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Abstract

We propose LU-Net—for LiDAR U-Net, a new method
for the semantic segmentation of a 3D LiDAR point cloud.
Instead of applying some global 3D segmentation method
such as PointNet, we propose an end-to-end architecture for
LiDAR point cloud semantic segmentation that efficiently
solves the problem as an image processing problem. We
first extract high-level 3D features for each point given its
3D neighbors. Then, these features are projected into a 2D
multichannel range-image by considering the topology of
the sensor. Thanks to these learned features and this pro-
jection, we can finally perform the segmentation using a
simple U-Net segmentation network, which performs very
well while being very efficient. In this way, we can exploit
both the 3D nature of the data and the specificity of the Li-
DAR sensor. This approach outperforms the state-of-the-art
by a large margin on the KITTI dataset, as our experiments
show. Moreover, this approach operates at 24fps on a single
GPU. This is above the acquisition rate of common LiDAR
sensors which makes it suitable for real-time applications.

1. Introduction
The recent interest for autonomous systems has moti-

vated many computer vision works over the past years.
The importance of accurate perception models is a cru-
cial step towards system automation, especially for mo-
bile robots and autonomous driving. Modern systems are
equipped with both optical cameras and 3D sensors, mostly
LiDAR sensors. These sensors are now essential compo-
nents of perception systems as they enable direct space mea-
surements, providing an accurate 3D representation of the
scene. However, for most automation-related tasks, raw Li-
DAR point clouds require further processing in order to be
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Figure 1. The top two images show the segmentation of LiDAR
data obtained with our method, and the groundtruth segmentation,
seen in the sensor topology. The bottom two images show the
same segmentations from a different point of view.

used. In particular, point clouds with accurate semantic seg-
mentation provide a higher level of representation of the
scene that can be used in various applications such as ob-
stacle avoiding, road inventory, or object manipulation.

This paper focuses on the semantic segmentation of 3D
LiDAR point clouds. Given a point cloud acquired with
a LiDAR sensor, we aim at estimating a label for each
point that belongs to objects of interest in urban environ-
ments (such as cars, pedestrians and cyclists). The tradi-



tional pipelines used to tackle this problem consider ground
removal, clustering of remaining structures, and classifica-
tion based on handcrafted features extracted on each clus-
ters [8, 6]. The segmentation can be improved with varia-
tional models [12]. These methods are often hard to tune as
handcrafted features usually require tuning many parame-
ters, which is likely to be data dependent and therefore hard
to use in a general scenario. Finally, although the use of reg-
ularization can lead to visual and qualitative improvements,
it often leads to a large increase of the computational time.

Recently, deep-learning approaches have been proposed
to overcome the difficulty of tuning handcrafted features.
This has become possible with the arrival of large 3D an-
notated datasets such as the KITTI 3D object detection
dataset [7]. Many methods have been proposed to segment
the point cloud by directly operating in 3D [17] or on a
voxel-based representation of the point cloud [23]. How-
ever, this type of methods either needs very high computa-
tional power, or are not able to process the amount of points
acquired in a single rotation of a sensor. Even more re-
cently, faster approaches have been proposed [20, 19]. They
rely on a 2D representation of the point cloud, called range-
image [1], which can be used as the input of a convolu-
tional neural network. Thus, the processing time as well as
the required computational power can be kept low, as these
range-images consist in low resolution, multichannel im-
ages. Unfortunately, the choice of input channels, as well
as the difficulty of processing geo-spatial information using
only 2D convolutions have limited the results of such ap-
proaches, which have not yet achieved good enough scores
for practical use, especially on small objects classes such as
cyclists or pedestrians.

In this paper, we propose LU-Net—for LiDAR U-Net—
an end-to-end model for the semantic segmentation of 3D
LiDAR point clouds. LU-Net benefits from a high-level 3D
feature extraction module that can embed 3D local features
in 2D range-images, which can later be efficiently used in a
U-Net segmentation network. We demonstrate that, beside
being a simple and efficient method, LU-Net largely out-
performs state-of-the-art range-image methods, as shown in
Figure 1.

The rest of the paper is organized as follows: We first
discuss previous works on point cloud semantic segmen-
tation, including methods designed for processing LiDAR
data. We then detail our approach, and evaluate it on the
KITTI dataset against state-of-the-art methods and discuss
the results.

2. Related Work

In this section, we discuss previous works on image se-
mantic segmentation as well as 3D point cloud semantic
segmentation below.

2.1. Semantic Segmentation for Images

Semantic segmentation of images has been the subject
of many works in the past years. Recently, deep learn-
ing methods have largely outperformed previous ones. The
method presented in [16] was the first to propose an accu-
rate end-to-end network for semantic segmentation. This
method is based on an encoder in which each scale is used
to compute the final segmentation. Only a few month later,
the U-Net architecture [18] was proposed for the seman-
tic segmentation of medical images. This method is an
encoder-decoder able to provide highly precise segmenta-
tion. These two methods have largely influenced recent
works such as DeeplabV3+ [5] that uses dilated convolu-
tional layers and spatial pyramid pooling modules in an
encoder-decoder structure to improve the quality of the pre-
diction. Other approaches explore multi-scale architectures
to produce and fuse segmentations performed at different
scales [14, 22]. Most of these methods are able to produce
very accurate results, on various types of images (medical,
outdoor, indoor). The survey [3] of CNNs methods for se-
mantic segmentation provides a deep analysis of some re-
cent techniques. This work demonstrates that a combination
of various components would most likely improve segmen-
tation results on wider classes of objects.

2.2. Semantic Segmentation of Point Clouds

3D-based methods. As mentioned above, the first ap-
proaches for point cloud semantic segmentation were done
using heavy pipelines, composed of many successive steps
such as: ground removal, point cloud clustering, feature
extraction as presented in [8, 6]. However, as mentioned
above, these methods often require many parameters and
they are therefore hard to tune. In [11], a deep-learning
approach is used to extract features from the point cloud.
Then, the segmentation is done using a variational regu-
larization. Another approach presented in [17] proposes
to directly input the raw 3D LiDAR point cloud to a net-
work composed of a succession of fully-connected layers to
classify or segment the point cloud. However, due to the
heavy structure of this architecture, it is only suitable for
small point clouds. Moreover, processing 3D data often in-
creases the computational time due to the dimension of the
data (number of points, number of voxels), and the absence
of spatial correlation. To overcome these limitations, the
methods presented in [13] and [23] propose to represent the
point cloud as a voxel-grid which can be used as the input of
a 3D CNN. These methods achieve satisfying results for 3D
detection. However, semantic segmentation would require
a voxel-grid of very high resolution, which would increase
the computational cost as well as the memory usage.



Figure 2. Proposed pipeline for 3D LiDAR point cloud semantic segmentation. First, the topology of the sensor is used to estimate the
8-connected neighborhood of each point. Then, each point and its neighbors are fed to the high-level 3D feature extraction module, which
outputs a multichannel 2D range-image. The range-image is finally used as the input of a U-Net segmentation network.

Range-image based methods. Recently, SqueezeSeg, a
novel approach for the semantic segmentation of a LiDAR
point cloud represented as a spherical range-image [1],
was proposed. This representation allows to perform the
segmentation by using simple 2D convolutions, which low-
ers the computational cost while keeping good accuracy.
The architecture is derived from the SqueezeNet image
segmentation method [10]. The intermediate layers are ”fire
layers”, i.e. layers made of one squeeze module and one
expansion module. Later on, the same authors improved
this method in [21] by adding a context aggregation module
and by considering focal loss and batch normalization to
improve the quality of the segmentation. A similar range-
image approach was proposed in [19], where a Atrous
Spatial Pyramid Pooling [4] and squeeze reweighting
layer [9] are added. Finally, in [2], the authors offer to input
a range-image directly to the U-Net architecture described
in [18]. This method achieves results that are comparable
to the state of the art of range-image methods with a
much simpler and more intuitive architecture. All these
range-image methods succeed in real-time computation.
However, their results often lack of accuracy which limits
their usage in real scenarios.

In the next section, we propose LU-Net: an end-to-
end model for the accurate semantic segmentation of point
clouds represented as range-images. We will show that it
outperforms all other range-image methods by a large mar-
gin on the KITTI dataset, while offering a robust methodol-
ogy for bridging between 3D LiDAR point cloud processing
and 2D image processing.

3. Methodology
In this section, we present our end-to-end model for the

semantic segmentation of LiDAR point clouds inspired by
the U-Net architecture [18]. An overview of the proposed
method is available in Figure 2.

3.1. Network input

As mentioned above, processing raw LiDAR point
clouds is computationally expensive. Indeed, these 3D

point clouds are stored as unorganized lists of (x, y, z)
Cartesian coordinates. Therefore processing such data of-
ten involves preprocessing steps to bring spatial structure
to the data. To that end, alternative representations, such
as voxel grids or 2D pinhole projections in 2D images, are
sometimes used, as discussed in the Related Work section.
However, high resolution is often needed in order to rep-
resent enough details, which involves heavy memory costs.
Modern LiDAR sensors often acquire 3D points, following
a strict sensor topology, from which we can build a dense
2D image [1], the so-called range-image. The range-image
offers a lightweight, structured and dense representation of
the point cloud.

3.2. Range-images

Whenever the raw LiDAR data (with beam number) is
not available, the point cloud has to be processed to ex-
tract the corresponding range-image. As 3D LiDAR sensors
acquire 3D points with a sampling pattern of a few num-
ber of scan lines and quasi uniform angular steps between
samples, the acquisition follows a grid pattern that can be
used to create a 2D image. Indeed, each point is defined by
two angles and a depth, (θ, φ, d) respectively, with steps of
(∆θ,∆φ) between two consecutive positions. Each point pi
of the LiDAR point cloud P can be mapped to the coordi-
nates (x, y) with x = b θ∆θ c, y = b φ∆φc of a 2D range-image
u of resolution H ×W = Card(P ), where each channel
represents a modality of the measured point. A range-image
is presented on Figure 3.

In perfect conditions, the resulting image is completely
dense, without any missing data. However, due to the nature
of the acquisition, some measurements are considered in-
valid by the sensor and they lead to empty pixels (no-data).
This happens when the laser beam is highly deviated (e.g.
when going through a transparent material) or when it does
not create any echo (e.g. when the beam points in the sky
direction). We propose to identify such pixels using a bi-
nary maskm equal to 0 for empty pixels and to 1 otherwise.
The analysis of multi-echo LiDAR scans is subject to future
work.



3.3. High-level 3D feature extraction module

In [19], [20] and [21], the authors use a 5-channel range-
image as input of their network. These 5 channels are made
of the 3D coordinates (x, y, z), the reflectance (r) and the
spherical depth (d). However, the analysis presented in [2]
showed that feeding a 2-channel range-image with only the
reflectance and depth information to a U-Net architecture
achieves comparable results to the state of the art.

In all these previous works, the choice of the number of
channels of the range-image appears to be empirical. For
each application, a complete study or a large set of experi-
ments must be conducted to choose the best within all the
possible combinations of channels. This is tedious and time
consuming. To bypass such an expensive study, we pro-
pose in this paper a feature extraction module that is able
to directly learn meaningful features adapted to the target
application—here, semantic segmentation.

Moreover, processing geo-spatial information using 2D
convolutional layers can cause issues in terms of data nor-
malization as LiDAR sensors sampling typically decreases
when acquiring farther points.

Inspired by the Local Point Embedder presented in [11],

(a)

(b)
Figure 3. Turning a point cloud into a range-image. (a) A point
cloud from the KITTI database [7], (b) the same point cloud as a a
range-image. Note that the dark area in (b) corresponds to pulses
with no returns. Colors correspond to groundtruth annotation, for
better understanding.

Figure 4. Illustration of the notation of the input of the feature
extraction module. pi is the point,N (pi) is the set of neighbors of
pi.

Figure 5. Architecture of the 3D feature extraction module. The
output is an 1×N feature vector for each LiDAR point.

we propose a high-level 3D feature extraction module that
is able to learn N meaningful high-level 3D features for
each point and to output a range-image with N channels.
Contrary to [11], our module exploits the range-image to
directly estimate the neighbors of each points instead of us-
ing a pre-processing step. Moreover, our module outputs a
range-image, instead of a point cloud, which can be used as
input to a CNN.

Given a point pi = (x, y, z), and ri its associated re-
flectance, we define N (pi) the set of neighboring points of
pi in the range-image (e.g. the points that correspond to
the 8-connected neighborhood of pi in the range-image).
This set is illustrated Figure 4. We also define N̄ (pi) =
{q−pi | q ∈ N (pi)} the set of neighbors in coordinates rel-
ative to pi. Note that if either pi or q is an empty pixel, then
q − pi = (0, 0, 0).

Similarly to [11], the set of neighbors N̄ (pi) is first pro-
cessed by a multi-layer perceptron (MLP), which consists of
a succession of linear, ReLU and batch normalization lay-
ers. The resulting set is then maxpooled to a point feature
set, which is concatenated with pi and ri. The resulting vec-
tor is processed through another MLP that outputs a vector
of N 3D features for each pi. This module is illustrated in
Figure 5.

As linear layers can be done using 1 × 1 convolutional
layers, the whole P point cloud can be processed at once.
In this case, the output of the 3D feature extraction module
is a Card(P ) × N matrix, which can then be reshaped to a
H ×W ×N range-image.

3.4. Semantic segmentation

Architecture. The U-Net architecture [18] is an encoder-
decoder. As illustrated in Figure 6, the first half consists in
the repeated application of two 3× 3 convolutions followed
by a rectified linear unit (ReLU) and a 2 × 2 max-pooling
layer that downsamples the input by a factor 2. Each time
a downsampling is done, the number of features is doubled
to compensate for the loss of resolution. The second half of
the network consists of upsampling blocks where the input
is upsampled using 2 × 2 up-convolutions. Then, concate-
nation is done between the upsampled feature map and the



Figure 6. LU-Net architecture with the output of the 3D feature ex-
traction module as the input (top) and the output segmented range-
image (bottom).

corresponding feature map of the first half. This allows the
network to capture global details while keeping fine details.
After that, two 3 × 3 convolutions are applied followed by
a ReLU. This block is repeated until the output of the net-
work matches the dimension of the input. Finally, the last
layer consists in a 1x1 convolution that outputs as many fea-
tures as the wanted number of possible labels i.e. K 1-hot
encoded.

Loss function. The loss function of our model is defined
as a variation of the focal loss presented in [15]. Indeed,
our model is trained on a dataset in which the number of
example for each class is largely unbalanced. Using the fo-
cal loss approach helps improving the average score by few
percents, as discussed later in Section 4. First, we define the
pixel-wise softmax for each label k:

pk(x) =
exp(ak(x))

K∑
k′=0

exp(ak′(x))

where ak(x) is the activation for feature k at the pixel po-
sition x. After that, we define l(x) the groundtruth label of
pixel x. We then compute the weighted focal loss as fol-

lows:

E =
∑
x∈Ω

−1{m(x)>0}w(x)(1− pl(x)(x))γ log(pl(x)(x))

where Ω is the domain of definition of u, m(x) > 0 are the
valid pixels, γ = 2 is the focusing parameter and w(x) is
a weighting function introduced to give more importance to
pixels that are close to a separation between two labels, as
defined in [18].

Training We train the network with the Adam stochastic
gradient optimizer and a learning rate set to 0.001. We also
use batch normalization with a momentum of 0.99 to ensure
good convergence of the model. Finally, the batch size is set
to 4 and the training is stopped after 10 epochs.

4. Experiments
We trained and evaluated LU-Net using the same ex-

perimental setup as the one presented in SqueezeSeg [20]
as they provide range-images with segmentation labels ex-
ported from the 3D object detection challenge of the KITTI
dataset [7]. They also provide the training / validation split
that they used for their experiments, which contains 8057
samples for training and 2791 for validation and which can
be used for a fair comparison between each result of each
method.

We have manually tuned the number of layersN , i.e. the
number of 3D features learned for each points. On all our
experiments, best semantic segmentation results were ob-
tained by setting N = 3. This small amount of channels is
enough to highlight the structure of the objects that are lat-
ter used in the U-Net in charge of the segmentation task. All
results reported in this section are with this value. Neverthe-
less, if using the high-level 3D feature extraction module for
other applications, one should consider adapting this value.

4.1. Comparison with the state of the art

We compare the proposed method to 4 range-image
based methods of the state of the art: PointSeg [19],
SqueezeSeg [20], SqueezeSegV2 [21], and RIU-Net [2].
RIU-Net is a previous version of LU-Net we developed and
was solely based on the raw reflectance and depth features
instead of the 3D features learned in the end-to-end network
of LU-Net. Similarly to [20] and [21], the comparison is
done based on the Intersection-over-Union score:

IoUl =
|ρl

⋂
Gl|

|ρl
⋃
Gl|

where ρl and Gl denote the predicted and groundtruth sets
of points that belongs to label l respectively.

The performance comparisons between LU-Net and
state-of-the-art methods are displayed Table 1. The first ob-
servation is that the proposed model outperforms existing



methods in terms of average IoU by over 10%. In partic-
ular, the proposed model achieves better results on each of
the classes compared to PointSeg, SqueezeSeg and RIU-
Net. Our method also largely outperforms SqueezeSegV2
for both pedestrians and cyclists.

Our method is very similar to RIU-Net as both methods
use a U-Net architecture with a range-image as input. While
RIU-Net uses 2 channels—the reflectance and depth—LU-
Net automatically extracts a N-dimensional high-level fea-
tures per point thanks to the 3D feature extraction module.
Table 1 demonstrates that using an additional network to
automatically learn high-level features from the 3D point
cloud largely improves the results, especially on classes that
are less represented in the dataset.

Figure 7 presents visual results for SqueezeSegV2 and
LU-Net. We here observe that visually, the results for cars
are comparable. Nevertheless, by looking closer at the re-
sults, we observe that SqueezeSegV2 is more subject to
false positives (Figure 7, orange rectangle). Moreover, our
method provides a better segmentation of the cars in the
back of the scene, compared to SqueezeSegV2 (Figure 7,
purple rectangle).

4.2. Ablation study

Table 2 presents intermediate scores in order to highlight
the contribution of some model components.

First, we analyse the influence of relative coordinates
N̄ as input to the 3D feature extraction module (Figure 5).
We trained and tested the model using absolute coordinates
N . We name this version LU-Net w/o relative. As Table 2
shows, relative candidates provide better results than neigh-
bors in absolute coordinates. We believe that by reading
relative coordinates as input, the network learns high-level
features characterizing the local 3D geometry of the point
cloud, independently of its absolute position in the 3D en-
vironment. These absolute positions are re-introduced once
this geometry is learned, i.e. before the second multi-layer

Table 1. Comparison (IoUs, %) of LU-Net with the state of the art
for the semantic segmentation of the KITTI dataset.
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SqueezeSeg [20] 64.6 21.8 25.1 37.2
PointSeg [19] 67.4 19.2 32.7 39.8
RIU-Net [2] 62.5 22.5 36.8 40.6

SqueezeSegv2 [21] 73.2 27.8 33.6 44.9

LU-Net 72.7 46.9 46.5 55.4

Ground truth

SqueezeSegV2 [21]

LU-Net

Zooms in the following order
Groundtruth, SqueezeSegV2, LU-Net

Figure 7. Visual comparison of the proposed model against
SqueezeSegV2 [21] and the ground truth. Results are shown on
the range-image where depth values are encoded with a grayscale
map. Both SqueezeSegV2 and LU-Net globally achieve very sat-
isfying results. Nervertheless, LU-Net is less subject to false pos-
itives than SqueezeSegV2, as can be seen in the orange areas and
corresponding zooms. It also better segments farther objects such
as the cars on the back of the scene in the purple rectangle, which
reduces the amount of false-negatives, which are crucial for au-
tonomous driving applications.

Groundtruth

LU-Net w/o relative

LU-Net w/o FL

LU-Net
Figure 8. Visual results of the ablation study. The use of neighbors
in absolute coordinates results in incomplete segmentations of the
objects compared to neighbors in relative coordinates. Moreover,
the use of the focal loss (FL) helps the network to better distinguish
classes that have similar aspects, here, cyclists and pedestrians.

perceptron of the 3D feature extraction module.



Table 2. Ablation study for the semantic segmentation of the
KITTI dataset. Results in terms of (IoUs, %) for LU-Net w/o rel-
ative: which uses absolute coordinates N instead of relative N̄ as
input to the feature extraction module; LU-Net w/o FL : proposed
model without focal-loss; LU-Net: proposed model with relative
coordinates and focal-loss.
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LU-Net w/o relative 62.8 39.6 37.5 46.6
LU-Net w/o FL 73.8 42.7 32.9 49.8
LU-Net 72.7 46.9 46.5 55.4

For fair comparison, we also experimented using abso-
lute coordinates N and adding a supplementary convolu-
tional layer as the first layer. Indeed, we could expect this
additional layer to characterize the transformation from ab-
solute and local coordinates. Nevertheless, this architec-
ture brought numerical instability while not managing to
learn such transform, as it ended up with an average IoU
of 30.6%.

Next, we analyse the influence of the focal-loss. As seen
in Table 2, the use of focal-loss largely improves the scores
on both cyclists and pedestrians. This is related to the im-
balance between each class in the dataset, where there are
10 times more car examples than cyclists or pedestrians.

4.3. Additional results

Apart from being convincing in terms of IoUs, the results
produced by our method are also very convincing visually,
as it is demonstrated Figure 1 and 9. Our segmentations are
very close to those of the groundtruth. In Figure 9d), one
of the pedestrians was not detected. When looking closely
at the depth values in the range-image, this pedestrian is
in fact hardly visible. It is also the case in the reflectance
image. This is also related to the resolution of the sensor as
only few points fall on the pedestrian, and could probably
be solved by adding an external modality such as an optical
image.

In Figure 9e), a car in the foreground is missing from the
groundtruth, this causes the IoU to drop from 89.7% when
ignoring this region of the image, down to 36.4%. Thus,
removing examples with wrong or missing annotations in
the dataset could lead to better results on LU-Net as well as
on other methods. However, due to the amount of examples
in the dataset, having a perfect annotation is practically
very difficult.

Finally, LU-Net is able to operate at 24 frames per sec-
ond on a single GPU. This is a lower frequency compared to

other systems, yet still above the frame rate of the LiDAR
sensor (10fps for the Velodyne HDL-64e). Moreover, our
system uses only a few more parameters than RIU-Net for
a significant improvement in terms of IoU scores.

5. Conclusion
In this paper, we have presented LU-Net, an end-to-

end model for the semantic segmentation of 3D LiDAR
point clouds. Our method efficiently creates a multi-channel
range-image using a learned 3D feature module. This
range-image later serves as the input of a U-Net architec-
ture. We show that this methodology efficiently bridges
between 3D point cloud processing and image processing.
The resulting method is simple, but yet provides very high
quality results far beyond existing state-of-the-art methods.

The current method relies on the focal loss function. We
plan to study possible spatial regularization schemes within
this loss function. Finally, fusion of LiDAR and optical data
would probably enable reaching a higher level of accuracy.
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