
HAL Id: hal-02269842
https://hal.science/hal-02269842

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Architectural Approach to Autonomics and
Self-management of Automotive Embedded Electronic

Systems
D J Chen, R Anthony, M Persson, D Scholle, V Friesen, G Deboer, A

Rettberg, C Ekelin

To cite this version:
D J Chen, R Anthony, M Persson, D Scholle, V Friesen, et al.. An Architectural Approach to
Autonomics and Self-management of Automotive Embedded Electronic Systems. Embedded Real
Time Software and Systems (ERTS2008), Jan 2008, Toulouse, France. �hal-02269842�

https://hal.science/hal-02269842
https://hal.archives-ouvertes.fr

 Page 1/8

An Architectural Approach to Autonomics and Self-management
of Automotive Embedded Electronic Systems

D.J. Chen1, R. Anthony2, M. Persson1, D. Scholle3, V. Friesen4, G. deBoer5, A. Rettberg6, C.
Ekelin7

1: Royal Institute of Technology - KTH, SE-100 44 Stockholm, Sweden
2: University of Greenwich, SE10 9LS London, United Kingdom

3: Enea AB, SE-164 21 Kista, Sweden
4: Daimler AG, 89081 Ulm, Germany

5: Robert Bosch GmbH, 31132 Hildesheim, Germany
6: The University of Paderborn/C-LAB, 33102 Paderborn, Germany

7: Volvo Technology AB, SE-412 88 Göteborg, Sweden

Abstract: Embedded electronic systems in vehicles
are of rapidly increasing commercial importance for
the automotive industry. While current vehicular
embedded systems are extremely limited and static,
a more dynamic configurable system would greatly
simplify the integration work and increase quality of
vehicular systems. This brings in features like
separation of concerns, customised software
configuration for individual vehicles, seamless
connectivity, and plug-and-play capability.
Furthermore, such a system can also contribute to
increased dependability and resource optimization
due to its inherent ability to adjust itself dynamically
to changes in software, hardware resources, and
environment condition. This paper describes the
architectural approach to achieving the goals of
dynamically self-configuring automotive embedded
electronic systems by the EU research project
DySCAS. The architecture solution outlined in this
paper captures the application and operational
contexts, expected features, middleware services,
functions and behaviours, as well as the basic
mechanisms and technologies. The paper also
covers the architecture conceptualization by
presenting the rationale, concerning the architecture
structuring, control principles, and deployment
concept. In this paper, we also present the adopted
architecture V&V strategy and discuss some open
issues in regards to the industrial acceptance.

Keywords: embedded middleware, dynamic con-
figuration, autonomic computing

1. Introduction

DySCAS (Dynamically Self-configuring Automotive
Systems) is a project funded by the European
Commission that aims to advance basic
technologies and introduce context-aware and self-
managing behaviours into automotive control
systems [1]. This will allow an automotive embedded
electronic system to dynamically configure itself
according to the environmental and internal

conditions, to cope with unexpected events, and to
handle emerging use cases and external devices not
known at the deployment time.

In modern automotive vehicles, embedded electronic
systems have been widely employed for bringing in
advanced features in regards to driver assistance,
fuel efficiency, dynamics control and active safety,
accounting for a very large portion of all innovations
in the automotive industry. However, due to
increasing expectations on flexibility, dependability,
time-to-market and cost-efficiency, current state-of-
the-art vehicle electronic systems, for which a static
configuration is defined during the development
process and remains stable over the complete
lifetime of the vehicle, will not be sufficient. Future
scenarios are typically concerned with: 1) building
ad-hoc networks with a number of mobile devices to
share functionality, 2) enhancing support for
resource optimization and QoS (quality of service),
maintainability, and dependability, 3) cost efficient
and reliable field-upgrades of software to enable the
latest innovations and personalization. These needs
are further explained in Section 1.1 of this paper in
terms of the DySCAS use cases.

Current and emerging automotive standards address
the integration and configuration challenges of
automotive embedded systems; AUTOSAR
(AUTomotive Open System ARchitecture) is the
most prominent of these [2]. The AUTOSAR
standard allows (re-)use of “off-the-shelf”
components and services across different
manufacturers by providing an open standard for the
componentization of automotive software and
platform services. While the introduction of such
standards in the automotive industry constitutes a
very important progress, their delimitations on static
configuration implies that the challenges relating to
the above mentioned future scenarios remain open.

DySCAS intends to complement such automotive
standards in regards to dynamic self-adaptive
configuration, while interoperating or at least co-

 Page 2/8

existing with certain deployed static technologies,
and integrating related state-of-the-art approaches
that traditionally target other application domains.
These approaches include in particular autonomic
computing [3, 4], control-theoretic approach to
computer control [5], and middleware [6, 7, 8]. The
autonomic computing paradigm advocates self-
managing behaviours that allow software programs
to modify their own behaviours according to the
contextual conditions, and is widely acknowledged to
be a solution to the software complexity crisis. The
control-theoretic approach has been used to support
load-balancing and quality of service. State-of-the-art
middleware technology provides basic mechanisms
for communication transparency in distributed
systems and configurational adaptability.

This paper provides an overview of the approach
taken by the DySCAS project to dynamically self-
configuring automotive embedded electronic
systems. It presents the targeted application area
and the architectural implications in Section 2, the
architecture solution in Section 3, the mechanism
and basic technologies adopted for embedded
reasoning and decision-making in Section 4, and the
adopted architecture V&V strategy in Section 5. The
architectural modelling is currently being performed
in UML2 with an upcoming alignment with the EAST-
ADL2 architecture description language [9, 10]. We
conclude by highlight the open issues in Section 6.

2. DySCAS use cases and their architectural
implications

In DySCAS, the envisioned future needs of vehicle
embedded electronic systems have been
investigated by the automotive partners and
captured in terms of four generic classes of use-case
(GUC) which each comprise several specific use-
cases (SUC) with related functionality [11]. Such use
cases then forms the basis for deriving the functional
and nonfunctional requirements as well as for the
verification and validation through simulation and
experimental systems. See also Figure 1 for an
illustration of the mapping from problem domain to
the solution domain according to this strategy.

GUC1. A new device is attached to the vehicle –
relating to the dynamic discovery and incorporation
of devices that a vehicle comes into contact with.
The ‘device’ can be a mobile phone, PDA, MP3
player etc, but can also be a wireless network
hotspot. For the intended feature, the system must
perform a series of actions which, depending on the
SUCs of concern, can include: discovery of the
device, establishing connectivity, identification of the
device or its owner (for security), negotiation of
service provision (level of service, direction of
service), providing or accepting the actual service,
service termination and device disconnection.

The use cases represented by GUC1 necessitate
embedded reasoning and decision support in
respect to access control, integration of functionality,
and interoperation. In particular, it is concerned with
the determination of which devices can be
connected based on the type of device, its
ownership, the services it offers or requests, vehicle
owner/driver preferences for security and service
prioritization, and the context such as the amount of
available processing and storage resources
available. This last point is very important because
the use cases are generally related to infotainment
services which involves media processing and
streaming and in addition to requiring substantial
resources, also has a real-time aspect. Specific
architectural impacts of this class of use case
include the need for open and standardized
communication interfaces, an API for device drivers,
and a means of learning and storing dynamically
created decision details reflecting driver preferences
with respect to various devices and configurations.

GUC2. Integrating new software functionality –
relating to dynamically maintain the functionality by
operating or application software. This can involve
adding totally new components or applications, as
well as upgrading and downgrading existing
components and applications. It targets the
situations such as when a new functionality has
become available, a problem has been detected with
current configuration, a time-limited licence has
expired for a specific add-on service or a certain
personalised services needs to be removed due to
the change of car ownership. The use case can be
internally triggered, for example to resolve an
incompatibility or dependency problem; or can be
externally triggered, as when a user requests a
specific feature update.

The use cases represented by GUC2 imply
embedded reasoning and decision support with
respect to configuration management, impact

Generic Use-Cases (GUC)

System Requirements (SR)

Specific Use-Cases (SUC)

Services
(the middleware layer)

Technology

U

R

G

S

ECU

GG

UU U U

RR R RR

S

S S

S S

Sensor

Specific Functionalities (SF) F FF F FFF F

Generic Use-Cases (GUC)

System Requirements (SR)

Specific Use-Cases (SUC)

Services
(the middleware layer)

Technology

U

R

G

S

ECUECU

GG

UU U U

RR R RR

S

S S

S S

SensorSensor

Specific Functionalities (SF) F FF F FFF F

Figure 1. Mapping from problem domain to
solution domain in DySCAS.

 Page 3/8

assessment of changes, and error handling. This in
particular include the resolutions of whether an
upgrade is necessary, whether an upgrade is
allowed (given the current set of component
dependencies), which components to upgrade, and,
subsequently, whether to rollback. Specific
architectural impacts of this class of use case also
include the need for a modular binary image, and
storage of current configuration details (component
versions, dependencies), and of allowed
configuration details, in a repository.

GUC3. Closed reconfiguration – relating to providing
support for advanced system-wide error handing and
fault treatment in a transparent way. For example,
should an application service fails, due to software
bugs, hardware problems, or power shortages, the
DySCAS middleware will synchronize related
services and then relocate the service according to
the vehicle state. This may also involve shutting
down a less important service to free up resources.

The architectural implications of GUC3 include
support for detection of unexpected events as well
as support for self-diagnosis, impact analysis and
confinement of errors, online fault localization and
treatment. Moreover, there are also needs of support
for state transfer, process migration, checkpoints,
and logging of historical data and state information.

GUC4. Resource optimization – relating to
dynamically reorganise and balance workloads to
maximise the efficiency with which resources are
used. This includes for example dynamic selection
among redundant sensors or ECUs for reliability and
QoS, shutting down unused devices for power
saving.

The implied architecture support will include the
online resolution of which services should be active
at each ECU, which services/ECUs can be
shutdown. Specific architectural impacts of this class
of use case include the need for instrumentation
(power availability etc.) and the ability to shutdown
ECUs.

To satisfy these use cases, the inherent conflict
between flexibility and robustness in distributed
embedded systems need to be carefully resolved by
the architecture. One issue is concerned with the
provision of component and architectural information
when assessing the impacts of potential changes
(e.g., adding a new software component). For
dynamic configurations, the information usually
relates not only to the system functionality but also to
the performance, safety, resource constraints, and
many other aspects. To this end, it is important that
the prerequisites and constraints of components in
regards to interoperability, portability, and
performance, and other qualities of concern can be
maintained at runtime along with a consistent global

view of configurational states and resource
deployment. The complexity of embedded systems
also implies that multi-criteria trade-offs need to be
supported for resolving configurational alternatives.

Besides the reasoning and decision support,
dynamic configuration in general also implies
advanced communication and execution support.
This includes location transparency and access
transparency (see e.g., [12]) that are considered
necessary to migrate and reallocate functionality, to
move a (mobile) resource, to allow efficient
interactions with replicas. One performance related
challenge is the middleware overheads, both in time
and in resource utilization. The platforms on which
DySCAS will operate (i.e. ECUs in vehicles) have
several domain specific restrictions, including limited
processing and memory. For example (many ECUs
have only 8-bit processors which run at low clock
speeds and have limited amount of memory,
although vehicles are likely to have some 32-bit
ECUs as well). Moreover, the conventional
communication buses used in automotive systems
have restricted data rates. For example, the CAN
bus operates at up to 1Mbit/ second (whilst the
MOST bus runs at up to 24.8Mbits/second but is
only supported on the most-powerful ECUs). The
fact that the systems are embedded also makes it
difficult to change the run-time code (operating
system and application code). To minimize the
impacts of such overheads, the choice of control
algorithms, the instantiation, mapping, and allocation
of middleware services, as well as the planning and
controlling of the configuration and management
tasks, are all of particular concern. For dynamic
operations, determinism can be achieved through
mechanisms that reserve and initialize necessary
resources in advance. It is also possible to facilitate
dynamic changes by allowing different operation
modes of applications.

3. An overview of the DySCAS architecture

The architecture constitutes an overall design for the
intended DySCAS middleware system where various
policy-driven self-management mechanisms are
defined, integrated, and realized in an automotive
context. It specifies the external concerns (e.g.,
available vehicle information and technology
constraints), the system functionality and building-
blocks in terms of middleware services and
components, the data and interfaces, the expected
behaviours (e.g., the execution states and control
flow), and the implementation design for software
configuration and deployment. For complexity control
and design effectiveness, the architecture design
work adopts an incremental refinement process,
running from conceptual design, to function design,

 Page 4/8

then to software design, and finally to detailed
implementation design.

DySCAS middleware services

Figure 1 provides an outline of the DySCAS
middleware architecture, including the major
middleware services and the external interfaces
towards the application software and target platform.
For technical and practical reasons, DySCAS
provides the freedom to run other standalone and
legacy software applications along with DySCAS
applications. Such external applications are not
ported to the DySCAS middleware, but directly to the
underlying target platform and hardware devices.
The functional dependencies, in the form of
communication between the middleware services,
are summarized in Table 1.

Table 1. An overview of the interdependencies of
DySCAS middleware services.

On top of the portability layer, the middleware
system is structured into three levels of control. This
layering strategy allows a hierarchical decomposition
of control tasks through which a larger
reconfiguration problem is reduced to more
elementary operations. This pattern is widely
adopted in many complex control systems [13].

The DySCAS middleware services are further
divided in two groups: (1) optional services,
providing basic support for network and platform
transparencies, and (2) core services, providing
embedded reasoning and decision support through
the contained policies and other control functions.
The optional services are placed in the DySCAS
Instantiation Interface (shown as dashed blocks in
Figure 1). These services interact directly with the
underlying system platforms and provide support in
respect of portability and interoperability, transparent
communication, concurrency control, membership
management, much as the support offered by other
traditional middleware systems. Such services are
optional as the same services can be obtained
through systems, network, or other external
middleware. Under these circumstances, the
components implementing such services act as
wrappers/containers for the corresponding external
services. The core middleware services provide the
reasoning and decision support through the
contained policies and other control functions. See
Table 2 for an overview of these services.

While performing the policy-based reasoning and
decisions, each middleware service is built to be
context-aware, of which the general concept is
illustrated in figure 2. An example of a middleware
service is the device discovery support by the
DySCAS Resource Deployment Management
Service. The decision is based on information like
the type of a newly presented device, the offered

Figure 1. A schematic overview of the DySCAS architecture.

 Page 5/8

services and/or resources, the context in terms of
current vehicle state and presence of other devices.
Other middleware services will be brought into play
once a device has been recognised. For example
the security support by the DySCAS Dependability &
Quality Management Service must decide whether
the device and the application services it offers are
to be accepted into the system.

DySCAS middleware control paths

Across the architecture layers, there are three paths
of control:

• Path_1: context monitoring and event detection
path;

• Path_2: reasoning and decision path;

• Path_3: actuation and synchronisation path.

The context monitoring and detection path is the
most data intensive, while the other two paths are
mainly event driven.

The context monitoring and event detection path
performs the role of monitoring the context given by
the current status of vehicle applications as well as
the current deployment of target and external
resources. It detects the events/states of interest
according to a set of predefined policies. In addition,
this path is also responsible for consolidating the

information from distributed sources and for
providing normalized quality figures for the reasoning
and decision functions. In DySCAS, this path runs
from underlying system platform to the Resource
Deployment Management Service via the DySCAS
Instantiation Interface. Multiple context monitoring
and event detection paths can exist in a networked
system, targeting individual nodes, network realms,
and the entire network system separately.

The reasoning and decision path is triggered when
an event or state of interest is detected (e.g.,
discovering an external device) by the monitoring
and detection path. It performs the roles of
assessing such events/states and planning for the
configurational adaptations. The contained policies
capture the configurational rules, including the
allowed variability and constraints. This provides a
system with the ability to reason about the
correctness and efficiency of its current
configuration, and to resolve potential configurational
changes without eroding the architecture or violating
the functionality and dependability (e.g., safety,
security, and availability). In DySCAS, this path is
subdivided into:

• a dynamic configuration control path, supported
by the Autonomic Configuration Management
Service, and

TABLE 2. An overview of DySCAS Core Services and some of their properties

DySCAS Core Service Overall System Roles Related Autonomic Features [3, 4]
Autonomic Configuration
Management Service

Analyzer for the overall impacts of requested dynamic changes;
Planner of configuration tasks.

Self-configuring (on the online configuration reasoning
support); Self-healing (on error-handling and fault removal).

Repository Service Repository of files for decision policies, component images, and
information relating to knowledge of configuration and diagnostics.

 N/A

Dependability & Quality
Management Service

Dependability and security controller; Performance Optimizer. Self-healing; Self-optimizing; Self-protecting (for external
accesses and service requests).

Autonomic Configuration
Handler

Coordinator of distributed dynamic configuration operations. Self-configuring (through the execution synchronization
support).

Resource Deployment
Management Service

Monitor of target and external resources that also brings together
distributed information and generates normalized figures of quality
feedback; Executor of dynamic configuration operations.

Self-defining; Context awareness (in respect to external de-
vices/systems); Self-configuring (mainly through sensing and
execution support).

SW Load Management
Service

Executor of dynamic load operations. Self-configuring.

Figure 2. A configurable and context-aware DySCAS service

Context can be:
• Explicitly passed in,
• Implicit from behaviour
(such as event sequences),

• Determined from interaction
with other services.

Policies are:
• Held externally
• Run-time loadable

Any DySCAS service
or middleware component

Dynamic
modification
of behaviour

Embedded
policy library

Context
(Dynamic system state

and environmental
Information)

Interaction with
other services

Policy
(specification of

desired context-aware
Behaviour)

Context can be:
• Explicitly passed in,
• Implicit from behaviour
(such as event sequences),

• Determined from interaction
with other services.

Policies are:
• Held externally
• Run-time loadable

Any DySCAS service
or middleware component

Dynamic
modification
of behaviour

Embedded
policy library

Any DySCAS service
or middleware component

Dynamic
modification
of behaviour

Embedded
policy library
Embedded

policy library

Context
(Dynamic system state

and environmental
Information)

Context
(Dynamic system state

and environmental
Information)

Interaction with
other services

Policy
(specification of

desired context-aware
Behaviour)

Policy
(specification of

desired context-aware
Behaviour)

 Page 6/8

• a dependability and QoS path, supported by the
Dependability&Quality Management Service.

Of great importance to the DySCAS middleware
system is the actuations and synchronizations of
dynamic configurational actions on a distributed
system. This is supported by the actuation and
synchronisation path, invoked by configurational
decisions in the reasoning and decision path. For
each dynamic configurational decision (e.g.,
updating a software component), there is normally a
sequence of primitive operations (e.g., invoking
transferring states, unloading, loading, initializing,
and executing a software component). For primitive
operations, the actuation and synchronisation path
also provides the scheduling and triggering support
across a distributed platform. During the executions
of primitive operations, the status is frequently
monitored. A failed execution may cause
rescheduling of the primitive operations or revising of
configurational decisions.

DySCAS middleware deployment concept

In DySCAS, each individual resource domain,
ranging from an individual ECU node at the lowest
level, to a network domain, and to an aggregation of
networks, is allowed to have its own complete set of
core services that together form a global monitoring
and decision hierarchy in a cascade way. For
example, in a networked system, there can be
multiple middleware control paths, targeting
individual resources separately (e.g., a node or a
network realm). Normally, each of these services is
deployed for an individual resource domain, such for
each node and for an entire network domain (e.g., a
group of ECUs sharing a specific communication
bus). Global decisions in a networked system are
then derived by consolidating local decisions. Each
DySCAS middleware service can act as a proxy for
consolidating a global system view or for obtaining
system-wide decisions. See figure 3.

Figure 3. An example deployment of DySCAS
middleware in vehicles.

For performance reasons, the DySCAS middleware
also allows the context information suppliers and the
decision makers to be allocated at different positions
within a network according to the computational
resources available. For dependability reasons, the
services can be implemented with redundant
components or distributed. When dealing with
aperiodic tasks when their behaviour is not known,
share-driven or server-based scheduling [14] is
considered.

4. Policy as the basic mechanism for embedded
configurational reasoning and decisions

In the DySCAS project, different technologies have
been investigated for intended middleware services.
As concluded in [15], different autonomics control
approaches are more or less suitable for usage in a
vehicular environment.

The main constraint in the automotive context is the
limited resources typically available in an ECU.
Computationally or memory intensive approaches
hence are less relevant, and hence policies was
chosen. The particular characteristics of policy-
based computing that influenced this decision
include: the policy logic is used to specify high-level
behaviour, in a standard and platform-independent
way; the policy logic is stored separately from the
mechanism and is loaded at run-time initiation (or
even during run-time), effectively as data rather than
as application code; policy evaluation has low run-
time resource requirements; and policy configuration
is sufficiently flexible that it is generally applicable to
all of the identified use cases.

Special considerations for DySCAS

A detailed review of the state of practice in policy-
based computing has been provided in [16].
Basically, there are two ways of implementing policy
through software. The first of these is based on
statically embedding the actual policy logic (the
rules) into the application code. During system start-
up or run-time, the context information and
configuration parameters (such as counts,
thresholds and flags) are passed in. This form of
policy configuration is also referred to as template-
configuration. It is considered ideal for situations
where a system needs to take into account context
information such as user preferences or security
flags for example, but the rules applied to these
values are static. Another way of implementing
policy through software is to store the configuration
values and the policy rules externally to the software
program, referred to as policy-configuration. This
approach is much more flexible as a dynamic
configuration of the policy itself is allowed.

When multiple policies are applied in a system, one
challenge is concerned with unexpected feature

 Page 7/8

interaction and conflicts between the decisions. The
DySCAS middleware system will employ hierarchical
policies so that the complexity of individual policies
stays low. A previous work on multi-policy will also
form a basis for the resolution [17]. Several of the
identified use cases require dynamic decisions to be
made which are simultaneously influenced by
several contextual factors. Thus there is an
identifiable need for integrating engineering decision
technique, such as Utility Functions (UF), to be
supported the online architectural decisions. UFs
have the particular strength of enabling the various
contextual factors to be weighted (possibly
dynamically) to reflect their relative importance when
choosing amongst several alternative paths.

In DySCAS, dynamic updates of policies and
dynamic creation of new templates could be used to
support automatic detection and resolution of rule
conflicts (such as in [18, 19]), to facilitate policy
maintenance, and to expedite urgent processes.
However, the challenges in regards to design and
V&V complexity need to be resolved. The issues of
concern include: whether policies can be changed
during run time (on-line) or whether policies can only
be loaded at software initialisation (in which case
updates must occur off-line); whether policy
implementation mechanisms support automatic self-
adaptation of policies (for example to improve the
performance of the system by dynamically tuning
rules or parameters); and the extent to which policy
mechanisms provide feedback to users concerning
the effectiveness of policies, identified inefficiencies,
or conflicts between rules. Upgrading a policy can be
achieved using the same context information but
perhaps utilizing more sophisticated logic. However,
if the context information provided to the policy is
somehow statically decided (for example it is
provided in a hard coded communication relationship
with other components) then the scope for logic
upgrade is limited.

Usage of AGILE-Lite in DySCAS

The policy implementation that the DySCAS
reference implementation is to be based upon the
AGILE policy expression language and integration
framework [20, 21]. AGILE has been developed in
C++/.NET. The implementation library,
documentation (including grammar specification and
API usage), sample applications and policies are
available at. On the other hand, AGILE is not
optimised for resource-constrained environments.

To support the implementation in the targeted
automotive environment as the DySCAS
middleware, a lightweight version, AGILE-Lite has
been developed. This library is using the same
flexible grammar as AGILE, but has been designed
specifically for deployment in embedded
applications. The AGILE-Lite implementation library

will be internally optimised for performance and
resource efficiency, and has been written in C, as
this has both high portability and code efficiency.
This approach allows policies to be loaded
dynamically, and to be replaced at run time. This
facilitates highly flexible dynamic configuration, for
example a new policy version could be delivered to
the vehicle via a wireless hotspot and at some
subsequent appropriate moment (non critical activity)
the policy can be loaded into the relevant component
without having to re-start it.

5. DySCAS V&V strategy

The V&V support for the development of DySCAS
middleware is being conducted through analysis,
simulation, and experimental platforms. For the
purpose of complexity control and earlier feedback,
an incremental approach regards to implementation
detail is also applied.

The analysis work focuses on some important
aspect of the middleware system, such as in respect
to the compositional behaviours and the overall
system safety in an automotive context. The
simulation provides a faster evaluation support and
allows better insight into the processes. A simulation
can be run in slow-motion, and far more data can be
made available to the developers if needed. To
explore issues closer related to the hardware, the
simulation work is conducted in part through the
TrueTime [21] toolbox in Matlab/Simulink, which
provides simulation models of common network
types (e.g. CAN, Ethernet) and typical real-time
operating systems (RTOS). In the DySCAS project,
several experimental systems are currently being
built up by the partners. These experimental systems
will be used as the validators for the architecture in
actual real systems. Many of the experimental
systems will also be used as demonstrators, to show
new features available in future automotive vehicles.

6. Conclusion and open issues

This paper has described the approach taken by the
DySCAS project to a middleware system for
autonomics and Self-management of Automotive
Embedded Electronic Systems. It covers the
motivations and reasoning behind the middleware
architecture as well as the architecture solutions.
Further, the usage of policy-based computing as the
basic mechanisms for embedded reasoning and
decision making in the DySCAS middleware has
been outlined. Finally, the adopted V&V strategy has
also been introduced.

One open issue is concerned with the industrial
acceptance of dynamic configurable embedded
systems. As the automotive applications are often
safety relevant, it is important to introduce dynamic

 Page 8/8

behaviour in such a way that the system remains
predictable and robust despite its autonomy. This
requires that significant effort be devoted to
verification of adaptive behaviours and validation of
overall system concepts. Furthermore, new concepts
must be developed for testing and legislation
approval. Moreover, since the DySCAS middleware
is more powerful and complex than static
middleware solutions, it's implementation is related
to additional costs in terms of extra bus capacities,
CPU power, and memory consumption. It has to be
proven within the project that these costs are fully
justified by the benefits coming from DySCAS, in
terms of reduced costs due to redundancy,
increased flexibility and cost efficiency, and reduced
time-to-market.

A migration path from existing static systems to
dynamic DySCAS systems is given by the
specification approach followed in DySCAS: Since
the system specification is independent from the
underlying self-configuration mechanisms, it is
possible to restrict the self-configuration behaviour of
the system very strictly. This may be reached by
degrading the algorithms for self-configuration to a
predefined set of tested system configurations which
are activated depending on the system
environments/situations. In the extreme case, a
DySCAS system may be degraded to a static
system. With this, a vehicle manufacturer is free to
decide to which extent he would like to introduce
reconfigurability to the DySCAS system, paving the
way to a migration from existing static systems to
DySCAS systems.

It is intended that DySCAS will form the basis of
standards describing self-adaptive configuration and
behaviour in automotive systems. It is mutually
important for both AUTOSAR and DySCAS and
highly advantageous for the beneficiaries (primarily
the vehicle manufacturers, and thus the vehicle
owners, drivers), if the results of DySCAS can be
merged into the AUTOSAR roadmap.

8. Acknowledgement

The DySCAS project is funded within the 6th
framework program “Information Society
Technologies” of the European Commission. Project
number: FP6-IST-2006-034904.

10. References
[1] DySCAS project website: www.DySCAS.org.
[2] AUTOSAR initiative: www.autosar.org
[3] P. Horn. “Autonomic computing: IBM perspective on
the state of the information technology”. In AGENDA’01,
Scottsdale, AR, 2001. (www.research.ibm.com/autonomic)
[4] IBM, “An architectural blueprint for autonomic
computing”. IBM and Autonomic Computing, April 2003.
(www-306.ibm.comm/autonomics/pdfs/ACwpFinal.pdf)

[5] K-E Årzén, et.al., “A Robertsson, Roadmap on Control
of RealTime Computing System”, EU/IST FP6 ARTIST2
NoW, Control for Embedded Cluster.
[6] P. Cointe, editor: “Meta-Level Architectures and
Reflection”. 2nd international conference, Reflection ’99,
St. Malo, France, volume 1616 of LNCS. Springer, 1999.
[7] D. C. Schmidt. “Adaptive middleware: Middleware for
real-time and embedded systems”. Communications of the
ACM, Vol 45, Issue 6, June 2002.
[8] W. Emmerich, Engineering Distributed Objects, John
Wiley & Sons, April 2000.
[9] P. Cuenot, D.J. Chen, S. Gérard, H. Lönn, O. Reiser,
D. Servat, R. T. Kolagari, M. Törngren, M. Weber.
“Improving Dependability by Using an Architecture
Description Language”. The 4th LNCS book on
Architecting Dependable Systems (ADS), Springer, 2007.
[10] P. Cuenot, P. Frey, R. Johansson3, H. Lönn, M.-O.
Reiser, D. Servat, R. Tavakoli Kolagari, D.J. Chen.
”Developing Automotive Products Using the EAST-ADL2,
an AUTOSAR Compliant Architecture Description
Language”. ERTS 2008 (AUTOSAR methodology).
[11] DySCAS Consortium, D1.2 Scenario and System
Requirements, 2007. www.DySCAS.org.
[12] M. Kohli and J. Lobo, “Realizing Network Control
Policies Using Distributed Action Plans, Journal of
Network and Systems Management”, 11 (3), Plenum
Publishing Corporation, September 2003..
[13] J.S. Albus, F.G. Proctor, “A Reference Model
Architecture for Intelligent Hybrid Control Systems”, Proc.
Intl. Federation of Automatic Control, USA, 1996.
[14] T Nolte. “Share-Driven Scheduling of Embedded
Networks”, PhD thesis, Department of Computer and
Science and Electronics, Mälardalen Univ, Sweden, 2006.
[15] DySCAS Consortium, D1.1B Evaluation of Existing
Technologies, 2007. www.DySCAS.org.
[16] R. Anthony “A Policy-Definition Language and
Prototype Implementation Library for Policy-based
Autonomic Systems”, 3rd Intl Conf on Autonomic
Computing, Dublin, June 2006, IEEE.
[17] R. Anthony, “Policy-based techniques for self-
managing parallel applications”, Knowledge Engineering
Review, 21 (3), 2006, Cambridge University Press.
[18] R. Ananthanarayanan, M. Mohania and A. Gupta,
“Management of Conflicting Obligations in Self-Protecting
Policy-Based Systems”, proc. of the 2nd Intl. Conf. on
Autonomic Computing, IEEE, Seattle, 2005.
[19] J. Chomicki and J. Lobo, “Monitors for history-based
policies”, Policies for Distributed Systems and Networks,
Springer, Berlin, 2001.
[20] AGILE support website: www.PolicyAutonomics.net.
[21] R. Anthony, “Policy-centric integration and dynamic
composition of autonomic computing techniques”, 4th Intl
Conf on Autonomic Computing, USA, June 2007, IEEE.
[21] TrueTime: Simulation of Networked and Embedded
Control Systems. Website: www.control.lth.se/truetime/

12. Glossary

ECU: Electronic Control Unit
GUC: Generic Use Case
SUC: Specific Use Case
QoS: Quality of Service
UF: Utility Function

