
HAL Id: hal-02269063
https://hal.science/hal-02269063

Submitted on 22 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contingent payments on a public ledger: models and
reductions for automated verification

Sergiu Bursuc, Steve Kremer

To cite this version:
Sergiu Bursuc, Steve Kremer. Contingent payments on a public ledger: models and reductions for
automated verification. ESORICS 2019 - The 24th European Symposium on Research in Computer
Security, Sep 2019, Luxembourg, Luxembourg. �hal-02269063�

https://hal.science/hal-02269063
https://hal.archives-ouvertes.fr

Contingent payments on a public ledger:
models and reductions for automated verification

Sergiu Bursuc and Steve Kremer

Inria Nancy-Grand’Est & LORIA, France

Abstract. We study protocols that rely on a public ledger infrastructure, con-
centrating on protocols for zero-knowledge contingent payment, whose security
properties combine diverse notions of fairness and privacy. We argue that rigor-
ous models are required for capturing the ledger semantics, the protocol-ledger
interaction, the cryptographic primitives and, ultimately, the security properties
one would like to achieve.
Our focus is on a particular level of abstraction, where network messages are
represented by a term algebra, protocol execution by state transition systems
(e.g. multiset rewrite rules) and where the properties of interest can be analyzed
with automated verification tools. We propose models for: (1) the rules guid-
ing the ledger execution, taking the coin functionality of public ledgers such as
Bitcoin as an example; (2) the security properties expected from ledger-based
zero-knowledge contingent payment protocols; (3) two different security proto-
cols that aim at achieving these properties relying on different ledger infrastruc-
tures; (4) reductions that allow simpler term algebras for homomorphic crypto-
graphic schemes.
Altogether, these models allow us to derive a first automated verification for
ledger-based zero-knowledge contingent payment using the Tamarin prover. Fur-
thermore, our models help in clarifying certain underlying assumptions, security
and efficiency tradeoffs that should be taken into account when deploying proto-
cols on the blockchain.

1 Introduction

The blockchain and its associated public ledger promise a practical solution to a basic
need for security protocols: a system that operates as stated, providing reliable outcome
to all agents. Both deployed [1–4] and abstract [5, 6] ledgers are ordered sequences
of states - state transition systems respecting operational constraints. The goal of the
underlying distributed protocols is to ensure that the ledger is indeed public, unique,
alive and consistent. Protocols can then be based on transaction and smart contract se-
mantics - i.e. rules that guide the state transition system - to implement functionality
that would otherwise be inefficient or require trusted parties. Take fair exchange: two
parties want to swap assets according to a contract that ensures fairness : any informa-
tion or value transfer is reciprocated as planned [7]. The problem can be solved with
optimistic assumptions, calling a trusted third party only when needed [8–10], or with
digital (counter)cheques and transactions inside multi-party computations [11–13].

A public ledger provides an alternative solution to the problem, specified as a zero-
knowledge contingent payment (ZKCP) for a seller and buyer. We suppose that the

information of interest can be expressed as data (a witness) satisfying functional con-
straints (a desired result), e.g. a sudoku solution respects additive constraints, a prime
factor decomposition satisfies multiplicative constraints, etc. ZKCP goals are: for the
Seller - a delivered witness will be paid for; for the Buyer - a paid for witness will
be delivered. Classically, these properties require trust and coordination with third par-
ties. On public ledgers, reliable semantics and dedicated cryptographic protocols can
minimize trust and interaction [14–18].

Challenges. Protocol actions occur at distinct levels: from local cryptographic ob-
jects, to network transactions, to ledger confirmation. Their respective semantics is use-
ful in protocol design, where parties can agree on desired ledger actions beforehand,
yet the concurrent environment opens up new challenges:
•Multiple sessions, concurrent ledger access. Asynchronicity leads to ambiguity about
what it means to be paid. For example, a seller should ensure it will not be paid the
same coin for two witnesses. If multiple sessions run in parallel, some with colluding
parties, protocol messages may be mixed up and exploited. Valid transaction requests do
not necessarily result in confirmed ledger transactions : if the adversary obtains private
keys by exploiting the protocol, a race ensues between honest and adversarial messages
claiming a coin. Protocols should ensure this does not happen - this is not usually an
explicit goal.
• Transaction finality. In fact, it is commonly advised to wait for transactions to be fi-
nalized on the ledger to ensure payment. Yet, we show that ZKCP protocols (have to)
provide a stronger property: as early as a transaction request is being sent over the net-
work, one should ensure that the corresponding coin cannot be spent in any other way,
because specific fields from the transaction may help the adversary in revealing secrets
- so we cannot afford the transaction to fail.
• Cryptographic interaction. Ledger-based protocols produce complex cryptographic
objects that engage ledger transitions at the same time as private data transfer, e.g. [15]
relies on homomorphic encryption to produce a (secret) ECDSA signature that will
perform a ledger transaction; this signature is commited in a zero-knowledge proof en-
suring the corresponding ledger transition will furthermore reveal the witness. Such
interaction between cryptography and the ledger extends the scope of crypto primitives
to new protocols - dedicated, fine-grained security models are needed to evaluate them.
• Security foundations. Compounding all of above: ledger-based protocols are network
cryptographic protocols executed in an adversarial environment. There is history of
attacks and foundations for such protocols - see e.g. [19–23] for recent examples -
showing the importance of rigorous security specification and automated verification.
Furthermore, we need generic models that allow a clear separation between security
properties, ledger infrastructure and cryptographic protocols.

Our contributions address these challenges by formal models connecting the ledger,
the ledger-based protocols, the cryptographic primitives and the desired security prop-
erties in a specification that can be used as input for automated verification tools. We use
the Tamarin prover [24] for verification: it provides an expressive language to specify
(cryptographic) state transition systems and to restrict their traces by logical formulas.
• Public ledger. We show that the model of the blockchain as a structured computational
resource has a natural formal (or symbolic) counterpart combining multiset rewriting,

term algebras and first order logic [24–26]. We identify minimal restrictions on multiset
rewriting rules that make them function as a blockchain transition system, i.e. a smart
contract. We also show how protocol rules can operate in order to exploit the ledger
semantics. We specify the electronic coin functionality provided in e.g. Bitcoin [1] as
an example (section 3).
• ZKCP on public ledgers. We consider two ZKCP protocols [14,15] and perform their
formal verification in a unified, generic model that captures their different features (sec-
tions 4 and 5). The specification tackles a strong attacker that can run multiple sessions,
corrupt parties, control the network (in particular drop, reorder, replace the messages to
the ledger) and exploit the cryptographic properties of messages. The formal security
properties clearly circumscribe the expected ZKCP guarantees, both in their positive
and in their negative aspects: e.g. a buyer will learn the witness or otherwise it can ob-
tain a refund; a seller will obtain payment, unless there is a delivery delay to the ledger;
etc. The security properties are parametric, so that different protocols can accordingly
instantiate the notions of payment, time delay, witness extraction, etc.
• Advanced cryptography. The protocol we consider in section 5 aims at a basic ver-
sion of Bitcoin, with a minimal scripting language for signature verification; this calls
for complex cryptography, intertwining homomorphic encryption, randomized signa-
tures, diffie-hellman exponentiation and specialized zero-knowledge proofs. The corre-
sponding formal specification as a message theory is out of the scope for any current
automated verification tools. We provide a theoretical framework and a reduction result
showing that it is sound to consider a simplified theory as input (section 6). We start
from a general theory where some of the function symbols are homomorphic: from
f(u,w) and v, one can derive f(u∗v, w), where ∗ is the product in an abelian group. In
the reduced theory: 1) the homomorphic properties are restricted as follows: the adver-
sary can derive f(u ∗ v, w) from f(u,w) only if u is a product of messages created by
honest parties; 2) the abelian group is degenerated: the adversary can derive the factors
u1, . . . , uk of any product u1 ∗ . . . ∗ uk, without being required to know any inverse.

2 Preliminaries: computation model

Term algebra [27]. F denotes the set of function symbols and F (n) those of arity n.
The set of terms built from F , a set of names and a set of variables is T . Tuples of
terms are denoted by an overline, e.g. u = (u1, . . . , un). We let st(t) be the subterms
of a term t, and top(t) be its top symbol. F is endowed with a rewrite system: a set of
rewrite rules R, that we denote by l → r, modulo a set of equations E , that we denote
by l ≈ r. R or E can be empty. For a term t, t↓R is its normal form, obtained after
applying all possible rewrite steps (modulo E) fromR. Implicitly, terms are normalized
and term equalities interpreted modulo (R, E).

Example 1. For the theory of randomized signatures, as instantiated e.g. by (EC)DSA
[28], we let Fsig = {sign, ver, ok, g} and Rsig be the signature verification
rule:ver(sign(x, y, z), x, g(y)) → ok. Here g(y) represents the public key correspond-
ing to a secret key y, i.e. the group element that corresponds to raising a group genera-
tor g to a scalar power y. The third argument of sign takes the role of the randomness:
sign(m, k, r1) and sign(m, k, r2) are two distinct signatures of m with key k.

The theory of an abelian group (AG), e.g. Zq , is modeled by the signature F∗ =
{∗, i} and the set of equations AG = {x ∗ i(x) ≈ 1, x ∗ 1 ≈ x} ∪ AC where AC =
{x ∗ y ≈ y ∗ x, (x ∗ y) ∗ z ≈ x ∗ (y ∗ z)} models associativity and commutativity.

Multiset rewriting and state transitions [24, 26]. The signature is extended with
fact symbols to represent adversarial knowledge, protocol state, freshness information,
etc. A fact is represented by F (t1, . . . , tk), where F is a fact symbol and t1, . . . , tk
are terms. There are the following special fact symbols: K - for attacker knowledge; Fr
- for fresh data; In and Out - for protocol inputs and outputs. Other symbols may be
added as required by the protocol, e.g. for representing the state. These symbols can be
persistent (the corresponding facts cannot disappear), or linear (the corresponding facts
are consumed by rules and protocol rules can update them). Persistent fact symbols are
prefixed by !, e.g. !F. A multiset can contain multiple copies of the same linear fact.

A multiset rewriting (msr) rule is defined by [L]−−[M]→[N], where L,M,N are
multisets of facts called respectively premisses, actions and conclusions. We denote
such a rule by [L] ⇒ [N] when M is empty. To ease protocol specification, we extend
the syntax of multiset rules with variable assignments and equality constraints, i.e. we
can write rules of the form [L]−−[Φ,M]→[N] where L may contain epressions x = t
to define local variables and Φ is a set of equations of the form u ≈ v. Equations are not
directly supported in Tamarin, but can be easily encoded with restrictions as we show
in Example 3. For two multisets of facts M0,M1 and rule P = [L]−−[Φ,M]→[N]
we say that M1 can be obtained from M0 by applying the rule P , instantiated with θ
if: (1) every equality in Φθ is true; (2) every fact in Lθ is included in M0 (counting
multiplicities for linear facts); (3) M1 is obtained from M0 by removing linear facts
included in Lθ and adding all facts from Nθ.

A special set of message deduction rules defines how the attacker can derive new
knowledge and make use of existing knowledge to interact with the protocol. Within
this set, we distinguish network deduction rules and intruder deduction rules. Network
deduction rules are fixed: they define outputs, inputs, public and fresh data.

[Out(x)]⇒ [K(x)]; [K(x)]⇒ [In(x)]; ⇒ [K(y)]; ⇒ [Fr(z)]; [Fr(x)]⇒ [K(x)]

The semantics ensures that y and z above are instantiated to public, resp. fresh names.
Intruder deduction rules are of the form [K(u1), . . . ,K(uk)] ⇒ [K(v)] - defining

operations on messages. These are typically [K(x1), . . . ,K(xk)]⇒ [K(f(x1, . . . , xk))]
for all f ∈ F (k). We also allow more general deduction rules, as in Example 2 and
Figure 4. Such rules can wlog replace rewrite rules f(l1, . . . , lk) → r for symbols f
with no other occurence in the rewrite system and whose occurence in protocol rules
is not under a term context. An intruder theory, that we denote by I, is thus given by
a set of intruder deduction rules plus (R, E). For a set of terms {t1, . . . , tn, t} we let
{t1, . . . , tn} ` t if K(t) can be obtained from K(t1), . . . ,K(tn) using intruder deduction
rules. Protocol rules model the execution of the protocol by honest parties. There are
basic restrictions ensuring that protocol rules are a sound model of protocol executions
[26]; we will follow them implicitly in our models and examples.

Example 2. Exponentiation in a Diffie-Hellman group can be represented by the rewrite
rule exp(g(x), y) → g(x ∗ y) together with the deduction rule [K(x1),K(x2)] ⇒

[K(exp(x1, x2))]. Alternatively, the deduction rule [K(g(x)),K(y)]⇒ [K(g(x∗y))] al-
lows to model the corresponding operation performed by the attacker (without requiring
explicit application of exp). Similarly, a protocol rule can directly perform exponentia-
tion without explicit use of the symbol exp, e.g. [In(g(x)),Fr(y)]⇒ [Out(g(x ∗ y))].

For a rule P , we let facts(P), in(P), out(P), lhs(P), rhs(P), act(P) be respec-
tively the set of all facts, of input facts (e.g. In(u)), of output facts (e.g. Out(u)), of
left-hand side facts (i.e. premisses), of right-hand side facts (i.e. conclusions) and of ac-
tion facts. For a set of facts F, we let msg(F) be the set of messages that are arguments
of facts in F. We let io(P) = msg(in(P) ∪ out(P)).

Traces and properties. A trace τ is a sequence of applications of n ≥ 1 msr rules,
interleaving applications of protocol, intruder and network deduction rules. For every
i ∈ {1, . . . , n}, we let Pi be the rule applied at step i and θi be the corresponding
substitution. We define:

– facts(τ, i) = act(Pi)θi↓ if Pi is a protocol or network deduction rule;
– facts(τ, i) = {K(vθi↓)} if Pi is an intruder deduction rule with rhs(Pi) = {K(v)}

For a set of rules Q, we denote by traces(Q) the set of all valid traces that can be
derived from elements inQ. Consider a set of timepoint variables, denoted by i, j, l, . . .,
which will be interpreted over rational numbers. A trace atom is either ⊥, or a term
equality t1 ≈ t2, or a timepoint ordering i < j, or a timepoint equality i = j, or
an action fact F@i for a fact F and timepoint i. A trace formula is a first-order logic
formula obtained from trace atoms by applying the usual quantification and logical
connectives. Given a trace τ and trace formula φ, whose variables are all bound, the
satisfaction relation τ |= φ, is defined recursively as expected, in particular τ |= F @ i
iff F ∈ facts(τ, i).

For a set of rulesQ and trace formulas Ψ, Φ, we letQ |= Φ iff ∀τ ∈ traces(Q). τ |=
Φ and Q;Ψ |= Φ iff ∀τ ∈ traces(Q). τ |= Ψ ⇒ Φ. For verification, (Q;Ψ) will be
a system specification and Φ a property to verify; Q defines local transition rules, while
Ψ defines additional, global restrictions on the set of traces for the specified system.

Example 3. Consider the binary fact symbol Eq and the formula

Ψeq : ∀x, y, i. Eq(x, y) @ i⇒ x ≈ y.

An Eq(u, v) action in a rule allows then to test that u ≈E v before proceeding. Take
P = [In(u), In(v),Fr(s)]−−[Eq(u, v)]→[Out(s)]. Then K(a),K(a),Eq(a, a),K(s) is a
trace of P satisfying Ψeq, while K(a),K(f(a)),Eq(a, f(a)),K(s) does not.

Consider the unary symbol Fresh and the restriction

Ψfresh : ∀x, i, j. Fresh(x) @ i ∧ Fresh(x) @ j ⇒ i = j.

It ensures that every occurrence of Fresh(t) is with a different t. Assume we add
Fresh(〈u, v〉) as an action in P . Then, among traces(P), . . .Eq(a, a), . . . ,Eq(a, a)
does not satisfy Ψfresh, while . . .Eq(a, a), . . . ,Eq(b, b) does.

Example 4. Consider the set of rules Qkeys:

– [Fr(k)]−−[!Key(k)]→[!Pk(g(k)), !Key(k),Out(g(k))]
– [!Key(x)]−−[Corrupt(g(x))]→[Out(x)]

It models a basic key infrastructure. The formula Φ : !Key(x) @ i ⇒ ¬∃j.K(x) @ j
says that keys are secret. Then Qkeys 6|= ∀x, i.Φ, since the second rule in Qkeys allows
the attacker to corrupt keys. Now consider the protocol rule

Qsign : [Fr(a), !Key(x)]−−[Honest(g(x)),Sign(x)]→[Out(sign(a, k, ρr))]

the formula Φ′ : Sign(x) @ j ⇒ ¬∃j.K(x) @ j - saying that keys used in Qsign are
secret - and the restriction: Ψhon : ∀x, i. Honest(x) @ i⇒ ¬∃j. Corrupt(x) @ j. Then
we have Qkeys, Qsign;Ψhon |= ∀x, i.Φ′ because we have added the restrictions that keys
in Qsign are honest and that honest keys cannot be corrupted.

Public data. Tamarin allows the use of variables that can be instantiated only with
messages of a public sort. They are denoted by $x, and can occur anywhere in a protocol
msr rule. As in Example 4, we will use annotations of ρ for such data, e.g. ρr for a public
nonce, ρsn for a serial number, etc.
Protocol state. Specifications rely on sequences of protocols rules (P0, . . . , Pk), where
each rule Pi should be executed before Pi+1 and can pass on, via facts, state data to
Pi+1. To avoid clutter, we use a symbol statei to represent this transmission, and we
allow Pi+1 to reference any variables from Pi that should be formally passed via state
facts. We denote by stateidx = uc the pattern matching of state variable x by a term u.

3 Public ledgers: facts, rules, coins

Coin ledger. The protocols we consider are based on coin contracts of e.g. Bitcoin [1]:
a coin is represented by an object (sn, g(k)) on the ledger, where sn is a serial number,
and g(k) is the public key of the coin owner. Serial numbers are computed as the hash
of the transaction that created the coin; for simplicity, we assume they are fresh public
numbers. To spend a coin, i.e. transfer it to a new owner, the ledger expects a transaction
request, attested by a signature from the current owner, containing the sn of the coin to
be spent, the public key g(k′) of the new owner and (implicitly) the serial number sn′

of the new coin. If the signature is valid, the coin (sn, g(k)) is marked as spent, and a
new coin (sn′, g(k′)) is created for the new owner. We call basecoins these coins.

We will also make use of hashcoins: hashed timelock contracts [29] used to estab-
lish trust relationships outside the ledger [30,31]. They perform a transaction by which
one of the two parties, say A, obtains the preimage of a hash - which can e.g. be a key
encrypting some data of interest - while the other party, say B, provides the hash preim-
age and obtains a basecoin in return. A performs a ledger transaction pledging one of
A’s coins into a hashcoin, providing the desired hash image and the public key of B.
B can then claim the coin using a (signed) inverse of the image. A timeout mechanism
ensures the coin can be returned to A if there was no action from B in due time. A
hashcoin can be represented by a tuple (sn, g(k), h(x), g(k′)) here g(k) represents the
coin creator, who can obtain it after timeout, h(x) is the desired hash image, and g(k′)
is the party that can claim sn by supplying x.

Formal model. We consider two special sets of disjoint fact symbols: one for ledger
facts, denoted by FL, and one for check facts, denoted by FC . Ledger facts will be used
to represent the state of the ledger. For example, they can record who is the owner of
an asset, what are the elements of a given transaction, etc. Ledger facts are assumed
persistent because the ledger history cannot change. Check facts, on the other hand,
will be used by protocols to restrict their executions with respect to the (current or past)
states of the ledger. For example, they can be used to ensure that a coin, whose existence
is recorded by a ledger fact, has not yet been spent.

Example 5. Let F coin
L = {!Coin, !HCoin, !Spend, !Time} and F coin

C = {Unspent}. The
corresponding facts represent: !Coin(sn, g(k)) @ i - a coin sn created at timepoint i
belonging to the public key g(k); !HCoin(sn, 〈g(k1), g(k2), h(t)〉) @ i - a hashcoin
sn that can be claimed for g(k2) by supplying t and a signature, or for g(k1) after
timeout by supplying a signature; !Spend(sn, u, w, v) @ i - the transfer of a coin
(sn, u) to a new owner v at timepoint i, relying on supporting data w: w is a sig-
nature when sn is a basecoin, plus possibly a hash preimage when sn is a hashcoin;
!Time(sn) @ i marks the fact that the hashcoin sn was reclaimed after a timeout at
timepoint i; Unspent(sn) @ i checks the ledger to ensure the coin sn is unspent at i.

The semantics of the ledger is defined by msr rules that can only be triggered by
ledger facts and public inputs, and can only produce ledger facts and public outputs.
Ledger restrictions ensure additional constraints for the states produced by the ledger.
These rules and constraints define the ledger state transition system and make it avail-
able for external protocols, which may be executed by honest or adversarial parties.

Definition 1. A msr rule P is a ledger rule if: (1) facts(P) ⊆ in(P) ∪ out(P) ∪
FL; (2) rhs(P) ⊆ act(P). P is ledger-respecting if (act(P) ∪ rhs(P)) ∩ FL = ∅.
A ledger restriction is a trace formula with facts in FL ∪ FC .

Properties of ledger rules in Definition 1 ensure that: (1) the ledger transition sys-
tem depends only on ledger facts and public inputs; (2) all produced ledger facts are
recorded as actions in the trace. In this paper we consider public ledgers, e.g. [1–
4], so the ledger rules will also satisfy (3) msg(rhs(P)) ⊆ msg(out(P)). This is
not an inherent restriction of the model, and partially public ledgers, e.g. [32], may
be considered in the scope of Definition 1. Bearing in mind the properties (2) and
(3) of our considered ledger rules, in order to simplify the presentation of our ex-
amples in the paper, we will avoid duplication, writing [F0]−−[Φ]→[F1] instead of
[F0]−−[Φ,F1]→[F1,Out(msg(F1))] as expected. All protocol rules will be ledger-
respecting as in Definition 1, so the only way to produce ledger facts is by passing
through ledger rules; on the other hand, protocol rules can freely access ledger facts to
check the state of the ledger, so we can have lhs(P) ∩ FL 6= ∅.

In Fig. 1, the rule Rnew abstracts the coin mining process; the other rules model
formally the coin transactions as described above: spending coins to coins, to hashcoins,
and back to coins. The rule Rh2cr produces a ledger fact !Time(xsn) to record that the
corresponding coin was reclaimed after a timeout. The rules Sc2h,Sh2c assume Hash
and Inv to be defined by their context as a hash image of interest and a hash preimage.

Fig. 1. Ledger coin rules: Lbase = {Rnew,Rc2c}; Lhash = Lbase] {Rc2h,Rh2c,Rh2cr}

Rnew : [!Pk(xpk), In(〈s, xsn〉)] −−[ver(s, xsn, xpk) ≈ ok]→ [!Coin(xsn, xpk)]
Rc2c : [!Coin(xsn, xpk), In(u)] −−[Φc2c(xsn, xpk, u)]→ [!Spend(xsn, xpk, v), !Coin(ysn, ypk)]
Rc2h : [!Coin(xsn, xpk), In(u)] −−[Φc2h(xsn, xpk, u)]→ [!Spend(xsn, xpk, s, y), !HCoin(ysn, y)]
Rh2c : [!HCoin(xsn, y), In(u)] −−[Φh2c(xsn, y, u)]→ [!Spend(xsn, y, s, ypk), !Coin(zsn, ypk)]
Rh2cr : [!HCoin(xsn, y), In(u)] −−[Φh2cr(xsn, y, u)]→ [. . . , !Coin(zsn, xpk), !Time(xsn)]

where
Rc2c : u = 〈s, ysn, ypk〉;Φc2c = ver(s, 〈c2c, xsn, ysn, ypk〉, xpk) ≈ ok; v = 〈s, ypk〉
Rc2h : u = 〈s, ysn, ypk, yh〉;Φc2h = ver(s, 〈c2h, xsn, ypk, yh〉, xpk) ≈ ok; y = 〈xpk, ypk, yh〉
Rh2c : y = 〈xpk, ypk, yh〉;u = 〈s, ysn, yw〉;

Φh2c = ver(s, 〈h2c, xsn, yw〉, ypk) ≈ ok ∧ yh ≈ h(yw) (similarly for Rh2cr)
Ledger-based protocol rules (typical examples)
Sc2c : [!Key(xsk), !Pk(ypk), !Coin(xsn, g(xsk)), xs = sign(〈c2c, xsn, ρsn, ypk〉, xsk, ρr)]

−−[Unspent(xsn)]→ [Out(〈xs, ρsn, ypk〉)]
Sc2h : [!Key(xsk), !Pk(ypk), !Coin(xsn, g(xsk)),Hash(yh)]

−−[Unspent(xsn)]→ [Out(uc2h)]
Sh2c : [!Key(ysk), !HCoin(xsn, 〈xpk, g(ysk), h(xw)〉), Inv(yw)]

−−[Unspent(xsn),Claim(xsn, g(ysk))]→ [Out(uh2c)]
where tc2h = 〈c2h, xsn, ypk, yh〉 ; uc2h = 〈sign(tc2h, xsk, ρr), ρsn, ypk, yh〉

th2c = 〈h2c, xsn, xw, ρsn〉 ; uh2c = 〈sign(th2c, ysk, ρr), ρsn, yw〉

Ledger restrictions define additional constraints that should be satisfied by the pub-
lic ledger. If facts(Φ) ⊆ FL then the restriction Φ is inherent to the semantics of the
ledger, i.e. it is a check performed by the (distributed) trusted party that builds the
ledger. On the other hand, if ∃F ∈ facts(Φ) ∩ FC , then Φ restricts the execution of the
protocols with respect to the public ledger: a protocol rule P with a substitution θ such
that Fθ ∈ act(Pθ) can perform a transition at timepoint i, only if Fθ @ i is consistent
with Φθ and the previous ledger facts.

Example 6. The following formulas define ledger restrictions for coins on Lbase,Lhash

Ψ0 : ∀x, y, z, i, j. !Spend(x, y) @ i ∧ !Spend(x, z) @ j ⇒ i = j ∧ y = z
Ψ1 : ∀x, y, z, i, j. !F1(x, y) @ i ∧ !F2(x, z) @ j ⇒ i = j ∧ y = z

(∀F1, F2 ∈ {Coin,HCoin})
Ψ2 : ∀x, y, i, j. Unspent(x) @ i ∧ !Spend(x, y) @ j ⇒ i < j

They ensure that - no coin can be spent twice (Ψ0); - every fresh coin has a fresh serial
number (Ψ1); - Unspent can hold at timepoint i only if the corresponding coin has not
already been spent on the ledger (Ψ2). Note that Ψ0, Ψ1 are inherent ledger restrictions,
while Ψ2 is a protocol ledger restriction. We let Ψcoin = Ψ0 ∧ Ψ1 ∧ Ψ2.

4 Zero knowledge contingent payments

We specify in a general framework the security guarantees that parties can expect from
ZKCP protocols. We allow several parameters in definitions, that can be instantiated

differently by specific protocols and ledgers - we illustrate it on Lbase and Lhash. We are
interested in generic ZKCP protocols, where any functionality can be obtained by in-
stantiating the protocol with a specific function f . Security is independent of the actual
function f , so we consider a generic f in the following.

For intuition, consider first a protocol onLhash [14,16]. It assumes a zero-knowledge
proof system showing that a ciphertext provided by a party contains a witness for a
desired result, where the symmetric encryption key is the preimage of a given hash
value. We represent such a proof by zk(w, v, u) where w is the witness, v is the hash
preimage used as symmetric key, and u is the secret key of the party constructing the
proof (for brevity, we ommit public data that may be part of the proof). The following
rewrite rules represent symmetric encryption and zk proof verification:
sdec(senc(x, y), y)→ x verzk(zk(x, y, z), senc(x, y), f(x), h(y), g(z))→ ok.
These define Ihash, where also ∀f ∈ F (k). [K(x1), . . . ,K(xk)]⇒ [K(f(x1, . . . , xk))].
Assume a seller with private key ks wants to sell w to a buyer with public key g(kb).
Seller 1: generate a fresh key k; output senc(w, k), h(k), g(ks), zk(w, k, ks);
Buyer 1: receive above data from seller and, if the zk proof verifies, invoke Rc2h on
Lhash to create a hashcoin for the given h(k) and g(ks): !HCoin(sn, 〈g(kb), g(ks), h(k)〉);
Seller 2: inspect Lhash to see if the above coin was created; invoke Rh2c with k and ks
to claim the coin; this reveals k and thus reveals the witness;
Buyer 2: inspect Lhash to see if Rh2c was invoked for the created hashcoin; if yes, the
ledger will also contain the key k that allows the decryption of the ciphertext received at
step 1; if not, the rule Rh2cr can be invoked after a time delay so that the coin is returned
to the original owner.
Timeout. The fairness properties for the ZKCP protocols will be relative to the timely
execution of certain operations. More precisely, if a certain action is not performed by a
party in due time, then there is another action - grounded on the semantics of the ledger
as in Example 7 or on cryptographic primitives as in Example 8 - that can be performed
in order to compensate for the missing action.

Example 7 (Ledger timeout). Consider the rule Rh2cr from Figure 1 modeling the refund
of a hashcoin after a timeout. The execution of this rule at timepoint i is accompanied
on the ledger by the fact !Time(xsn) @ i to record that this coin was spent due to a
timeout. This allows to specify the possible effects of invoking Rh2c on Lhash: either
the transaction completes as expected, or there was a timeout, i.e. Rh2cr was invoked.
Consider the rule Sh2c from Figure 1; note the Claim action. Then Lhash ensures the
following property:

∀x, y, z, z1, z2, i, j.
Claim(x, y) @ i ∧

!Spend(x, z1, z2, z) @ j
⇒ z = y ∨

!Time(x) @ j

where z = y happens in a normal execution, and !Time(x) @ j if the timeout occurs.

Example 8 (Cryptographic timeout [33,34]). Time commitment schemes allow to pro-
duce a commitment to a message that keeps it secret for a period of time. We rep-
resent a time commitment to u by tcom(u) and consider the following rule Qtcom :
[In(tcom(x))]−−[!Time(x)]→[Out(x)]. We express that fresh committed data is either
secret, or it was released after a timeout. LetP : [Fr(s)]−−[Tcom(s)]→[Out(tcom(s))].
Then Qtcom, P |= ∀x, i, j. Tcom(x) @ i ∧ K(x) @ j ⇒ ∃k. k < j ∧ !Time(x) @ k

Fig. 2. Formal ZKCP on Lhash; Seller = (S0, S1, S2);Buyer = (B0, B1, B
go
2 , B

ab
2)

S0:[!Key(xks), !Witn(xwtn)]−−[Sell(g(xks), xwtn)]→[state0]
S1:[state0,Fr(k), xew = senc(xwtn, k), xπ = zk(xwtn, k, xks)]⇒ [Out(〈xπ, xew, h(k)〉), state1]
S2:[state1, !HCoin(xsn, 〈xpkb, g(xks), h(k)〉)]−−[Unspent(xsn),Claim(g(xks), xwtn, xsn, xsn)]→

[Out(〈sign(〈h2c, xsn, ρsn, k〉, xks), k, ρsn〉)]
B0:[!Res(xres), !Key(xkb), !Pk(xpks), !Coin(xsn, g(xkb))]⇒ [state0]
B1:[state0, In(〈xπ, xew, xh〉)] −−[verzk(xπ, xew, xres, xh, xpks) ≈ ok,
Pay(g(xkb), xres, ρsn, 〈xπ, xew, xh〉)]→ [Out(〈sign(〈c2h, xsn, ρsn, xpks, xh〉, xkb), ρsn, xpks, xh〉, state1]

Bgo
2 :[state1, !Spend(ρsn, z, 〈xs, xk〉, xpks), xwtn = sdec(xew, xk)]

−−[h(xk) ≈ xh, f(xwtn) ≈ xres,Witness(xres)]→ []

Bab
2 :[state1, !HCoin(xsn, 〈g(xkb), xpks, xh〉)] −−[Unspent(xsn)]→ [Out(〈sign(〈h2cr, xsn, ρsn〉, xkb), ρsn〉)]

Definition 2. LetQ be a set of (protocol and ledger) rules and Ψ be a set of restrictions.
We say that (Q,Ψ) is a

– coin infrastructure if Q produces !Spend(ucoin, u, upk) ledger facts and Ψcoin ⊆ Ψ
(see Figure 1 and Example 6);

– time infrastructure ifQ produces !Time(u) actions (see Example 7 and Example 8);
– key infrastructure if Qkeys ⊆ Q (see Example 4)
– function model if Q contains the rules Qfunc:

[Fr(xw)]⇒ [!Witn(xw),Out(f(xw))] ; [Fr(xw)]⇒ [!Res(f(xw)),Out(xw)]

If all of these are satisfied we say that (Q,Ψ) is a ZKCP-context.

The fact !Witn(xw) from a function model is used by an honest seller to determine a
witness, and the adversary (playing the role of the buyer) obtains a desired result f(xw).
The fact !Res(f(xw)) is used by an honest buyer to determine a desired result, and the
adversary (playing the role of the seller) obtains the corresponding witness xw.

Definition 3. A ZKCP Seller specification is given by a set of protocol rules that con-
tains two special rules:

sell: [. . .]−−[Sell(tpk, twtn)]→[. . .]
claim: [. . .]−−[Claim(tpk, twtn, ttime, tsn)]→[. . .]

The sell rule models the start of a seller session, recording in Sell(tpk, twtn) the seller
public key and the witness. The claim rule models the seller claiming a coin as payment,
producing an action fact Claim(tpk, twtn, ttime, tsn) where tpk, twtn are as above, ttime is
timeout constrained data, and tsn the claimed coin. In our case studies, ttime is either a
sn as in Ex. 7 or a secret key share, cryptographically committed as in Ex. 8. See in Fig.
2 the formal Seller specification for the protocol above.

Definition 4. Let (Q,Ψ) be a ZKCP-context and S be a ZKCP Seller specification. We
say that these ensure seller security if Q,S;Ψ |= ΦS , where ΦS is defined in Figure 3.

Fig. 3. Security properties for ZKCP on a ledger

Seller security: witness reveal vs payment: ΦS := Φ0 ∧ Φ1 ∧ Φ2

Φ0 : ∀xpk, xwtn, i, j. Sell(xpk, xwtn) @ i ∧ K(xwtn) @ j ⇒ ∃k, ypk, xt, xcoin. Claim(ypk, xwtn, xt, xcoin) @ k
Φ1 : ∀y, z, x. Claim(y, x) @ i ∧ Claim(z, x) @ j ⇒ i = j
Φ2 : ∀xpk, xwtn, xt, xcoin, i, j.Claim(xpk, xwtn, xt, xcoin) @ i ∧ !Spend(xcoin, z, y, zpk) @ j

⇒ zpk = xpk ∨ ∃k. k ≤ j ∧ !Time(xt) @ k

Buyer security: pay gives witness or refund: ΦB := [∀i, j, xpk, xres, xcoin, xstate. (Φ0 ∧ Φ1)] ∧ Φ2

Φ0(Ψ0) : Pay(xpk, xres, xcoin, xstate) @ i ∧ !Spend(xcoin, z, y, zpk) @ j ⇒ zpk = xpk ∨ Ψ0(y, xstate)
Φ1(Ψ1) : Pay(xpk, xres, xcoin, xstate) @ i ⇒ Ψ1(xres, xstate)
Φ2(Ψ0, Ψ1) : ∀xres, y, xstate. Ψ0(y, xstate) ∧ Ψ1(xres, xstate)⇒ ∃xw. xres = f(xw) ∧ y, xstate ` xw

Intuitively, the formula ΦS = Φ0 ∧ Φ1 ∧ Φ2 from Definition 4 ensures that:
• Φ0: if the other party learns the witness, then (one of) the seller(s) for the correspond-
ing witness is able to claim the payment of a coin into seller’s account;
• Φ1: the other party cannot lead the seller into accepting the same payment twice, e.g.
for two different witnesses;
• Φ2: the payment claimed by the seller will succeed as such on the ledger, unless the
corresponding timeout event happened.

Note that, in Φ0, the key ypk into which payment is claimed is not necessarily equal
to the key xpk that engaged in selling the witness: the two keys can differ when there
are two sellers for the same witness; then the adversary can learn the witness in one
session without paying in the second one. Φ1 requires care to ensure session specific
payments; simply checking unspent conditions on the ledger is not sufficient in case of
concurrent sessions. Φ2 is important because the coin claimed by the seller is jointly
constructed with the adversary, so we need to ensure that there is no other way to spend
it. The following is proved automatically with Tamarin [35]:

Proposition 1. For Seller of Figure 2, Qkeys,Lhash, Ihash,Qfunc,Seller;Ψcoins |= ΦS

ZKCP Buyer. As we can see in the Lhash-based protocol presented above, in order to
ensure the witness delivery from a ZKCP protocol, the buyer should perform some ver-
ification actions on the data (e.g. zero-knowledge proofs) received during the protocol
execution. We model these checks by a formula Ψ1(x, xstate), where x represents the
desired result for the function of interest, and xstate represents protocol data that is rel-
evant for buyer’s verification actions. Ψ1 and xstate are protocol specific and they are
parameters of our definition.

In addition to data received during the protocol execution, the buyer can also rely on
data that is published on the ledger, and on the associated constraints that are ensured by
the ledger semantics. We model these by Ψ0(y, xstate) where y represents the relevant
ledger data. For example, in the Lhash-based protocol, the semantics of the ledger en-
sures that the data y associated to the transaction that spends the hashcoin must contain
the preimage of a hash recorded in xstate, if the coin was spent by any party other than
the buyer. A part of our security definition will require that Ψ0 in conjunction with Ψ1

does indeed reveal the witness. A second part of the definition will require that, if the
buyer performed a payment transaction, then the buyer and the ledger will reach a state
where Ψ0 and Ψ1 hold, or otherwise the buyer can obtain a refund.

Definition 5. A ZKCP Buyer specification is given by a set of protocol rules that con-
tains the special rule pay:[. . .]−−[Pay(tpk, tres, tcoin, ustate)]→[. . .].

The pay rule models the invocation of a payment transaction for a witness, where tpk
is the public key of the buyer, tres is the desired result, tcoin is the target coin where the
buyer makes the payment, and ustate is state information that is relevant for obtaining
the witness. See Fig. 2 for the Buyer specification in the protocol described above.

Definition 6. Let (Q,Ψ) be a ZKCP-context and B be a ZKCP Buyer specification. We
say that these ensure buyer security if Q,B;Ψ |= ΦB , where ΦB is defined in Figure 3.

Intuitively, the formulas Φ0, Φ1, Φ2 from Definition 6 ensures that:
• Φ0: if the buyer has paid for a witness into a coin, then spending that coin on the
ledger will either lead to a refund, i.e. zpk = xpk, or else the data y associated to the
spending transaction together with buyer state data satisfy the constraint Ψ0;
• Φ1: before paying, the buyer performs checks entailing the constraint Ψ1 for the de-
sired result and the buyer state;
• Φ2: Ψ0 and Ψ1 allow to derive a witness for the desired result, by combining transac-
tion data y with data xstate gathered from the protocol execution.

Proposition 2. For Buyer from Figure 2 and Q = (Qkeys,Lhash, Ihash,Qfunc), we have

Q,Buyer;Ψcoins |= ΦB

 xstate : (xπ, xew, xh, xpks)
Ψ0(y, xstate) : ∃ys, yh. y ≈ 〈ys, yh〉 ∧ xh ≈ h(yh)

Ψ1(xres, xstate) : verzk(xπ, xew, xres, xh, xpks) ≈ ok

We prove Φ0 from ΦB with Tamarin [35]. The properties Φ1 and Φ2 are simple local
deduction properties that can be checked by hand (if the state of the buyer would be
more complex, automated tools can also be used for that).
Observations: • the seller (S) and buyer (B) public keys are linked on the ledger, while
this is not a necessary consequence of the security properties. S does not need to know
the public key of B in advance, while B does need the public key of S.
• private ledger keys of S and B do not have to be secret for security to hold: our models
allow corruption of any key by the adversary (A). For S, security follows from the fresh
symmetric key created for each session and, for B, from the trusted ledger. Note, how-
ever, that these keys allow A to spend the coins of their owner, but this is independent
from the ZKCP protocol. In fact, a basic property of any ledger-based protocol should
be that it does not reveal secret keys, i.e. ∀x, i, j. !Key(x) @ i ∧ K(x) @ j ⇒ ∃`. ` <
j ∧ Corrupt(g(x)) @ `. We also prove this property in Tamarin for our models.
• S cannot reuse the same symmetric key and zero-knowledge proof in two different
sessions, even if those sessions are for selling the same witness; • our intruder deduc-
tion rules assume a perfect zero-knowledge construction, in particular A cannot tweak
the proof parameters in order to reveal the witness, as exploited by attacks of [16]. In
the next section we show that intruder deduction rules can also model finer-grained

properties of cryptographic constructions if required, in particular conditions when the
witness may be revealed; • security for S depends on the timely delivery of transactions
to the ledger, while this is not the case for B, who could obtain both the witness and the
money back if there was a time delay; • the proof xπ is not necessary for extracting the
witness so it can be discarded after verification by B; • our models consider a strong A
and, as such, do not cover the case of weaker, multipleA’s, e.g. for two different buyers
that do not collude or do not control the network, but they can be extended to.

5 ZKCP protocol on the basecoin ledger

Managing hashcoins - e.g. applying the hashing algorithm - sets tradeoffs for the agents
that maintain the ledger; they may give priority to standard coins, i.e. preferring Lbase

over Lhash. Another constraint that needs to be taken into account - by parties engaging
in ZKCP - is the complexity of constructing and verifying the zero-knowledge proofs.
In this section, we formalize and analyze the protocol of [15], which aims to implement
the ZKCP functionality on Lbase. Other works, e.g. [18], aim to minimize the zk burden
by appealing to special contracts that will be executed only in case of dispute.

Cryptographic primitives. For ZKCP on Lbase, [15] adopts timed cryptographic
commitments [33, 34], as presented in Example 8, in order to emulate the ledger time-
out. To link ledger transitions and data release, [15] exploits algebraic properties of the
ECDSA signature used in Bitcoin: relying on homomorphic encryption, e.g. Paillier, an
encrypted signature can be constructed from an encryption of the signing key, which
can be constructed by adding shares of the signing key on top of an initial encrypted
share [36–39]. A Diffie-Hellman group is used to establish a shared key. A special type
of zk proof is also needed: a prover can encode the witness and convince the verifier that
it can be extracted as soon as some committed structured data - for ZKCP: an ECDSA
signature - is revealed. We rely on Ibase from Figure 4 to model these crypto primitives.
A term esign(m, k, r1, g(r1 ∗ r2), pk(z)) represents an encrypted partial signature of a
messagem, with signing key k, randomness share r1, public randomness g(r1∗r2), and
encryption public key pk(z). Combining it with the decryption key z and the comple-
mentary randomness share r2, one can compute sign(m, k, r1∗r2). The rules for extract
and verzk model the connection between a valid signature and witness extraction. Time
commitments can be checked wrt the public part g(x) of private data x.

Fig. 4. Intruder theory Ibase; and ∀f ∈ F (k).[K(x1), . . . ,K(xk)]⇒ [K(f(x1, . . . , xk))]

Hom{g,enc} : [K(g(x)),K(y)]⇒ [K(g(x ∗ y))] [K(enc(x, z)),K(y)]⇒ [K(enc(x ∗ y, z))]
AG : x ∗ i(x) = 1, x ∗ 1 = x, x ∗ y = y ∗ x, (x ∗ y) ∗ z = x ∗ (y ∗ z)

R0 : homs(enc(k, y),m, r1, r)→ esign(m, k, r1, r, y) dec(enc(x, pk(y)), y)→ x
decs(esign(m, k, r1, g(r1 ∗ r2), pk(z)), r2, z)→ sign(m, k, r1 ∗ r2)
ver(sign(x, y, z), x, g(y))→ ok open(com(x, r), r)→ x extract(zk(x, y, z), z)→ x

vertc(tcom(x), g(x))→ ok verzk(zk(x, f(x), sign(y, z, w)), f(x), y, g(z)))→ ok

Jointly signing a message. Assume two partiesA1 (holding k1, r1) andA2 (holding
k2, r2) want to create sign(t, k1 ∗k2, r1 ∗ r2) for some agreed upon t. Then, say, A1 can
generate a fresh key pair k, pk(k) and send enc(k1, pk(k)) to A2. Relying on Homenc,
A2 can obtain enc(k1 ∗ k2, pk(k)), which with t, r2, g(r1 ∗ r2) as arguments to homs
gives esign(t, k1 ∗ k2, r2, g(r1 ∗ r2), pk(k)). Sent back to A1, the joint signature is
derived by applying decs to this term and r1, k. Note that A1 gets the signature and can
decide when to show it to A2. On the other hand, both parties contribute to randomness
in the signature; no party can force a particular value for the randomness. Both of these
features will be needed to ensure the security properties for the ZKCP protocol:
1) Based on DH key-exchange and commitments, compute a public key pk12 = g(k1 ∗
k2) such that the private key k1 ∗ k2 is secret-shared between the seller (S), who holds
k1, g(k2), and the buyer (B), who holds k2, g(k1). Similarly, secret-shared randomness
r1 ∗ r2 is computed: #Public : pk12, g(r1 ∗ r2) Seller : k1, r1 Buyer : k2, r2#
2) The key pk12 is used for an intermediate transfer from B to S. The two agree on the
transaction that transfers a coin from pk12 to S: #Public : t = 〈c2c, ρ1sn, ρ

2
sn, g(ks)〉#,

where ρ1sn, ρ
2
sn are fresh public serial numbers and g(ks) is the public key of S . This

transaction is not signed, so cannot yet lead to a transfer. Also, B has not yet transferred
coins into pk12.
3) Based on crypto as shown above, S (with B’s help) obtains s = sign(t, k1 ∗ k2, r1 ∗
r2). S checks that s is valid by applying the signature verification algorithm. It then
outputs the zero-knowledge proof π = zk(w, f(w), s) and a time commitment to S’s
share of the joint secret key: #Seller : s Public : π, tcom(k1)#
4) B verifies the proof and the time commitment, and transfers a coin to pk12, leading
to an update of the ledger: #Ledger : !Coin(ρ1sn, pk12)#
5) The seller claims ρ1sn by invoking Rc2c on the ledger, relying on the signature s
obtained previously. The ledger will record a !Spend fact with the corresponding trans-
action data, including the signature: #Ledger : !Spend(ρ1sn, pk12, s, g(ks))#
6) The buyer obtains s from the ledger and extracts the witness from the zk proof:
w = extract(π, s). If the seller aborted, no one can redeem the coin ρ1sn, until the time
commitment reveals k1, so the buyer can reconstruct k1 ∗ k2 and redeem the coin. The
formal specification is in Fig. 5, with details of joint signing ommited.

Proposition 3. For Seller and Buyer from Figure 5 and Qtcom from Example 8,

Q,Seller;Ψcoins |= ΦS Q,Buyer;Ψcoins |= ΦB Q = (Qkeys,Qtcom,Lbase, Ibase,Qfunc)
where xstate : 〈xπ, xtcom, x12pk〉, Ψ0(y, xstate) : ∃z, x. xπ ≈ zk(z, x, xs) ∧ y ≈ xs;

Ψ1(xres, xstate) : verzk(xπ, xres, xtcom, x
12
pk) ≈ ok

Tamarin verification: we prove ΦS and Φ0 for ΦB automatically with Tamarin relying
on the reduction that we present in the next section for termination within 1 minute. We
prove two helper lemmas along the way: 1) if the adversary knows a time commitment,
then it either knows the committed message at an earlier time, or the commitment is
constructed by an honest party; 2) fresh randoms and keys stay secret - unless opened
by a time commitment. The Tamarin code is available online [35].
Observations: • as forLhash, the S and B are linked on the ledger; the secret keys of any
party can be corrupted, we prove however that the protocol does not itself reveal these
keys; • the cryptographic constructions from [15] are a particular instance of Ibase;

Fig. 5. ZKCP on Lbase;Seller = (S0, . . . , S4);Buyer = (B0, . . . , B3, B
go
4 , B

ab
4)

S0:[!Key(xks), !Witn(xwtn)]−−[Sell(g(xks), xwtn)]→[state0]
S1:[state0,Fr(k1),Fr(r1),Fr(r)]⇒ [Out(com(g(k1), r)),Out(g(r1)), state1]
S2:[state1, In(yk2),Fr(ke)]⇒ [Out(r), Out(enc(k1, pk(ke))), state2]
S3:[state2dyk2 = g(xk2)c, x12pk = g(xk2 ∗ k1), ck = tcom(k1), xπ = zk(xwtn, f(xwtn), s)]
(JointSign 7→ t = 〈c2c, ρ1sn, ρ2sn, g(xks)〉, s = sign(t, . . .)) ⇒ [Out(〈ck, xπ〉), state3]
S4:[state3, !Coin(ρ1sn, x12pk)] −−[Unspent(ρ1sn),Claim(g(xks), xwtn, k1, ρ

1
sn)]→ [Out(〈s, ρ2sn, g(xks)〉)]

B0:[!Res(xres), !Key(xkb), !Pk(xpks), !Coin(x0sn, g(xkb))]⇒ [state0]
B1:[state0, In(〈xck, yr1〉),Fr(k2),Fr(r2)] ⇒ [Out(〈g(k2), g(r2)〉), state1]
B2:[state1dxck = com(g(xk1), xr), yr1 = g(xr1)c, In(xr), x12pk = g(xk1 ∗ k2), x12r = g(xr1 ∗ r2)]
(JointSign 7→ t = 〈c2c, ρ1sn, ρ2sn, xpks〉, s = sign(t, . . .)) ⇒ [state2]
B3:[state2, In(〈xtcom, xπ〉),Fr(r)] −−[verzk(xπ, xres, t, x12pk) ≈ ok, vertc(xtcom, g(xk1)) ≈ ok,

Pay(g(xkb), xres, ρ
1
sn, 〈xπ, xtcom, x12pk〉)]→

[Out(〈sign(〈c2c, x0sn, ρ1sn, x12pk〉, xkb, r), ρ1sn, x12pk〉), state3]
Bgo

4 :[state3, !Spend(ρ1sn, z, s, xpks), xwtn = extract(xπ, s)]−−[xres ≈ f(xwtn),Witness(xres)]→[]

Bab
4 :[state3, !Coin(ρ1sn, g(x12k)), In(xk1),Fr(r), x

12
k = xk1 ∗ k2, xs = sign(〈ρ1sn, ρ2sn, g(xkb)〉, x12k , r)]

−−[xtcom ≈ tcom(xk1),Unspent(ρ
1
sn)]→ [Out(〈xs, ρ2sn, g(xkb)〉)]

it may admit more efficient instances, and our proofs could still be relied on for the
security guarantees; • Ibase does not cover the full algebra of homomorphic encryption,
where we have [K(enc(x, z)),K(enc(y, z))] ⇒ [K(enc(x ∗ y, z))]. It is however
sound when every ciphertext constructed by honest parties uses a fresh key, as in our
case study; covering the full theory is a long-standing, still open, problem for protocol
verification • the same shared key could be used for the exchange of several witnesses
within the timeframe chosen for the time commitment; • contrary to Lhash, the zero-
knowledge proof cannot be discarded by B after verification, since it is necessary for
extracting the witness; • onLhash,B sets the ledger timeout and S can accept to proceed;
on Lbase it is the other way around with respect to crypto timeout.

6 Homomorphism and abelian group reduction

We take a class of intruder theories that covers the one of Fig. 4; F contains a set of
homomorphic functions Fhom. We reduce any I from this class to I∆ such that: I∆ is
simpler than I; I∆ is sound wrt I. First, given any trace τ wrt I, we show that there is
I∆ generating τ and where: (i) the homomorphic properties are restricted by arguments
from honest parties in τ ; (ii) the abelian group is degenerated, allowing to obtain any
factors from products. Second, we augment any set of rules S to S∆, which records as
facts the homomorphic arguments of S, and I∆ is generalized to cover any trace of S∆.

Definition 7. A base for F is a function ∆ with dom(∆) = Fhom and ∀f ∈
F (n)
hom. ∆(f) ⊆ T n. We assume that ∆ is closed modulo AC, i.e. ∆f (u ∗ v, w) ⇒

∆f (v ∗u,w) and similarly for associativity, and closed by: ∆f (u ∗ v, w)⇒ ∆f (u,w).

We extend intruder deduction to rules of the form [∆f (x),M] ⇒ [N], which have
the same semantics as [M]⇒ [N] with the additional constraint that xθ ∈ ∆(f) holds
for the substitution θ that instantiates the rule.

Definition 8. We consider the class of intruder theories as defined below (left):

Initial theory I (with Hom for all f ∈ Fhom)
Hom : [K(f(x, z)),K(y)]⇒ [K(f(x ∗ y, z))]
AG : x ∗ i(x) = 1 , x ∗ 1 = x

x ∗ y = y ∗ x , (x ∗ y) ∗ z = x ∗ (y ∗ z)
R0 : {l1 → r1, . . . , lk → rk}

Reduced theory I∆ for base ∆
Hom∆ : [∆f (x, z),K(y))]⇒ [K(f(x ∗ y, z))]
AP : [K(x ∗ y)]⇒ [K(x)]

x ∗ y = y ∗ x , (x ∗ y) ∗ z = x ∗ (y ∗ z)
R0 : {l1 → r1, . . . , lk → rk}

We assume that every l→ r ∈ R0 satisfies
H1:top(l), top(r) /∈ Fhom∪{∗, i} H2:∀t ∈ st(r)rst(l). top(t)∩(Fhom∪{∗, i}) = ∅
Given such I and a base ∆, we define the reduced theory I∆ as above (right). I, I∆
also contain the deduction rules ∀f.[K(x1), . . . ,K(xk)]⇒ [K(f(x1, . . . , xk))].

H1 and H2 help in proofs [40]; R0 from Figure 4 respects them. Intuitively, we split
the homomorphic argument of f in two parts, e.g. f(u ∗ v, w), where the factors of v
are known by the adversary, while the factors of u are provided by honest parties (in
S). When the adversary applies Hom to such a term, to get e.g. f(u ∗ v ∗ t, w), there is
a smaller term f(u,w) that can be used to obtain the same result, since the adversary
knows v ∗ t. The term u will be added by S∆ to ∆(f) so Hom∆ can be applied on it.

Proposition 4. For any S, M0,M1 s.t. M1 can be derived from M0 using rules in
S ∪ I, there is ∆ s.t. M1 can be derived from M0 using S ∪ I∆; ∆ can be iteratively
constructed by a set S∆ - augmenting each rule in S with a constant number of facts.

Corollary 1. For any S and formulas Ψ, Φ, we have S∆, I∆;Ψ |= Φ⇒ S, I;Ψ |= Φ

Scope. The reduction is sound for any set of protocol rules. However, since I∆
allows to freely decompose products, it gives too much power to the adversary (leading
to false attacks) for certain classes of protocols, e.g. when a nonce r protects a secret
s in s ∗ r. The reduction is useful for proofs only when secret data is protected by
(homomorphic) cryptographic constructions, e.g. exponentiation, encryption, etc.

7 Related and future work

Several works extend the scope of Tamarin to new cryptographic primitives [41–43] or
infrastructure features [44, 45]. Our models contribute to both of these directions. On
the crypto side, an open question is to cover deductions like enc(u, k), enc(v, k) ⇒
enc(u ∗ v, k), which would allow to model e.g. homomorphic tallying for voting [46].
Protocol verification modulo this theory is studied in [47], where abstractions different
from ours are used for reducing the theory, but the case studies are limited to unification
problems and relatively simple protocols.

Works complementary to ours aim to provide formal guarantees for code executed
on the blockchain [48–50]. Our ledger models are, on one hand, grounded on such guar-
antees and, on the other hand, they allow to reason about the properties of higher-level

protocols and applications. In future work, we can extend our models to cover more
general smart contracts, hybrid ledgers and applications [18,32,51]. Current ZKCP pro-
tocols don’t allow seller/buyer unlinkability, while the security properties leave scope
for it. An open problem is ZKCP on ledgers with more privacy [52–54] and appropriate
unlinkability notions.

Acknowledgment

The research leading to these results has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gram (grant agreements No 645865-SPOOC).

References

1. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. Available at
https://bitcoin.org/bitcoin.pdf.

2. Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger, 2014. Avail-
able at https://gavwood.com/paper.pdf.

3. L. M. Goodman. Tezos - a self-amending crypto-ledger,
2014. Available at https://tezos.com/static/white_
paper-2dc8c02267a8fb86bd67a108199441bf.pdf.

4. Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY technology overview
series, consensus system. CoRR, abs/1805.04548, 2018.

5. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Anal-
ysis and applications. In Advances in Cryptology - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques (EUROCRYPT’15), volume 9057
of Lecture Notes in Computer Science, pages 281–310. Springer, 2015.

6. Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asyn-
chronous networks. In Advances in Cryptology - 36th Annual International Conference on
the Theory and Applications of Cryptographic Techniques (EUROCRYPT’17), volume 10211
of Lecture Notes in Computer Science, pages 643–673, 2017.

7. Mohammad Torabi Dashti and Sjouke Mauw. Fair exchange. In Burton Rosenberg, ed-
itor, Handbook of Financial Cryptography and Security., pages 109–132. Chapman and
Hall/CRC, 2010.

8. N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital sig-
natures (extended abstract). In Advances in Cryptology - International Conference on the
Theory and Application of Cryptographic Techniques (EUROCRYPT ’98), volume 1403 of
Lecture Notes in Computer Science, pages 591–606. Springer, 1998.

9. Christian Cachin and Jan Camenisch. Optimistic fair secure computation. In Advances in
Cryptology - 20th Annual International Cryptology Conference (CRYPTO’00), volume 1880
of Lecture Notes in Computer Science, pages 93–111. Springer, 2000.

10. Silvio Micali. Simple and fast optimistic protocols for fair electronic exchange. In 22nd
ACM Symposium on Principles of Distributed Computing (PODC’03), pages 12–19. ACM,
2003.

11. Yehuda Lindell. Legally-enforceable fairness in secure two-party computation. In Topics in
Cryptology–CT-RSA 2008, pages 121–137. Springer, 2008.

https://bitcoin.org/bitcoin.pdf
https://gavwood.com/paper.pdf
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf

12. Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Fair
two-party computations via bitcoin deposits. In Financial Cryptography and Data Security
Workshops (BITCOIN and WAHC’14), volume 8438 of Lecture Notes in Computer Science,
pages 105–121. Springer, 2014.

13. Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In Advances
in Cryptology - 34th Annual Cryptology Conference (CRYPTO’14), volume 8617 of Lecture
Notes in Computer Science, pages 421–439. Springer, 2014.

14. Bitcoin wiki: Zero Knowledge Contingent Payment. https://en.bitcoin.it/
wiki/Zero_Knowledge_Contingent_Payment.

15. Waclaw Banasik, Stefan Dziembowski, and Daniel Malinowski. Efficient zero-knowledge
contingent payments in cryptocurrencies without scripts. In 21st European Symposium on
Research in Computer Security, Part II (ESORICS’16), volume 9879 of Lecture Notes in
Computer Science, pages 261–280. Springer, 2016.

16. Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-
knowledge contingent payments revisited: Attacks and payments for services. In ACM
SIGSAC Conference on Computer and Communications Security (CCS’17), pages 229–243.
ACM, 2017.

17. Steven Goldfeder, Joseph Bonneau, Rosario Gennaro, and Arvind Narayanan. Escrow pro-
tocols for cryptocurrencies: How to buy physical goods using bitcoin. In 21st International
Conference on Financial Cryptography and Data Security (FC’17), volume 10322 of Lec-
ture Notes in Computer Science, pages 321–339. Springer, 2017.

18. Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. Fairswap: How to fairly exchange
digital goods. In ACM SIGSAC Conference on Computer and Communications Security
(CCS’18), pages 967–984. ACM, 2018.

19. Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. On post-compromise security.
In IEEE 29th Computer Security Foundations Symposium (CSF’16), pages 164–178. IEEE
Computer Society, 2016.

20. Katriel Cohn-Gordon, Cas J. F. Cremers, Benjamin Dowling, Luke Garratt, and Douglas
Stebila. A formal security analysis of the signal messaging protocol. In IEEE European
Symposium on Security and Privacy (EuroS&P’17), pages 451–466. IEEE Computer Soci-
ety, 2017.

21. Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified models and refer-
ence implementations for the TLS 1.3 standard candidate. In IEEE Symposium on Security
and Privacy (SP’17), pages 483–502. IEEE Computer Society, 2017.

22. Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe. A
comprehensive symbolic analysis of TLS 1.3. In ACM SIGSAC Conference on Computer
and Communications Security (CCS’17), pages 1773–1788. ACM, 2017.

23. Charlie Jacomme and Steve Kremer. An extensive formal analysis of multi-factor authenti-
cation protocols. In 31st IEEE Computer Security Foundations Symposium (CSF’18), pages
1–15. IEEE Computer Society, 2018.

24. Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The TAMARIN prover
for the symbolic analysis of security protocols. In 25th International Conference on Com-
puter Aided Verification (CAV’13), volume 8044 of Lecture Notes in Computer Science,
pages 696–701. Springer, 2013.

25. Iliano Cervesato, Nancy A. Durgin, John C. Mitchell, Patrick Lincoln, and Andre Scedrov.
Relating strands and multiset rewriting for security protocol analysis. In 13th IEEE Computer
Security Foundations Workshop, CSFW ’00, Cambridge, England, UK, July 3-5, 2000, pages
35–51. IEEE Computer Society, 2000.

26. Benedikt Schmidt, Simon Meier, Cas J. F. Cremers, and David A. Basin. Automated anal-
ysis of diffie-hellman protocols and advanced security properties. In 25th IEEE Computer
Security Foundations Symposium, (CSF’12), pages 78–94. IEEE Computer Society, 2012.

https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment

27. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Handbook of Theoret-
ical Computer Science, Volume B: Formal Models and Sematics (B), pages 243–320. MIT
Press, 1990.

28. Serge Vaudenay. The security of DSA and ECDSA. In 6th International Workshop on
Theory and Practice in Public Key Cryptography (PKC’03), volume 2567 of Lecture Notes
in Computer Science, pages 309–323. Springer, 2003.

29. Bitcoin wiki: Hashed Timelock Contracts. https://en.bitcoin.it/wiki/
Hashed_Timelock_Contracts.

30. Bitcoin wiki: Payment channels. https://en.bitcoin.it/wiki/Payment_
channels.

31. Bitcoin wiki: Lightning Network. https://en.bitcoin.it/wiki/Lightning_
Network.

32. Mike Hearn. Corda: A distributed ledger.
33. Ron L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-release

crypto. Technical report, MIT, Cambridge, MA, USA, 1996.
34. Dan Boneh and Moni Naor. Timed commitments. In Advances in Cryptology - 20th An-

nual International Cryptology Conference (CRYPTO’00), volume 1880 of Lecture Notes in
Computer Science, pages 236–254. Springer, 2000.

35. Tamarin code for ZKCP protocol verification. https://www.dropbox.com/sh/
ahzbbojm5z0e6a9/AAB6-Pz-RK3xwVznlaqaitfca?dl=0.

36. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology - International Conference on the Theory and Application of
Cryptographic Techniques (EUROCRYPT’99), volume 1592 of Lecture Notes in Computer
Science, pages 223–238. Springer, 1999.

37. Yehuda Lindell. Fast secure two-party ECDSA signing. In Advances in Cryptology - 37th
Annual International Cryptology Conference (CRYPTO’17), volume 10402 of Lecture Notes
in Computer Science, pages 613–644. Springer, 2017.

38. Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed
key generation and applications to cryptocurrency custody. In ACM SIGSAC Conference on
Computer and Communications Security (CCS’18), pages 1837–1854. ACM, 2018.

39. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless
setup. In ACM SIGSAC Conference on Computer and Communications Security (CCS’18),
pages 1179–1194. ACM, 2018.

40. Additional material: Tamarin code and long paper version. https://www.dropbox.
com/sh/t74k3q4gxrmo0pw/AADvx0e8WDaZgyf0OQFlElICa?dl=0.

41. Benedikt Schmidt, Ralf Sasse, Cas Cremers, and David A. Basin. Automated verification of
group key agreement protocols. In IEEE Symposium on Security and Privacy (SP’14), pages
179–194, 2014.

42. Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, and Ralf Sasse. Automated unbounded
verification of stateful cryptographic protocols with exclusive OR. In 31st IEEE Computer
Security Foundations Symposium, CSF’18, pages 359–373. IEEE Computer Society, 2018.

43. Jannik Dreier, Charles Duménil, Steve Kremer, and Ralf Sasse. Beyond subterm-convergent
equational theories in automated verification of stateful protocols. In 6th International Con-
ference on Principles of Security and Trust (POST’17), volume 10204 of Lecture Notes in
Computer Science, pages 117–140. Springer, 2017.

44. Steve Kremer and Robert Künnemann. Automated analysis of security protocols with global
state. Journal of Computer Security, 24(5):583–616, 2016.

45. Michael Backes, Jannik Dreier, Steve Kremer, and Robert Künnemann. A novel approach
for reasoning about liveness in cryptographic protocols and its application to fair exchange.
In IEEE European Symposium on Security and Privacy (EuroS&P’17), pages 76–91. IEEE
Computer Society, 2017.

https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Lightning_Network
https://en.bitcoin.it/wiki/Lightning_Network
https://www.dropbox.com/sh/ahzbbojm5z0e6a9/AAB6-Pz-RK3xwVznlaqaitfca?dl=0
https://www.dropbox.com/sh/ahzbbojm5z0e6a9/AAB6-Pz-RK3xwVznlaqaitfca?dl=0
https://www.dropbox.com/sh/t74k3q4gxrmo0pw/AADvx0e8WDaZgyf0OQFlElICa?dl=0
https://www.dropbox.com/sh/t74k3q4gxrmo0pw/AADvx0e8WDaZgyf0OQFlElICa?dl=0

46. Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern, and Guillaume
Poupard. Practical multi-candidate election system. In 20th annual (ACM) symposium on
Principles of Distributed Computing (PODC’01), pages 274–283. ACM, 2001.

47. Fan Yang, Santiago Escobar, Catherine A. Meadows, José Meseguer, and Paliath Naren-
dran. Theories of homomorphic encryption, unification, and the finite variant property. In
Proceedings of the 16th International Symposium on Principles and Practice of Declarative
Programming, Kent, Canterbury, United Kingdom, September 8-10, 2014, pages 123–133,
2014.

48. Massimo Bartoletti and Roberto Zunino. Bitml: A calculus for bitcoin smart contracts. In
ACM SIGSAC Conference on Computer and Communications Security (CCS’18), pages 83–
100, 2018.

49. Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi,
Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote,
Nikhil Swamy, and Santiago Zanella Béguelin. Formal verification of smart contracts. In
ACM Workshop on Programming Languages and Analysis for Security (PLAS@CCS’16),
pages 91–96. ACM, 2016.

50. Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip Daian,
Dwight Guth, Brandon M. Moore, Daejun Park, Yi Zhang, Andrei Stefanescu, and Grig-
ore Rosu. KEVM: A complete formal semantics of the ethereum virtual machine. In 31st
IEEE Computer Security Foundations Symposium (CSF’18), pages 204–217. IEEE Com-
puter Society, 2018.

51. Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General state channel net-
works. In ACM SIGSAC Conference on Computer and Communications Security (CCS’18),
pages 949–966. ACM, 2018.

52. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
IEEE Symposium on Security and Privacy, SP’14, pages 459–474. IEEE Computer Society,
2014.

53. Guy Zyskind, Oz Nathan, and Alex Pentland. Enigma: Decentralized computation platform
with guaranteed privacy. CoRR, abs/1506.03471, 2015.

54. Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivatsan Ravi.
Concurrency and privacy with payment-channel networks. In ACM SIGSAC Conference on
Computer and Communications Security (CCS’17), pages 455–471. ACM, 2017.

