N

N
N

HAL

open science

Learning-based control for a communicating mobile
robot under unknown rates

Lucian Busoniu, Vineeth Varma, Irinel-Constantin Morarescu, Samson

Lasaulce

» To cite this version:

Lucian Busoniu, Vineeth Varma, Irinel-Constantin Morarescu, Samson Lasaulce. Learning-based
control for a communicating mobile robot under unknown rates. American Control Conference, ACC
2019, Jul 2019, Philadelphia, PA, United States. 10.23919/acc.2019.8815213 . hal-02269995

HAL Id: hal-02269995
https://hal.science/hal-02269995
Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02269995
https://hal.archives-ouvertes.fr

Learning-based control for a communicating mobile robot
under unknown rates

Lucian Busoniu, Vineeth S. Varma, Irinel-Constantin Mi@scu, Samson Lasaulce

Abstract—In problems such as surveying or monitoring re- arbitrarily-shaped rate functions. However, our main riesé
mote regions, a mobile robot must transmit data over a wireless s different: we focus on the case when the robot does not
network with unknown, position-dependent transmission rates. know the properties of the wireless network in advance, i.e

We propose an algorithm to achieve this objective that learns hen th te function i K Such ituation i h
approximations of the rate function and of an optimal-control when the rate tunction IS unknown. such a situation 1S muc

solution that transmits the data in minimum time. The rates are MOre common in practice.
estimated with supervised learning from the samples observed; Therefore, as the main contribution of the paper, we pro-
and the control is found with dynamic programming sweeps pose an algorithm that simultaneously learns approximatio
around the current state of the robot that exploit the rate ¢ hoih the rate function. from its values observed so far
function estimate, combined with online reinforcement learning. . ’ . .
For both synthetic and realistic rate functions, our experiments alpng .the trajectory, a}ndl of a}n optlm.al-contr-ol solutioatth
show that the learning algorithm empties the data buffer in Minimizes the transmission time. This algorithm belongs to
less than twice the number of steps achieved by a model-based the reinforcement learning (RL) class [17], but our problem
solution that requires to perfectly know the rate function. is quite different from standard RL. Firstly, the robot is
only given a single trajectory to transmit its data, and
performance is only important along this trajectory, wiasre

We consider a problem in which a mobile robot musRL usually learns from many trajectories. Secondly, wherea
transmit a data file (or equivalently, empty a data bufferlRL approaches often start without any model knowledge,
over a wireless network, with transmission rates given by lere the motion dynamics of the robot are known, and only
position-dependent function that is unknown to the robothe rate function is unknown. Our key idea is to use the
The objective is to move in such a way that the file idearned estimate of this function to perform local model-
transmitted in minimum time. Such a problem appears, e.chased updates (dynamic programming sweeps) to achieve
when a robot autonomously collects data in remote are#sst single-trajectory learning. In addition, we direatkploit
without network coverage (e.g., photographic surveying dransition samples using a version of Q-learning. Such tar-
tunnel mapping) and must then return near a human operatgted combinations of model-based and model-free learning
to quickly upload this data over an ad-hoc network, beforare rare in RL.
moving on to the next mission. Some recent works like [5], [8] explore control of robots

In the literature, most works treat the problem of trajegtor with rates that are uncertain but have a known model. In
planning for communicating robots with a requirement oii19], the trajectory of the robot is fixed, but the velocity
the instantaneous communication rate or quality of seyvices optimized by learning the communication rate while the
see e.g., [15], [4]. Differently from this, we are interabte robot moves. The authors of [19] assume a much more
in a robot that must send data to a fixed (set of) antenngeneral model for the wireless network that is suitable for
in minimum time, resulting in an optimization problem with practical applications, but as mentioned, consider a fixed
an implicit constraint on the integral of the communicatiortrajectory, whereas our algorithm generates the trajgctor
rate. In the case of a simple and known model of the wirelesglaptively. Indeed, to the best of our knowledge there are
communication rate (assuming circular symmetry and onlgo methods that learn both the radio map and a near-optimal
taking path loss into account), some recent works [13], [Ayajectory, like our algorithm.
have optimized the trajectory of the robot. In [6], multiple Our model-based updates with the learned rate function
users of a mobile access point lead to a non-circular, but stare related to Dyna [16], which finds a model from samples
known and rather specific shape. and then applies DP updates to it. Prioritizing certain ada

In this paper, we do provide a numerical model-basethe state space is related to prioritized sweeping [11], v wa
solution for the case when the rates are known, and thie focus updates on samples that are deemed more important.
solution is more general than [13], [7], [6] since it works fo Our method can also be seen as reusing data in-between RL

updates, and so it bears similarities with experience yepla

L. Busoniu is with the Automation Department, Technical Wmsity q_f [9], which reapplies learning updates to memorized tréaosit
Cluj-Napoca, Romania. V.S. Varma and |.C. Mogscu are with Universgt . .
de Lorraine, CNRS, CRAN, F-54000 Nancy, France. S. Lasaislagith and reward samples, and which has recently EXper'enced a
the Laboratoire des Signaux et Systemes (L2S, CNRS - CeRtppigec - resurgence in the field of deep RL [10]. Nevertheless, our
Univ. Paris Sud), Gif-sur-Yvette, France. Contact: lu@fusoniu.net. This method is unique due to the specific structure of the problem
work was supported by a grant of the Romanian Ministry of Reseand

that we are considering, which allows us to focus the legrnin

Innovation, CNCS - UEFISCDI, project number PN-IlI-P1-TE-2016-) 5
0670, within PNCDI 1. algorithm on the key unknown element: the rate function.

I. INTRODUCTION

Next, Section Il provides a formal statement of the probsignals. Similarly, the reward function could be changed to
lem addressed, and the algorithm for known rates is givanclude additional objectives besides transmitting thifeou
in Section Ill. Section IV describes the main, learning algosuch as energy costs that vary with the motion, or navigating
rithm for unknown rates. Since this algorithm is empiricalfo a goal state. We make simple choices here in the interest
Section V evaluates it in experiments on a synthetic examplef readability, and because they are sufficient to illustatr
while Section VI illustrates the method on a more realistitddeas. O

example. Section VIl concludes the paper.
IIl. SOLUTION FOR KNOWN RATE FUNCTIONS

If the position-dependent ratB is known, we can apply
Consider a mobile robot with positionc P where P € dynamic programming (DP) to solve the optimal control
R?. We will work in discrete-time witht denoting the time problem. Construct an initial value functidri(z) = 0, Vz,

Il. PROBLEM DEFINITION

step, so the robot has motion dynamicsP x U — P: and then iterate fof > 0:1
Prt1 = 9(Pr, uk) 1) Vipi(z) = ma [p(b) + Vo(f (z,)], Va 7)

where Ue € U is the control nput, and/ is the Sel whereb is the buffer size component of state Note that
of possible mputs. The 'robot carries a data buffer of ,S'Zﬁnowledge ofR is required to simulatef(z,). The algo-
b € Ry that it must deliver over a wireless network with i i< stated “forward in iterations”, but can also inbuedy
a transmission rate that varies with the positidip .).W'th be seen as running “backwards in time” as would usually be
R éj . RT.dHere, Ry dEnOt?S thehseé ?‘; p0§|t|ve relaldone in finite-horizon applications of DP. Here however, the
nhumbers including zero. Therefore, the buffer size evolvag, ;o is not set in advance; instead, since the trajectory

like: must run until the buffer is empty, the horizon until this eve
br+1 = max {0, bx, — R(pk)} . (2) occurs depends on the initial buffer size and on the position
We denote the overall state by = [p',b]" € X, along the trajectory. We handle the problem in the infinite-
X := P x R, containing the position and the buffer size.horizon setting, per (5). In general, studying the convecge
Therefore, the overall dynamics are: of such infinite-horizon DP methods is challenging since
values may grow unbounded unless specific care is taken
tio = flonw) = | {%Eii’gkl)%(pk)} . (3) to avoid this [2], e.g. by including a discount factor. In

our particular problem, with discounting the value funotio
Given an initial positionpy and buffer sizeb,, which would no longer be the minimal number of steps to zero
together yield the initial state,, the objective is to deliver buffer. However, even without discounting, a simple case
the buffer in minimum time. If the energy taken by thewhere a finite number of iterations is sufficient to find the
robot to move one step is roughly constant, then this alssptimal solution is when the rate is lower bounded by some
corresponds to minimizing energy. Define now the stagealue R (which may represent a minimum quality-of-service

reward function: requirement) at every, i.e., R(p) > R > 0, and when
{1 it >0 bo < b . Under this assumption, the buffer will be emptied
p(b) = . (4) in at mostb/R step from any initial state. After stopping
0 Hb=0 the algorithm at finite iteratiod larger than this number of
and the long-term value function: steps, we apply the state feedback:
Vi(ao) =3 () 5) h(z) € arg max [p(b) + Vi(f (, u))] 8
k=0

with ties between maximizing actions resolved arbitrarily
wherez 1 = f(rx,ur) anduy = h(zy) is taken according In general, the algorithm is not implementable as given
to the state feedback law: X — U. Then, we can restate above, for several reasons: the maximization oweis a
our objective via the optimal control problem: possibly nonconcave and nondifferentiable global optmiz
max V(z) = V*(z), Va ©) tion problem,V cannot be exactly represented in closed
h form for continuous arguments, and the rates may be
that is, find a control law that minimizes the number ofZ€ro at some positions. Below we describe some empirical
Steps until the buffer size becomes zero from any initi&OlUtionS to these issues, which are rather standard in the

state. We choose to (equivalently) use maximization instedield of approximate dynamic programming [1], [17]. First,
of minimization since our |earning methods Originate inve assume thal’ consists of a finite, discrete set of actions,

artificial intelligence, where optimal control problemsear an(_j solve maximization by enumeration. Second, we assume
usually stated in terms of maximizing values. P is bounded and rectangular and tiba€ [0,5] (ensured

Remark: The state signal chosen implies that the robdgy the conditionby < b already discussed above), which
moves according to first-order dynamics. We could include | o N)

h tat iables like velocities. headinas. etce.imnd Subscript in V, denotes the iteration index, whereas the superscripts
other state _Var'a ke v Iues, Ings, | used earlier denote either the dependence on the phlidgg V", or the
all the algorithms below can be extended to handle such staigticular case of the optimal policy, ¥i*.

is reasonable in a practical application. We then represent e e e

V' approximately, using multilinear interpolation over grid L L R B B
defined along the interval domains of each of the state . + o e
variables. Denoting the approximate value function by) ..
this representation can be written: o o + e e e

V(2:0) = ¢ ()0 ©) . L
wheref € R", ¢ : X — R", andn is the total number o . < o e e

of points on the grid. Hered; is the parameter associatedrig. 1: lllustration of local DP sweeps and related concepts
with point i and ¢;(z) is the weight with which pointi across the two position axes of the state. The grid is denoted
participates to the approximation, which is easy to obtaiBy dots, and the current position of the robot by a square.
from the interpolation procedure. Note that in fagtz) The center of the subgrid (large circle) is the nearest grid
will be sparse,0 for most; indeed the maximal number point below and to the left of the current position, and the
of points participating to an interpolated value2% = 8. subgrid (red crossed circles) extendsy = 2 points in each
However, writing the approximation as (9) highlights thairection from this center point. The prior trajectory okth
it is a particular type of basis function expansion, and ouiobot is the continuous line, and the dashed line illustrate
approach may later be generalized to other such expansiopgssible trajectory across several future steps.

Noticing that at pointz; of the grid, V(z;) = 6; since
the vectorp(x;) is 1 at positioni and0 everywhere else, an

approximate version of (7) can be given: paradigm is that RL is applied across many trajectories,

seeing the same states over and over again, here we cannot
041.; = max [p(b) +17(f(zi,u);94)] Vi (10) _afford to wait seyeral tra_jectorie_s for gqod performgnce:
uelU indeed, the robot is only given a single trajectory to traihsm
where vector, is initialized to zero values. its data. Performance is only important during this trajegt
To circumvent the need to fix the number of iterations ind for only those states encountered along it, most of
advance, the algorithm is stopped whigh ., — 6, < e. which will be seen only once. The second difference is that
Finally, a control law is computed with an equation similatve have significant information about the model: with the
to (8) but using\A/(-;GgH) on the right hand side. exception ofR, everything is known inf in (3). Our key
The approximations used imply that the optimality of thddea is to exploit the second difference in order to address t
solution is lost. Nevertheless, in practice the accuraay c#hallenge stemming from the first; that is, to ledmlirectly
be increased by making the state interpolation grids arfnd use its estimate iff to achieve fast, single-trajectory
the action discretization finer, andsmaller. A discounted learning. Such targeted combinations of model-based and
version of such an interpolated DP algorithm has beefodel-free learning are rare in RL, since RL approaches

analyzed in [3]. nearly always aim to solve the model-free problem in its
full generality.
IV. LEARNING ALGORITHM FOR UNKNOWN RATE Denote byR the estimate of?, which can be constructed
FUNCTIONS from the samples(p;, R(p;)), j < k seen so far using

The DP algorithm above requires to know the rate functioAnY function approximation (supervised learning) techaiq
R, which is usually not possible becauBedepends on prop- Before taking a decision at step, we propose to use
agation environment effects which are typically unknowrft in order to run several DP sweeps of the form (10),
(e.g., path loss, shadowing, and fast fading effects). Evdiit only locally, around stater;. Figure 1 illustrates the
if it is possible to modelR, the robot may not be provided idea. A simple reason for these local updates is to reduce
with the model. Our major goal in this paper is therefor&omputational costs, since a decision must be made online. A
to derive an efficient algorithm for the case when the ratdeeper motivation however is to avoid extrapolating toomuc
function R is unknown. Rather, we will assume that theffom the samples of? seen so far, which are all probably
robot only has access to realizations of the rate functiopehind the robot along its trajectory, and not in the directi
at particular positions, which may typically be measuredhat it needs to go; and for the same reason, one cannot hope
via a feedback mechanism (ACK/NACK or more advance@nyway for a decision that is good across more than a few
feedbacks such as the signal-to-noise ratio). The robot c&fePs —i.e., for smooth dynamics, more than a small distance
therefore accurately samplg(p;) once it reaches position away in the state space. Indeed, it is likely better to waiill un
pr and can use this information to make decisions at step more information is available before attempting to condtru

The problem of learning optimal control solutions wherSuch a decisiod. Constructing the local region arounc,
the dynamics (and possibly even the rewards) are unknoW@ver which to perform the DP sweeps) in an “optimal” way
is the focus of the large field of reinforcement learning (RLJS difficult. Instead, in this paper, we simply take a subgrid
[17]. However, our problem is quite different from standard ,_ .)) -

. . . This is also a key feature of receding-horizon predictiveted, so one

RL, and the main contribution of our paper stems from th?nay wonder why this framework is not applied here. In fact, weehiaied
differences. The first difference is that, while the typicah receding-horizon method based on tree search, but it pegtbpoorly.

consisting ofrpp grid points to either side of the currentAlgorithm 1 Learning for the communicating robot.

state along alB dimensions (2 positions and 1 buffer size).Input: g, R, state grids, discretized actiobg learning rate

The DP range pp, together with the number of DP sweeps
{pp, are tuning parameters of the algorithm.

«, temperaturer, rpp andéQp for DP sweeps
1: initialize paramsf, ; = —b;/R for all grid centers;

In addition to the DP sweeps, we will also use a variant2: measure initial state,
of the popular RL algorithm called Q-learning [18] to learn 3: repeat at each time step = 0,1,2,...

directly from the transition samples seen along the trajgct 4

Q-learning usually works with Q-function@ : X x U — R,
that fix the initial action in addition ta:

Q(xz,u) = p(b) + V(f(x,u)). 11)

This is necessary in standard RL because nothing is know:
about f. However, in our case, once we regelve observe 10:
R(p), and since the motion dynamigsare known, we have 11:
all the knowledge required to simulaté At the cost of 12
some extra calls tg, this allows us to drop the dimension 13:
from the function that must be learned. In particular, fori4:

@ N o g

sampleR(py), update approximatoR
0o = 0, and construct DP subgrid aroung
for DP sweepl = 0,...,4pp — 1 do
for each pointi on the subgricdo 3
05-&-1,1 = maquU[(b) + V(f(.fz,)a 95)]
end for
end for
Or = éZDP R
Qar,u) = p(b) + V(f (x4, w)): 61), Yue U
if using greedy policythen
up = argmax, .y Q(zx, u)

approximate representations of the form (9), we may derives:
a so-called semi-gradient [17] version of Q-learning addpt 16:

else(using softmax policy)

. cpege Q(xzp,u)/T
sampleu;, using probabilities—¢—*

S Q@ /T

to V-functions: 17 endif
Ors1 = 01 + app(x)- 18: apply actionuy, measure next state 1
~ ~ 19: Or11 = O + app(xg)[max, Q(zg,u) — V(xg; Oy
: [mgx[p(bk)+V(f(:vk,u);9k)] — V(61 B ;;H o ()] (g, u) = V(x; Ok)]
12)

While in our single-trajectory setting such a learning proce
dure will not converge, we expect the updates are still usefu
to extract additional information from the trajectory data Algorithm 1 summarizes the overall procedure. Note that
A remaining question is how exactly the robot choose#! line 8, the approximate modgl usesR.
actions at each step. One possibility is to simply apply (8) So far, the approximatoi? has been left unspecified;
but with the currentV(:0,) instead of the optimal value- again, in principle any sample-based function approximato
function. This is called the greedy policy. Technicallydites can be used. For our experiments, we will use local linear
not satisfy the exploration conditions of RL — similarly toregression (LLR). To this end, we store each gair, R(px))
persistent excitation in system identification, informatiso- that was not yet seen in a memory. Then, for each query
called exploratory actions must be taken in RL to avoigpositionp, the K nearest neighbors of are found using the
getting stuck in local optima. However, if it is coupledEuclidean norm, and linear regression on these neighbors is
with an optimistic initialization ofV (via the parameters run to find an affine approximator of the foral p + b with
6o) to someV that is larger than the optimal values, them: € R?,b € R. This approximator is then applied to find
the greedy policy can still work well; intuitively, optintis ~ R(p). The tuning parameter of LLR i&.
initialization will force the algorithm to explore the spaof
solutions anyway since it believes any unknown solution t0 \v. EmpIRICAL STUDY OF THE LEARNING ALGORITHM
be good. Here, we will create this optimistic initial sotuti
by assuming knowledge of the maximal ral and then
initializing the parameter,; for each grid pointz; to
—b;/R. If R is unknown, therd, could be takero.
With the same initialization, we will also investigate an Dh+1
explicitly exploratory policy commonly used in RL, called
softmax or Boltzmann-Gibbs policy. This policy selectswith u € U, a set of5 discrete actions chosen to move the
actions randomly, where each actiore U has a probability robot on a grid, one step in any cardinal direction, or keep it
7, related to its Q-values (11) via the formula: put. The domainP = [0, 10] x [0, 10], andb € [0,b] = [0, b],
Q)7 with the bounds enforced by saturation. The grid is defined
Ty = —, YueU (13) to have2l points on both position axes and on the buffer
Dwey Q@I size axis of the state space, and we will use this grid in
where parameter > 0 is called the exploration temperature.our algorithms as well. Note that if the environment is large
This temperature controls the tradeoff between explanatioe.g., compared to the turning radius of a wheeled robot), a
and exploitation, with larger values corresponding to morgimple-integrator model is not unrealistic, and in factfsuc
exploration; the fully exploiting, greedy policy is obtath models are often used in e.g., consensus theory [12].
in the limit asT — 0. The rate function consists of two Gaussians, see also

We provide detailed simulations for a synthetic example
involving a simple-integrator robot:

= pi + Uug. (14)

Zero buffer in 37 steps

@ Rate function
Robot rajectory
S O Buffer remaining (color)|

steps to zero buffer

Py

20 .
0 1 2 3 4 5 6
L A S 6 s 10 Fig. 3: Learning with the greedy policy (thick gray line with
P, round markers) and with the softmax policy (thin black line

Fig. 2: Model-based control from the bottom-left cornereTh with square markers). For the softmax curve, the gray areas
contour plot shows the rate function, and the position of thare the 95% confidence regions on the mean. Note that for
robot at each sampling time is shown by a colored disk:pp = 0, the greedy policy did not succeed in emptying the
To better follow the trajectory of the robot, these posisionbuffer, so the graph does not include this point.

are joined by a black line. The color of the disk indicates

the remaining buffer size, from dark red (full) to dark blue 10

(empty).

Zero buffer in 39 steps

@ Rate function
Robot rajectory
O Buffer remaining (color)|

Figure 2 that includes a contour plot:

P,

f01Zexp (p—c) Wp—c) (15)

with W = d1ag[3,3] the radius of the Gaussians and=
[3,7]", 2 = [7,3]7 their centers.

We will study the performance of the algorithm from the
bottom-left initial positionp, = [0,0]", which is furthest
away from the rate maxima, and W|th a full initial buffer,
by = b = 2, as that is the most interesting scenario. It is Fig. 4: Model-free control from the bottom-left corner.
unclear whether exact optimal solutions can be computed
for such a problem, so to obtain a baseline we run insteathowing that a pure model-free RL algorithm does not work
model-based, interpolative value iteration from Sectitin | well in our single-trajectory setting. The performance o t
The resulting near-optimal number of steps required to gmptwo exploration strategies is quite similar fopp > 1, and
the buffer is37, and Figure 2 illustrates the trajectory. for large rpp, the algorithm empties the buffer in abotf

In preliminary experiments with the learning algorithmsteps, close to the model-based number. This is a very good
of Section IV, which we do not detail here due to spaceesult, keeping in mind that the rate function must be ledirne
limits, we found the following. For the learning rate a at the same time as using it to transmit.
value of1 is best for most settings, which is intuitive since On the flip side, increasing the DP range requires of course
the problem is deterministic and < 1 usually helps for larger computational costs, here roughly cubicatjyp due
stochastic dynamics. For the exploration temperaturi@ to the three-dimensional state space.
softmax, = 0.1 works best for most settings (which is Figure 4 illustrates the trajectory with the greedy polioy f
close to0, so action selection is “almost greedy”). For therpp = 6. Note that, in contrast to the model-based solution
number of iterationg p in the DP sweeps, any value abovefrom Figure 2, which goes along the shortest path towards
10 works well; we therefore take it0. For the number of the maximum rate (since it knows where it is), the learning
nearest neighbors in LLR = 4 works best. algorithm first looks around to observe samples frBnand

With the above settings, next we vary the rangg- of build its estimate, and as this estimate becomes better and
the DP sweeps, gradually froth(which means that the DP the buffer gets smaller, it goes near a maximum to finish
sweeps are disabled and pure model-free RL is performed)transmitting.

6. Figure 3 reports the results for both the greedy and softmax Stochastic rates are typical in many problems, so we
policies, where for the lattet0 independent experiments briefly check how our algorithm handles them. The problem
were run and mean performances with th#if% confidence is changed so that the deterministic rate function from teefo
intervals are given. The buffer is generally emptied in feweis affected by additive zero-mean Gaussian noise with a stan
steps as the DP range grows, showing that the DP sweegerd deviation 0f0.01 (i.e., aboutl0% of the rate function
are indeed a useful way to exploit the learngd Indeed, magnitude). The greedy algorithm is run with the settings
performance is very poor forpp = 0 (no DP sweeps), above and-pp = 4, chosen because it provides a reasonable

Zero buffer in 39 steps

o T
<= Rate function

Robot rajectory q

O Buffer remaining (color)

(1]
(2]
(3]

(4]

Fig. 5: Model-free control in the realistic-rate problem.
[5]
compromise between performance and computational cost.
The resulting number of steps to empty the buffetdss on

average, with @5% confidence interval ofi2.5 + 2.8063. 6]
This is not far from the deterministic result, illustratitigat
the algorithm is in this case resilient to noise. 7]

V1. |LLUSTRATION FOR A REALISTIC RATE FUNCTION

The second problem is chosen to have a more realistic rate
function, inferred from the setup used in Fig. 5 of [14] and [g]
rescaled to a position domaiR = [0,10] x [0,10]m. The
motion dynamics are also changed to be nonlinear, unicycle-
like:

DPh+1,1 = Pk + Uk,1 cos(ux,2)
Dhk+1,2 = Dik,2 + Up,1 sin(ug,2)

i.e., the first input is the velocity and the second the headirl10]
of the robot. The discretized actions consist of all possibl
combinations between velocitigs1, 0.3 m/s and headings
0,7/4,...,7m/4rad; together with &-velocity action. To
illustrate the robustness of the algorithm, we do not returlé?!
any parameter but just use the values from the integrator
problem: a21 x 21 x 21 interpolation grida =1, 7 = 0.1, [12]
Ipp =10, and K = 4.

Figure 5 illustrates the trajectory with the greedy policy13]
from initial position[5, 3] T and an initial buffer size o§0Mb
(megabits, i.e.8 megabytes). Note that the rate function[14
varies roughly betweefi5 and5 Mb/s. The buffer is emptied
in 39 steps, some of which are spent “skirting” the lobes of
the rate function; we hypothesize this helps to learn it, bdt®!
further study is needed to confirm that. Note that the model-
based solution with known rates empties the buffein [16]
steps, so the learning algorithm manages to work in less
than double this number of steps.

16 O

[17]
VIl. CONCLUSIONS

We have presented a learning-based algorithm that B
mobile robot can use to transmit data over a wireless network
with an unknown rate map. The algorithm was evaluated 9]
experiments with simple-integrator robot motion dynamics
and a synthetic rate function with two maxima (antennas);
and was also illustrated to work well in a problem with
realistic rates and unicycle-like, nonlinear motion dyizsn

In future work it will be important to derive analytical
guarantees that take into account the approximation errors
for V and R. Handling stochastic rates algorithmically is
also needed. Finally, it will help to validate the method in a
practical experiment.

REFERENCES

D. P. BertsekasPynamic Programming and Optimal Control, 4th ed.
Athena Scientific, 2012, vol. 2.

D. P. Bertsekas and S. E. Shrev@pchastic Optimal Control: The
Discrete Time Case. Academic Press, 1978.

L. Busoniu, D. Ernst, B. De Schutter, and R. B&ka, “Approximate
dynamic programming with a fuzzy parameterizatioAfitomatica,
vol. 46, no. 5, pp. 804-814, 2010.

N. Chatzipanagiotis, Y. Liu, A. Petropulu, and M. M. Zawbs,
“Controlling groups of mobile beamformers,” iRroceedings 51st
|EEE Conference on Decision and Control (CDC), Maui, Hawaii, 10—
13 December 2012, pp. 1984-1989.

J. Fink, A. Ribeiro, and V. Kumar, “Robust control for mabjl and
wireless communication in cyber—physical systems with appba to
robot teams, Proceedings of the |IEEE, vol. 100, no. 1, pp. 164-178,
2012,

R. Gangula, P. de Kerret, O. Esrafilian, and D. Gesbentajéctory
optimization for mobile access point,” iBlst Asilomar Conference
on Sgnals, Systems, and Computers, Oct 2017, pp. 1412-1416.

D. B. Licea, V. S. Varma, S. Lasaulce, J. Daafouz, and M. @gstmp
“Trajectory planning for energy-efficient vehicles with smunica-
tions constraints,” inProceedings 2016 International Conference on
Wireless Networks and Mobile Communications (WINCOM16), Fez,
Morocco, 26-29 October 2016, pp. 264—-270.

D. B. Licea, V. S. Varma, S. Lasaulce, J. Daafouz, M. Ghogiad
D. McLernon, “Robust trajectory planning for robotic commeations
under fading channels,” ibbiquitous Networking: Third International
Symposium, UNet 2017, Casablanca, Morocco, May 9-12, 2017,
Revised Selected Papers, vol. 10542. Springer, 2017, p. 450.
L.-J. Lin, “Self-improving reactive agents based on feinement
learning, planning and teaching¥achine Learning, vol. 8, no. 3—
4, pp. 293-321, Aug. 1992, special issue on reinforcememntiteg
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness!. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Osfski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. Kingkbmaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level contradugh
deep reinforcement learningNature, vol. 518, pp. 529-533, 2015.
A. W. Moore and C. G. Atkeson, “Prioritized sweeping:iffercement
learning with less data and less tim&fachine Learning, vol. 13, pp.
103-130, 1993.

R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensasd
cooperation in networked multi-agent systemBrbceedings of the
IEEE, vol. 95, no. 1, pp. 215-233, 2007.

C. C. Ooai and C. Schindelhauer, “Minimal energy path piag for
wireless robots,"Mobile Networks and Applications, vol. 14, no. 3,
pp. 309-321, 2009.

] P. Pietraski, G. Charlton, R. Yang, and C. Wang, “Enteahcell-edge

performance with transmit power-shaping and multipoint, rfiati

techniques,”ZTE Communications, no. 4, 2011.

M. N. Rooker and A. Birk, “Multi-robot exploration undehe con-
straints of wireless networkingControl Engineering Practice, vol. 15,
no. 4, pp. 435-445, 2007.

R. S. Sutton, “Integrated architectures for learnipdgnning, and
reacting based on approximating dynamic programmingPrioceed-

ings 7th International Conference on Machine Learning (ICML-90),

Austin, US, 21-23 June 1990, pp. 216-224.

R. S. Sutton and A. G. Bartdzeinforcement Learning: An Introduc-

tion, 2nd ed., ser. Adaptive Computation and Machine Learning.
Bradford Book, 2018.

] C. J. C. H. Watkins and P. Dayan, “Q-learningfachine Learning,

vol. 8, pp. 279-292, 1992.

Y. Yan and Y. Mostofi, “Co-optimization of communicationamo-
tion planning of a robotic operation under resource coimggand in
fading environments IEEE Transactions on Wireless Communications
12.4 (2013):, vol. 12, no. 4, pp. 1562-1572, 2013.

