
HAL Id: hal-02269995
https://hal.science/hal-02269995

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning-based control for a communicating mobile
robot under unknown rates

Lucian Busoniu, Vineeth Varma, Irinel-Constantin Morarescu, Samson
Lasaulce

To cite this version:
Lucian Busoniu, Vineeth Varma, Irinel-Constantin Morarescu, Samson Lasaulce. Learning-based
control for a communicating mobile robot under unknown rates. American Control Conference, ACC
2019, Jul 2019, Philadelphia, PA, United States. �10.23919/acc.2019.8815213�. �hal-02269995�

https://hal.science/hal-02269995
https://hal.archives-ouvertes.fr

Learning-based control for a communicating mobile robot
under unknown rates

Lucian Buşoniu, Vineeth S. Varma, Irinel-Constantin Morărescu, Samson Lasaulce

Abstract— In problems such as surveying or monitoring re-
mote regions, a mobile robot must transmit data over a wireless
network with unknown, position-dependent transmission rates.
We propose an algorithm to achieve this objective that learns
approximations of the rate function and of an optimal-control
solution that transmits the data in minimum time. The rates are
estimated with supervised learning from the samples observed;
and the control is found with dynamic programming sweeps
around the current state of the robot that exploit the rate
function estimate, combined with online reinforcement learning.
For both synthetic and realistic rate functions, our experiments
show that the learning algorithm empties the data buffer in
less than twice the number of steps achieved by a model-based
solution that requires to perfectly know the rate function.

I. I NTRODUCTION

We consider a problem in which a mobile robot must
transmit a data file (or equivalently, empty a data buffer)
over a wireless network, with transmission rates given by a
position-dependent function that is unknown to the robot.
The objective is to move in such a way that the file is
transmitted in minimum time. Such a problem appears, e.g.,
when a robot autonomously collects data in remote areas
without network coverage (e.g., photographic surveying or
tunnel mapping) and must then return near a human operator
to quickly upload this data over an ad-hoc network, before
moving on to the next mission.

In the literature, most works treat the problem of trajectory
planning for communicating robots with a requirement on
the instantaneous communication rate or quality of service,
see e.g., [15], [4]. Differently from this, we are interested
in a robot that must send data to a fixed (set of) antennas
in minimum time, resulting in an optimization problem with
an implicit constraint on the integral of the communication
rate. In the case of a simple and known model of the wireless
communication rate (assuming circular symmetry and only
taking path loss into account), some recent works [13], [7]
have optimized the trajectory of the robot. In [6], multiple
users of a mobile access point lead to a non-circular, but still
known and rather specific shape.

In this paper, we do provide a numerical model-based
solution for the case when the rates are known, and this
solution is more general than [13], [7], [6] since it works for

L. Buşoniu is with the Automation Department, Technical University of
Cluj-Napoca, Romania. V.S. Varma and I.C. Morărescu are with Université
de Lorraine, CNRS, CRAN, F-54000 Nancy, France. S. Lasaulceis with
the Laboratoire des Signaux et Systemes (L2S, CNRS - CentraleSupelec -
Univ. Paris Sud), Gif-sur-Yvette, France. Contact: lucian@busoniu.net. This
work was supported by a grant of the Romanian Ministry of Research and
Innovation, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2016-
0670, within PNCDI III.

arbitrarily-shaped rate functions. However, our main interest
is different: we focus on the case when the robot does not
know the properties of the wireless network in advance, i.e.
when the rate function is unknown. Such a situation is much
more common in practice.

Therefore, as the main contribution of the paper, we pro-
pose an algorithm that simultaneously learns approximations
of both the rate function, from its values observed so far
along the trajectory, and of an optimal-control solution that
minimizes the transmission time. This algorithm belongs to
the reinforcement learning (RL) class [17], but our problem
is quite different from standard RL. Firstly, the robot is
only given a single trajectory to transmit its data, and
performance is only important along this trajectory, whereas
RL usually learns from many trajectories. Secondly, whereas
RL approaches often start without any model knowledge,
here the motion dynamics of the robot are known, and only
the rate function is unknown. Our key idea is to use the
learned estimate of this function to perform local model-
based updates (dynamic programming sweeps) to achieve
fast single-trajectory learning. In addition, we directlyexploit
transition samples using a version of Q-learning. Such tar-
geted combinations of model-based and model-free learning
are rare in RL.

Some recent works like [5], [8] explore control of robots
with rates that are uncertain but have a known model. In
[19], the trajectory of the robot is fixed, but the velocity
is optimized by learning the communication rate while the
robot moves. The authors of [19] assume a much more
general model for the wireless network that is suitable for
practical applications, but as mentioned, consider a fixed
trajectory, whereas our algorithm generates the trajectory
adaptively. Indeed, to the best of our knowledge there are
no methods that learn both the radio map and a near-optimal
trajectory, like our algorithm.

Our model-based updates with the learned rate function
are related to Dyna [16], which finds a model from samples
and then applies DP updates to it. Prioritizing certain areas of
the state space is related to prioritized sweeping [11], a way
to focus updates on samples that are deemed more important.
Our method can also be seen as reusing data in-between RL
updates, and so it bears similarities with experience replay
[9], which reapplies learning updates to memorized transition
and reward samples, and which has recently experienced a
resurgence in the field of deep RL [10]. Nevertheless, our
method is unique due to the specific structure of the problem
that we are considering, which allows us to focus the learning
algorithm on the key unknown element: the rate function.

Next, Section II provides a formal statement of the prob-
lem addressed, and the algorithm for known rates is given
in Section III. Section IV describes the main, learning algo-
rithm for unknown rates. Since this algorithm is empirical,
Section V evaluates it in experiments on a synthetic example,
while Section VI illustrates the method on a more realistic
example. Section VII concludes the paper.

II. PROBLEM DEFINITION

Consider a mobile robot with positionp ∈ P whereP ⊆
R

2. We will work in discrete-time withk denoting the time
step, so the robot has motion dynamicsg : P × U → P :

pk+1 = g(pk, uk) (1)

where uk ∈ U is the control input, andU is the set
of possible inputs. The robot carries a data buffer of size
b ∈ R+ that it must deliver over a wireless network with
a transmission rate that varies with the position,R(p) with
R : P → R+. Here, R+ denotes the set of positive real
numbers including zero. Therefore, the buffer size evolves
like:

bk+1 = max {0, bk − R(pk)} . (2)

We denote the overall state byx := [p⊤, b]⊤ ∈ X,
X := P × R+, containing the position and the buffer size.
Therefore, the overall dynamics are:

xk+1 = f(xk, uk) :=

[
g(pk, uk)

max {0, bk − R(pk)}

]
. (3)

Given an initial positionp0 and buffer sizeb0, which
together yield the initial statex0, the objective is to deliver
the buffer in minimum time. If the energy taken by the
robot to move one step is roughly constant, then this also
corresponds to minimizing energy. Define now the stage
reward function:

ρ(b) =

{
−1 if b > 0

0 if b = 0
(4)

and the long-term value function:

V h(x0) =
∞∑

k=0

ρ(bk) (5)

wherexk+1 = f(xk, uk) anduk = h(xk) is taken according
to the state feedback lawh : X → U . Then, we can restate
our objective via the optimal control problem:

max
h

V h(x) =: V ∗(x), ∀x (6)

that is, find a control law that minimizes the number of
steps until the buffer size becomes zero from any initial
state. We choose to (equivalently) use maximization instead
of minimization since our learning methods originate in
artificial intelligence, where optimal control problems are
usually stated in terms of maximizing values.

Remark: The state signal chosen implies that the robot
moves according to first-order dynamics. We could include
other state variables like velocities, headings, etc. inx, and
all the algorithms below can be extended to handle such state

signals. Similarly, the reward function could be changed to
include additional objectives besides transmitting the buffer,
such as energy costs that vary with the motion, or navigating
to a goal state. We make simple choices here in the interest
of readability, and because they are sufficient to illustrate our
ideas. �

III. SOLUTION FOR KNOWN RATE FUNCTIONS

If the position-dependent rateR is known, we can apply
dynamic programming (DP) to solve the optimal control
problem. Construct an initial value functionV0(x) = 0,∀x,
and then iterate forℓ ≥ 0:1

Vℓ+1(x) = max
u∈U

[ρ(b) + Vℓ(f(x, u))] ,∀x (7)

whereb is the buffer size component of statex. Note that
knowledge ofR is required to simulatef(x, u). The algo-
rithm is stated “forward in iterations”, but can also intuitively
be seen as running “backwards in time” as would usually be
done in finite-horizon applications of DP. Here however, the
horizon is not set in advance; instead, since the trajectory
must run until the buffer is empty, the horizon until this event
occurs depends on the initial buffer size and on the positions
along the trajectory. We handle the problem in the infinite-
horizon setting, per (5). In general, studying the convergence
of such infinite-horizon DP methods is challenging since
values may grow unbounded unless specific care is taken
to avoid this [2], e.g. by including a discount factor. In
our particular problem, with discounting the value function
would no longer be the minimal number of steps to zero
buffer. However, even without discounting, a simple case
where a finite number of iterations is sufficient to find the
optimal solution is when the rate is lower bounded by some
valueR (which may represent a minimum quality-of-service
requirement) at everyp, i.e., R(p) ≥ R > 0, and when
b0 ≤ b̄ . Under this assumption, the buffer will be emptied
in at most b̄/R step from any initial state. After stopping
the algorithm at finite iteration̄ℓ larger than this number of
steps, we apply the state feedback:

h(x) ∈ arg max
u∈U

[ρ(b) + Vℓ̄(f(x, u))] (8)

with ties between maximizing actions resolved arbitrarily.
In general, the algorithm is not implementable as given

above, for several reasons: the maximization overu is a
possibly nonconcave and nondifferentiable global optimiza-
tion problem, V cannot be exactly represented in closed
form for continuous argumentsx, and the rates may be
zero at some positions. Below we describe some empirical
solutions to these issues, which are rather standard in the
field of approximate dynamic programming [1], [17]. First,
we assume thatU consists of a finite, discrete set of actions,
and solve maximization by enumeration. Second, we assume
P is bounded and rectangular and thatb ∈ [0, b̄] (ensured
by the conditionb0 ≤ b̄ already discussed above), which

1Subscriptℓ in Vℓ denotes the iteration index, whereas the superscripts
used earlier denote either the dependence on the policyh, in V h, or the
particular case of the optimal policy, inV ∗.

is reasonable in a practical application. We then represent
V approximately, using multilinear interpolation over grids
defined along the interval domains of each of the state
variables. Denoting the approximate value function byV̂ ,
this representation can be written:

V̂ (x; θ) = ϕ⊤(x)θ (9)

where θ ∈ R
n, ϕ : X → R

n, and n is the total number
of points on the grid. Here,θi is the parameter associated
with point i and ϕi(x) is the weight with which pointi
participates to the approximation, which is easy to obtain
from the interpolation procedure. Note that in factϕ(x)
will be sparse,0 for most i; indeed the maximal number
of points participating to an interpolated value is23 = 8.
However, writing the approximation as (9) highlights that
it is a particular type of basis function expansion, and our
approach may later be generalized to other such expansions.

Noticing that at pointxi of the grid, V (xi) = θi since
the vectorϕ(xi) is 1 at positioni and0 everywhere else, an
approximate version of (7) can be given:

θℓ+1,i = max
u∈U

[
ρ(b) + V̂ (f(xi, u); θℓ)

]
,∀i (10)

where vectorθ0 is initialized to zero values.
To circumvent the need to fix the number of iterations in

advance, the algorithm is stopped when‖θℓ+1 − θℓ‖∞ ≤ ε.
Finally, a control law is computed with an equation similar
to (8) but usingV̂ (·; θℓ+1) on the right hand side.

The approximations used imply that the optimality of the
solution is lost. Nevertheless, in practice the accuracy can
be increased by making the state interpolation grids and
the action discretization finer, andε smaller. A discounted
version of such an interpolated DP algorithm has been
analyzed in [3].

IV. L EARNING ALGORITHM FOR UNKNOWN RATE

FUNCTIONS

The DP algorithm above requires to know the rate function
R, which is usually not possible becauseR depends on prop-
agation environment effects which are typically unknown
(e.g., path loss, shadowing, and fast fading effects). Even
if it is possible to modelR, the robot may not be provided
with the model. Our major goal in this paper is therefore
to derive an efficient algorithm for the case when the rate
function R is unknown. Rather, we will assume that the
robot only has access to realizations of the rate function
at particular positions, which may typically be measured
via a feedback mechanism (ACK/NACK or more advanced
feedbacks such as the signal-to-noise ratio). The robot can
therefore accurately sampleR(pk) once it reaches position
pk and can use this information to make decisions at stepk.

The problem of learning optimal control solutions when
the dynamics (and possibly even the rewards) are unknown
is the focus of the large field of reinforcement learning (RL)
[17]. However, our problem is quite different from standard
RL, and the main contribution of our paper stems from the
differences. The first difference is that, while the typical

pk

Fig. 1: Illustration of local DP sweeps and related concepts
across the two position axes of the state. The grid is denoted
by dots, and the current position of the robot by a square.
The center of the subgrid (large circle) is the nearest grid
point below and to the left of the current position, and the
subgrid (red crossed circles) extendsrDP = 2 points in each
direction from this center point. The prior trajectory of the
robot is the continuous line, and the dashed line illustrates a
possible trajectory across several future steps.

paradigm is that RL is applied across many trajectories,
seeing the same states over and over again, here we cannot
afford to wait several trajectories for good performance:
indeed, the robot is only given a single trajectory to transmit
its data. Performance is only important during this trajectory,
and for only those states encountered along it, most of
which will be seen only once. The second difference is that
we have significant information about the model: with the
exception ofR, everything is known inf in (3). Our key
idea is to exploit the second difference in order to address the
challenge stemming from the first; that is, to learnR directly
and use its estimate inf to achieve fast, single-trajectory
learning. Such targeted combinations of model-based and
model-free learning are rare in RL, since RL approaches
nearly always aim to solve the model-free problem in its
full generality.

Denote byR̂ the estimate ofR, which can be constructed
from the samples(pj , R(pj)), j ≤ k seen so far using
any function approximation (supervised learning) technique.
Before taking a decision at stepk, we propose to use
R̂ in order to run several DP sweeps of the form (10),
but only locally, around statexk. Figure 1 illustrates the
idea. A simple reason for these local updates is to reduce
computational costs, since a decision must be made online. A
deeper motivation however is to avoid extrapolating too much
from the samples ofR seen so far, which are all probably
behind the robot along its trajectory, and not in the direction
that it needs to go; and for the same reason, one cannot hope
anyway for a decision that is good across more than a few
steps – i.e., for smooth dynamics, more than a small distance
away in the state space. Indeed, it is likely better to wait until
more information is available before attempting to construct
such a decision.2 Constructing the local region aroundxk

(over which to perform the DP sweeps) in an “optimal” way
is difficult. Instead, in this paper, we simply take a subgrid

2This is also a key feature of receding-horizon predictive control, so one
may wonder why this framework is not applied here. In fact, we have tried
a receding-horizon method based on tree search, but it performed poorly.

consisting ofrDP grid points to either side of the current
state along all3 dimensions (2 positions and 1 buffer size).
The DP rangerDP , together with the number of DP sweeps
ℓDP , are tuning parameters of the algorithm.

In addition to the DP sweeps, we will also use a variant
of the popular RL algorithm called Q-learning [18] to learn
directly from the transition samples seen along the trajectory.
Q-learning usually works with Q-functionsQ : X×U → R,
that fix the initial action in addition tox:

Q(x, u) = ρ(b) + V (f(x, u)). (11)

This is necessary in standard RL because nothing is known
aboutf . However, in our case, once we reachp we observe
R(p), and since the motion dynamicsg are known, we have
all the knowledge required to simulatef . At the cost of
some extra calls tof , this allows us to drop theu dimension
from the function that must be learned. In particular, for
approximate representations of the form (9), we may derive
a so-called semi-gradient [17] version of Q-learning adapted
to V-functions:

θk+1 = θk + αkϕ(xk)·

·
[
max

u
[ρ(bk) + V̂ (f(xk, u); θk)] − V̂ (xk; θk)

]

(12)
While in our single-trajectory setting such a learning proce-
dure will not converge, we expect the updates are still useful
to extract additional information from the trajectory data.

A remaining question is how exactly the robot chooses
actions at each step. One possibility is to simply apply (8)
but with the currentV̂ (·; θk) instead of the optimal value-
function. This is called the greedy policy. Technically, itdoes
not satisfy the exploration conditions of RL – similarly to
persistent excitation in system identification, informative, so-
called exploratory actions must be taken in RL to avoid
getting stuck in local optima. However, if it is coupled
with an optimistic initialization ofV (via the parameters
θ0) to someV̄ that is larger than the optimal values, then
the greedy policy can still work well; intuitively, optimistic
initialization will force the algorithm to explore the space of
solutions anyway since it believes any unknown solution to
be good. Here, we will create this optimistic initial solution
by assuming knowledge of the maximal ratēR, and then
initializing the parameterθ0,i for each grid pointxi to
−bi/R̄. If R̄ is unknown, thenθ0 could be taken0.

With the same initialization, we will also investigate an
explicitly exploratory policy commonly used in RL, called
softmax or Boltzmann-Gibbs policy. This policy selects
actions randomly, where each actionu ∈ U has a probability
πu related to its Q-values (11) via the formula:

πu =
eQ(xk,u)/τ

∑
u′∈U eQ(xk,u′)/τ

, ∀u ∈ U (13)

where parameterτ > 0 is called the exploration temperature.
This temperature controls the tradeoff between exploration
and exploitation, with larger values corresponding to more
exploration; the fully exploiting, greedy policy is obtained
in the limit asτ → 0.

Algorithm 1 Learning for the communicating robot.

Input: g, R̄, state grids, discretized actionsU , learning rate
α, temperatureτ , rDP and ℓDP for DP sweeps

1: initialize paramsθ0,i = −bi/R̄ for all grid centersxi

2: measure initial statex0

3: repeat at each time stepk = 0, 1, 2, . . .
4: sampleR(pk), update approximator̂R
5: θ̃0 = θk, and construct DP subgrid aroundxk

6: for DP sweepℓ = 0, . . . , ℓDP − 1 do
7: for each pointi on the subgriddo
8: θ̃ℓ+1,i = maxu∈U [ρ(b) + V̂ (f̂(xi, u); θ̃ℓ)]
9: end for

10: end for
11: θk = θ̃ℓDP

12: Q(xk, u) = ρ(b) + V̂ (f(xk, u)); θk), ∀u ∈ U
13: if using greedy policythen
14: uk = arg maxu∈U Q(xk, u)
15: else(using softmax policy)
16: sampleuk using probabilities eQ(xk,u)/τ

P

u′ eQ(xk,u′)/τ

17: end if
18: apply actionuk, measure next statexk+1

19: θk+1 = θk + αkϕ(xk)[maxu Q(xk, u)− V̂ (xk; θk)]
20: until bk+1 = 0

Algorithm 1 summarizes the overall procedure. Note that
in line 8, the approximate model̂f usesR̂.

So far, the approximator̂R has been left unspecified;
again, in principle any sample-based function approximator
can be used. For our experiments, we will use local linear
regression (LLR). To this end, we store each pair(pk, R(pk))
that was not yet seen in a memory. Then, for each query
positionp, theK nearest neighbors ofp are found using the
Euclidean norm, and linear regression on these neighbors is
run to find an affine approximator of the forma⊤p + b with
a ∈ R

2, b ∈ R. This approximator is then applied to find
R̂(p). The tuning parameter of LLR isK.

V. EMPIRICAL STUDY OF THE LEARNING ALGORITHM

We provide detailed simulations for a synthetic example
involving a simple-integrator robot:

pk+1 = pk + uk. (14)

with u ∈ U , a set of5 discrete actions chosen to move the
robot on a grid, one step in any cardinal direction, or keep it
put. The domainP = [0, 10]× [0, 10], andb ∈ [0, b̄] = [0, b̄],
with the bounds enforced by saturation. The grid is defined
to have21 points on both position axes and on the buffer
size axis of the state space, and we will use this grid in
our algorithms as well. Note that if the environment is large
(e.g., compared to the turning radius of a wheeled robot), a
simple-integrator model is not unrealistic, and in fact such
models are often used in e.g., consensus theory [12].

The rate function consists of two Gaussians, see also

p
1

p 2

Zero buffer in 37 steps

0 2 4 6 8 10
0

2

4

6

8

10
Rate function
Robot rajectory
Buffer remaining (color)

Fig. 2: Model-based control from the bottom-left corner. The
contour plot shows the rate function, and the position of the
robot at each sampling time is shown by a colored disk.
To better follow the trajectory of the robot, these positions
are joined by a black line. The color of the disk indicates
the remaining buffer size, from dark red (full) to dark blue
(empty).

Figure 2 that includes a contour plot:

R(p) = 0.1

2∑

i=1

exp
[
−(p − ci)

⊤W (p − ci)
]

(15)

with W = diag[3, 3] the radius of the Gaussians andc1 =
[3, 7]⊤, c2 = [7, 3]⊤ their centers.

We will study the performance of the algorithm from the
bottom-left initial positionp0 = [0, 0]⊤, which is furthest
away from the rate maxima, and with a full initial buffer,
b0 = b̄ = 2, as that is the most interesting scenario. It is
unclear whether exact optimal solutions can be computed
for such a problem, so to obtain a baseline we run instead
model-based, interpolative value iteration from Section III.
The resulting near-optimal number of steps required to empty
the buffer is37, and Figure 2 illustrates the trajectory.

In preliminary experiments with the learning algorithm
of Section IV, which we do not detail here due to space
limits, we found the following. For the learning rateα, a
value of1 is best for most settings, which is intuitive since
the problem is deterministic andα < 1 usually helps for
stochastic dynamics. For the exploration temperatureτ in
softmax, τ = 0.1 works best for most settings (which is
close to0, so action selection is “almost greedy”). For the
number of iterationsℓDP in the DP sweeps, any value above
10 works well; we therefore take it10. For the number of
nearest neighbors in LLR,K = 4 works best.

With the above settings, next we vary the rangerDP of
the DP sweeps, gradually from0 (which means that the DP
sweeps are disabled and pure model-free RL is performed) to
6. Figure 3 reports the results for both the greedy and softmax
policies, where for the latter10 independent experiments
were run and mean performances with their95% confidence
intervals are given. The buffer is generally emptied in fewer
steps as the DP range grows, showing that the DP sweeps
are indeed a useful way to exploit the learnedR̂. Indeed,
performance is very poor forrDP = 0 (no DP sweeps),

0 1 2 3 4 5 6
20

40

60

80

100

120

140

160

180

200

r
DP

st
ep

s
to

 z
er

o
bu

ffe
r

Fig. 3: Learning with the greedy policy (thick gray line with
round markers) and with the softmax policy (thin black line
with square markers). For the softmax curve, the gray areas
are the 95% confidence regions on the mean. Note that for
rDP = 0, the greedy policy did not succeed in emptying the
buffer, so the graph does not include this point.

p
1

p 2

Zero buffer in 39 steps

0 2 4 6 8 10
0

2

4

6

8

10
Rate function
Robot rajectory
Buffer remaining (color)

Fig. 4: Model-free control from the bottom-left corner.

showing that a pure model-free RL algorithm does not work
well in our single-trajectory setting. The performance of the
two exploration strategies is quite similar forrDP ≥ 1, and
for largerDP , the algorithm empties the buffer in about40
steps, close to the model-based number. This is a very good
result, keeping in mind that the rate function must be learned
at the same time as using it to transmit.

On the flip side, increasing the DP range requires of course
larger computational costs, here roughly cubical inrDP due
to the three-dimensional state space.

Figure 4 illustrates the trajectory with the greedy policy for
rDP = 6. Note that, in contrast to the model-based solution
from Figure 2, which goes along the shortest path towards
the maximum rate (since it knows where it is), the learning
algorithm first looks around to observe samples fromR and
build its estimate, and as this estimate becomes better and
the buffer gets smaller, it goes near a maximum to finish
transmitting.

Stochastic rates are typical in many problems, so we
briefly check how our algorithm handles them. The problem
is changed so that the deterministic rate function from before
is affected by additive zero-mean Gaussian noise with a stan-
dard deviation of0.01 (i.e., about10% of the rate function
magnitude). The greedy algorithm is run with the settings
above andrDP = 4, chosen because it provides a reasonable

p
1

p 2

Zero buffer in 39 steps

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10
Rate function
Robot rajectory
Buffer remaining (color)

Fig. 5: Model-free control in the realistic-rate problem.

compromise between performance and computational cost.
The resulting number of steps to empty the buffer is42.5 on
average, with a95% confidence interval of42.5 ± 2.8063.
This is not far from the deterministic result, illustratingthat
the algorithm is in this case resilient to noise.

VI. I LLUSTRATION FOR A REALISTIC RATE FUNCTION

The second problem is chosen to have a more realistic rate
function, inferred from the setup used in Fig. 5 of [14] and
rescaled to a position domainP = [0, 10] × [0, 10] m. The
motion dynamics are also changed to be nonlinear, unicycle-
like:

pk+1,1 = pk,1 + uk,1 cos(uk,2)

pk+1,2 = pk,2 + uk,1 sin(uk,2)
(16)

i.e., the first input is the velocity and the second the heading
of the robot. The discretized actions consist of all possible
combinations between velocities0.1, 0.3 m/s and headings
0, π/4, . . . , 7π/4 rad; together with a0-velocity action. To
illustrate the robustness of the algorithm, we do not retune
any parameter but just use the values from the integrator
problem: a21× 21× 21 interpolation grid,α = 1, τ = 0.1,
ℓDP = 10, andK = 4.

Figure 5 illustrates the trajectory with the greedy policy
from initial position[5, 3]⊤ and an initial buffer size of80Mb
(megabits, i.e.8 megabytes). Note that the rate function
varies roughly between0.5 and5 Mb/s. The buffer is emptied
in 39 steps, some of which are spent “skirting” the lobes of
the rate function; we hypothesize this helps to learn it, but
further study is needed to confirm that. Note that the model-
based solution with known rates empties the buffer in27
steps, so the learning algorithm manages to work in less
than double this number of steps.

VII. C ONCLUSIONS

We have presented a learning-based algorithm that a
mobile robot can use to transmit data over a wireless network
with an unknown rate map. The algorithm was evaluated in
experiments with simple-integrator robot motion dynamics
and a synthetic rate function with two maxima (antennas);
and was also illustrated to work well in a problem with
realistic rates and unicycle-like, nonlinear motion dynamics.

In future work it will be important to derive analytical
guarantees that take into account the approximation errors
for V and R. Handling stochastic rates algorithmically is
also needed. Finally, it will help to validate the method in a
practical experiment.

REFERENCES

[1] D. P. Bertsekas,Dynamic Programming and Optimal Control, 4th ed.
Athena Scientific, 2012, vol. 2.

[2] D. P. Bertsekas and S. E. Shreve,Stochastic Optimal Control: The
Discrete Time Case. Academic Press, 1978.

[3] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Approximate
dynamic programming with a fuzzy parameterization,”Automatica,
vol. 46, no. 5, pp. 804–814, 2010.

[4] N. Chatzipanagiotis, Y. Liu, A. Petropulu, and M. M. Zavlanos,
“Controlling groups of mobile beamformers,” inProceedings 51st
IEEE Conference on Decision and Control (CDC), Maui, Hawaii, 10–
13 December 2012, pp. 1984–1989.

[5] J. Fink, A. Ribeiro, and V. Kumar, “Robust control for mobility and
wireless communication in cyber–physical systems with application to
robot teams,”Proceedings of the IEEE, vol. 100, no. 1, pp. 164–178,
2012.

[6] R. Gangula, P. de Kerret, O. Esrafilian, and D. Gesbert, “Trajectory
optimization for mobile access point,” in51st Asilomar Conference
on Signals, Systems, and Computers, Oct 2017, pp. 1412–1416.

[7] D. B. Licea, V. S. Varma, S. Lasaulce, J. Daafouz, and M. Ghogho,
“Trajectory planning for energy-efficient vehicles with communica-
tions constraints,” inProceedings 2016 International Conference on
Wireless Networks and Mobile Communications (WINCOM16), Fez,
Morocco, 26–29 October 2016, pp. 264–270.

[8] D. B. Licea, V. S. Varma, S. Lasaulce, J. Daafouz, M. Ghogho, and
D. McLernon, “Robust trajectory planning for robotic communications
under fading channels,” inUbiquitous Networking: Third International
Symposium, UNet 2017, Casablanca, Morocco, May 9-12, 2017,
Revised Selected Papers, vol. 10542. Springer, 2017, p. 450.

[9] L.-J. Lin, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,”Machine Learning, vol. 8, no. 3–
4, pp. 293–321, Aug. 1992, special issue on reinforcement learning.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D.Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,”Nature, vol. 518, pp. 529–533, 2015.

[11] A. W. Moore and C. G. Atkeson, “Prioritized sweeping: Reinforcement
learning with less data and less time,”Machine Learning, vol. 13, pp.
103–130, 1993.

[12] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensusand
cooperation in networked multi-agent systems,”Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[13] C. C. Ooi and C. Schindelhauer, “Minimal energy path planning for
wireless robots,”Mobile Networks and Applications, vol. 14, no. 3,
pp. 309–321, 2009.

[14] P. Pietraski, G. Charlton, R. Yang, and C. Wang, “Enhanced cell-edge
performance with transmit power-shaping and multipoint, multiflow
techniques,”ZTE Communications, no. 4, 2011.

[15] M. N. Rooker and A. Birk, “Multi-robot exploration under the con-
straints of wireless networking,”Control Engineering Practice, vol. 15,
no. 4, pp. 435–445, 2007.

[16] R. S. Sutton, “Integrated architectures for learning,planning, and
reacting based on approximating dynamic programming,” inProceed-
ings 7th International Conference on Machine Learning (ICML-90),
Austin, US, 21–23 June 1990, pp. 216–224.

[17] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduc-
tion, 2nd ed., ser. Adaptive Computation and Machine Learning. A
Bradford Book, 2018.

[18] C. J. C. H. Watkins and P. Dayan, “Q-learning,”Machine Learning,
vol. 8, pp. 279–292, 1992.

[19] Y. Yan and Y. Mostofi, “Co-optimization of communication and mo-
tion planning of a robotic operation under resource constraints and in
fading environments,”IEEE Transactions on Wireless Communications
12.4 (2013):, vol. 12, no. 4, pp. 1562–1572, 2013.

