; ntrees: 392 

averaged optimal number of trees required to generate BRTs. Stars are indicated for spatial cross-validation groups 393 

significantly different from the random cross-validation procedure (non-parametric pairwise Mann-Whitney Wilcoxon test, 394 

p-value <0.01). 395 

Random cross-

validation 

Random splitting 

Spatial cross-

validation 

 Block method 

Spatial cross-

validation 

 2-fold Clock 

method 

Spatial cross-

validation 

 3-fold Clock method 

Spatial cross-

validation 

4-fold Clock method 

Mean SSB 0.101 ± 0.04 0.802 ± 0.37 0.832 ± 0.09 0.803 ± 0.23 0.848 ± 0.32 

AUC 
0.947 ± 0.013 0.854* ± 0.06  0.811* ± 0.053 0.818* ± 0.078 0.824* ± 0.089 

Correctly classified test 

data (%) 
89.452 ± 1.523 80.946* ± 7.504 80.039* ± 3.489 80.713* ± 5.421 79.471* ± 8.538 

Test data (% of total 

dataset) 

25% 
[13-38]% 

[19-81%] [1-68%] [1-66%] 

TSS 
0.715 ± 0.041 0.542* ± 0.188 0.465* ± 0.088 0.490* ± 0.136 0.576* ± 0.165 

COR 0.792 ± 0.029 0.632* ± 0.126 0.584* ± 0.089 0.591* ± 0.12 0.483* ± 0.197 

ntrees 
1580 ± 251.058 543.5* ± 88.9 375* ± 91.9 424.5* ± 131.1 379* ± 98.5 

 396 

3.3. Proposed model and uncertainty map 397 

We decided to maximise the spatial independence between training and test subsets, minimise model 398 

complexity and optimise generalisation performances in O. validus model. Using these criteria, we found that 399 

the ‘2-fold CLOCK‘ modelling method was well adapted to O. validus dataset (second highest TSS and COR 400 

scores; high proportion of test data being correctly classified, with the lowest standard deviation score (80.04 401 

± 3.49%); an important proportion of the total dataset used a test subset [19-81%] and the lowest model 402 

complexity (ntrees = 375 ± 91.9). 403 

The MESS index was calculated in order to define the part of this extrapolated area, that is, the part of the 404 

geography for which at least one environmental descriptor is outside the environmental conditions of the 405 
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sampled presence records. The MESS index was compiled as a raster layer and projected on the probability 406 

distribution map by darkening uncertain areas (Fig. 4). Uncertain areas due to extrapolation represent 64.2% 407 

of the entire projected surface, the major part being also predicted by the model as unsuitable (Table 3). 408 

Almost 9.5% of the area was however predicted as suitable by the model although considered as an 409 

extrapolated area.  410 

 411 

  412 

Figure 4: SDMs performed with the spatial cross-validation ‘2-fold CLOCK’ method. Average of 100 model replicates. 413 

Distribution probabilities are darkened according to the Multivariate Environmental Similarity Surface (MESS) layer, with 414 

dark pixels corresponding to regions where the model extrapolates outside of the environmental conditions in which the 415 

species was sampled. Dark pixels represent 64.2% of the entire projected area. Probabilities of presence are contained 416 

between 0 and 1 but the colorbar was scaled until 0.6 to enhance visual contrast. 417 

 418 

 419 

 420 

 421 

 422 
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Table 3: Proportion of interpolated and extrapolated pixels according to the averaged SDMs predictions. Interpolation (or 423 

uncertain extrapolation respectively) refers to areas where environmental conditions within the pixel are inside (or 424 

outside, respectively) of the species ecological range, as defined by the Multivariate Environmental Similarity Surface 425 

(MESS). Suitable pixels were defined using the MaxSSS threshold that splits model predictions into suitable (>maxSSS 426 

mean score) or unsuitable areas (<maxSSS mean score). 427 

MESS classification Model prediction 

 Suitable pixels  Unsuitable pixels  

Interpolation 10.24% 25.57% 

Uncertain extrapolation 9.42% 54.77% 

 428 

4. DISCUSSION 429 

4.1. Evaluating SDM performance 430 

Using independent datasets to test SDM performance is a prerequisite for relevant validation analyses 431 

(Peterson et al 2011). At broad spatial scale and in data-poor areas, the number of available data is limited 432 

and data distribution often patchy, which really challenges the success of validation procedures. Estimating 433 

the performance of SDMs predictions and the level of extrapolation in such areas is a necessity. The cross-434 

validation procedure has been proposed as a reliable approach to evaluate modelling performances 435 

(Fielding and Bell 1997, Hijmans 2012, Dhingra et al. 2016, Roberts et al. 2017). Cross-validation 436 

procedures must however be adapted to spatially aggregated data because training and test subsets may be 437 

sampled in close areas, violating the independence assumption (Segurado et al. 2006, Hijmans 2012). Such 438 

a potential bias is rarely taken into account. In the present work, we compared SDM performance using five 439 

different cross-validation procedures for modelling, at broad spatial scale, the distribution of a species for 440 

which available data are limited in number and are spatially aggregated. Results show strong differences 441 

between procedures, which highlights the importance of testing and selecting the most appropriate method 442 

when evaluating model performance. 443 

 444 

4.2. Correction for spatial autocorrelation and spatial bias  445 

Strong significant Moran’s I scores were measured on model residuals, revealing the presence of spatial 446 

autocorrelation in the total Southern Ocean benthic dataset (Fig. S3). The difference between null models #1 447 

and #2 evidences the influence of sampling aggregation on spatial autocorrelation values (Table 1) as 448 
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discussed by Guillaumot et al. (2018). O. validus presence-only dataset follows the same pattern, with 449 

records aggregated in coastal areas where sampling effort has been mostly concentrated (Table 1, Fig. 2). A 450 

target-group background sampling was applied and proved to be efficient to reduce spatial autocorrelation 451 

(as assessed using Moran’s I statistic), although it still remains at a significant level. Spatial autocorrelation 452 

scores are strongly dependent on the resolution of environmental raster layers. The coarse resolution of 453 

environmental data used in the present study may be responsible for the over-estimation of spatial 454 

autocorrelation scores. This could account for spatial autocorrelation remaining significant even after the 455 

Kernel Density Estimation correction.  456 

 457 

4.3. Selection of cross-validation procedures  458 

The random cross-validation procedure has been widely used in ecological modelling to evaluate model 459 

predictions (Fielding and Bell 1997, Merow et al. 2013, Mainali et al. 2015, Torres et al. 2015, Phillips et al. 460 

2017) but the method has been rarely compared to alternative procedures. The present study shows that 461 

contrasting model assessments are obtained when using different cross-validation procedures 462 

(Radosavljevic and Anderson 2014, Roberts et al. 2017). Applying a random cross-validation to an 463 

aggregated dataset at a broad spatial scale can result in training and test subsets being sampled in the 464 

same area, and leads to an inflation of modelling performances (Veloz 2009, Hijmans 2012, Radosavljevic 465 

and Anderson 2014, Wenger and Olden 2012). In the context of this study, SDMs produced with a broad-466 

scale and spatially aggregated occurrence dataset and a random cross-validation procedure are more 467 

complex and likely over-fit the training dataset. This also may account for the high evaluation scores 468 

obtained (AUC, TSS, COR) and may also explain the apparent high generalisation performance of BRTs 469 

fitted with random cross-validation. The lack of model generality can a posteriori lead to strong caveats and 470 

unreliable models with poor transferability performance when projected on a new environmental space 471 

(Wenger and Olden 2012, Crimmins et al. 2013). Methods that select the most parsimonious BRT, combine 472 

low model complexity and high modelling performance should therefore be preferred.  473 

 474 

The spatial cross-validation procedures tested in this study were shown to produce less complex models 475 

than the random cross-validation procedure. Increased model generality (i.e. decrease in model over-fitting) 476 

and forced spatial segregation between training and test subsets result in decreasing SDMs validation 477 

scores. These results show that applying a random cross-validation procedure for a patchy dataset can lead 478 

to over-estimation of SDMs predictive performance if training and test subsets are not independent. This is in 479 

line with several works (Brenning et al., 2005, Elith et al. 2010, Andersen 2013, Muscarella et al. 2014) in 480 
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which a decrease of AUC scores can be reported when using a spatial cross-validation procedure instead of 481 

a random procedure. Machine-learning algorithms have been reported to be the best approaches to 482 

generate SDMs but the influence of over-fitting on model evaluation are underestimated (Reiss et al. 2011, 483 

Duan et al. 2014, Beaumont et al. 2016, Thuiller et al. 2016, Guillaumot et al. 2018) although its effect has 484 

been pointed out in several works (Elith et al. 2008, Jimenez-Valverde 2008, Wenger and Olden 2012). Our 485 

results show that the evaluation of SDMs performance can be strongly influenced by the choice of the 486 

evaluation procedure.  487 

 488 

In this work, several spatial cross-validation procedures were compared with each other but no single and 489 

best procedure emerged, a common case in ecological modelling (Qiao et al. 2015). The appropriate method 490 

to be used is highly dependent on the species and dataset under study. For instance, the ‘BLOCK’ method 491 

introduced by Muscarella et al. (2014) should not be used at broad spatial scale, where too important 492 

latitudinal contrasts in environmental conditions are present. In this study, such contrasting environmental 493 

conditions (due to the presence of an environmental latitudinal gradient between sub-Antarctic and Antarctic 494 

regions, with occurrence aggregation in the two regions) lead to higher variability in generalisation 495 

performance during model projection, depending on the data subsets selected to train and test the model 496 

(Roberts et al. 2017). The ‘BLOCK’ method favors the independence between training and test subsets but 497 

models are slightly more complex because they are calibrated on contrasting environmental conditions (sub-498 

Antarctic vs. Antarctic areas) and over-fit the training dataset that could also present a patchy distribution. 499 

The ‘BLOCK’ method is therefore more adapted to case studies without strong patchy and contrasting 500 

environmental conditions. The ‘CLOCK’ procedures developed in this study helped reduce the effect of 501 

latitudinal patchy occurrences distribution by mixing presence records sampled in Antarctic and sub-Antarctic 502 

regions to define training and test subsets. The ‘CLOCK’ methods generate less complex models and were 503 

proved more efficient to define spatially independent training and test subsets. However, the number of 504 

training and test records sampled between model replicates is not constant, which contributes to an 505 

important variability in validation performance scores. The selection of the different ‘CLOCK’ methods also 506 

depends on the importance of data aggregation and patchy patterns within environmental conditions. For 507 

strong data aggregation, the ‘2-fold CLOCK’ approach will help reduce the influence of patchy patterns 508 

during model calibration and will help generalise the model and decrease its complexity. ‘3 or 4-fold CLOCK’ 509 

methods present close modelling performances but the proportion of occurrence records used to test the 510 

model might be very low.   511 
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Alternative SDM evaluation procedures can be found in the literature: for instance, calibrated cross-validation 512 

procedures aim at removing occurrences from the test subset when considered too close to the training 513 

subset (and considered as non-informative according to a statistical threshold) (Hijmans 2012). For limited 514 

presence-only datasets, removing a part of the available occurrence data may lead to the removal of a 515 

proportion of informative records, which does not constitute a reasonable option (Bean et al. 2012, van 516 

Proosdij et al. 2016). The leave-one-out method can also provide a relevant estimate of model goodness-of-517 

fit, even for spatially aggregated datasets (Olden et al. 2002, Wenger and Olden 2012). The method aims at 518 

randomly excluding a single record from the total dataset. The model is trained on the remaining data and 519 

predicts the model response on the single removed point to test for model prediction. The procedure is 520 

replicated several times, providing a powerful evaluation of model accuracy. However, assessment of 521 

generalisation performances is not permitted with this approach (Wenger and Olden 2012). 522 

 523 

In addition to cross-validation procedures, the relevance of model validation performance is also strongly 524 

dependent on the quality of environmental descriptors available. The number of no-data pixels as well as 525 

grid-cell resolution can critically affect model evaluation. This is especially true in the present study because 526 

environmental variables, measured or interpolated, rarely extend to coastal areas, and resolution in the 527 

Southern Ocean can rarely be better than 10 km2. Good quality datasets are needed and such limitations 528 

must be taken into account when interpreting model outputs. 529 

 530 

4.4. Uncertainty assessment in SDMs predictions 531 

SDM uncertainty assessment has been a widely discussed topic (Barry and Elith 2006, Carvalho et al. 2011, 532 

Beale and Lennon 2012, Guisan et al. 2013). Uncertainty in model predictions has been often assessed as 533 

the variation among the predicted distribution probabilities (Buisson et al 2010) but this approach does not 534 

provide precise information on the origin of uncertainty (Tessarolo et al. 2014).  535 

The MESS metric is a relevant indicator of SDMs extrapolation performance (Elith et al. 2010, Dhingra et al. 536 

2016). The Mobility Oriented Parity (MOP) introduced by Owens et al. (2013) was recently proposed as an 537 

alternative to the MESS index. MESS considers extrapolation on a pixel as uncertain when at least one 538 

environmental value falls outside the environmental range of presence records. In contrast, MOP offers more 539 

flexibility by defining an extrapolated area when all environmental values fall outside the sampled 540 

environmental range. Therefore, MESS is more conservative than MOP to define species ecological 541 

envelope. 542 
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Here, MESS was used to assess the proportion of the projected area for which models extrapolate. Our 543 

results show that more than half of the area corresponds to environmental conditions for which presence 544 

records have not been sampled. 9.5% of this extrapolated area is even predicted as a suitable environment. 545 

This highlights the weakness of SDMs for spatial generalisation and the risk of providing inaccurate SDMs 546 

for conservation purposes, especially if the communication between modellers and environmental managers 547 

is neglected (Guisan et al. 2013). Our results show the importance of providing uncertainty maps along with 548 

SDM outputs in order to help interpret models with the necessary caution.  549 

 550 

5. Conclusion  551 

This work highlights the importance of assessing the relevance of SDM evaluation procedures. When 552 

applied to occurrence datasets, spatially autocorrelated and broad-scale presence-only datasets, the random 553 

cross-validation procedure may over-estimate model validation scores due to the violation of independence 554 

between training and test subsets. Applying a spatial cross-validation procedure that spatially segregates 555 

training and test data was shown to be effective to provide a reliable analysis of model performance. Spatial 556 

cross-validation methods also help reduce model complexity and therefore improve generalisation 557 

performances. The ‘CLOCK’ methods developed in this paper were proved to be appropriate to our Southern 558 

Ocean case study and could be applied to other non-polar case studies. This study proves the importance of 559 

testing and comparing several spatial cross-validation procedures to identify the procedure most adapted to 560 

each case study. 561 

The MESS index was used to visualise areas where SDMs extrapolate outside the range of the 562 

environmental conditions where presence records were sampled. Such results show the importance of 563 

providing information on model uncertainty to correctly interpret SDM outputs. 564 

 565 
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