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Abstract

Midway image equalization means any method giving to a pair of images the same his-
togram, while maintaining as much as possible their previous gray level dynamics. In this
paper, we present an axiomatic analysis of image equalization which leads us to derive two
possible methods. Both methods are then compared in theory and in practice for two reli-
ability criteria, namely their effect on quantization noise and on the support of the Fourier
spectrum. A mathematical analysis of the properties of the equalization methods is per-
formed. Their algorithms are described and they are tested on such typical pairs as satellite
image stereo pairs and different photographs of a same painting.

1 Introduction

The comparison of two images, in order to extract a mutual information, is one of the main themes
in computer vision. The pair of images can be obtained in many ways : they can be a stereo pair,
two images of the same object (a painting for example), multi-channel images of the same region,
images of a movie, etc. This comparison is perceptually greatly improved if both images have the
same grey level dynamics. In addition, a lot of image comparison algorithms, based on gray level,
take as basic assumption that intensities of corresponding points in both images are equal. It has,
however, been often emphasized that the constant brightness hypothesis is nothing but a visual
illusion [4]. As is well known by experts in stereo vision, this assumption is generally false for
stereo pairs and deviations from this assumption cannot even be modelled by affine transforms
[1]. Consequently, if we want to compare visually and numerically two images, it is useful to give
them first the same dynamic range and luminance. We will limit the study to gray level images
(the case of color images can be deduced via their intensity components).
We are led to the following problem.

e From two images I; and I, construct by contrast changes two images I, and f2, which have
the same histogram.

e This common histogram h should stand midway between the previous histograms of I; and
I, and as close as possible to each of them. This treatment must avoid to favor one histogram
rather than the other.

With this intention, two additional aspects are taken into consideration :
¢ Digital images being quantized, the quantization noise must remain as uniform as possible.

e [ and I> must remain “well sampled” if they were, namely, the support of their Fourier
spectrum should not expand too much by the applied contrast change.

Obviously, the involved contrast changes have to be increasing and continuous, for reasons of
reversibility and coherence. We will call any method addressing the problem with the above
mentioned requirements a midway image equalization.



As we shall see, the requirements yield naturally two methods. The first one is to choose
the midway histogram as an ”inverse mean” of the previous ones. We will see how this method
catches up with the work of Cox et al. [1], who addressed the same problem and proposed a discrete
algorithm. The second one we shall derive is inspired by histogram specification. It consists, if
H; and H> are the cumulative histograms of I; and Iy, to find a contrast change ¥ such that
Yot = Hy "' o Hy and to replace I by ¢(I3) and I; by ' (I;). This second method is more
difficult to approach, because there exist several solutions to the “square root” problem, and their
graphs can be, as we shall see, oscillatory. We will introduce and describe the two announced
methods in the next section. The third part of the paper deals with the theoretical construction
and mathematical properties of the square iterative root. We will see how to choose this square
root optimally towards the quantization noise. The final section will be devoted to the numerical
experiences, to the comparison of both methods with specification on several examples, and their
effects on the spectrum of the images and quantization noise.

2 How to equalize two histograms ?

2.1 Definitions and properties

Let I:Q — [0,1]! (2 C R?) be an image and h the distribution of its values (also called histogram
of I). The cumulative histogram of I is the function H : [0, 1] — [0,1] defined by :

H(z) = /0 ")t

Proposition 1 Let ¢ : [0,1] — [0,1] be a continuous and strictly increasing function (such a
function will be called an increasing homeomorphism on [0,1]). Then ¢(I) is a new image, whose
cumulative histogram is H o o~ 1.

We point out that such a transformation preserves the order of the gray levels in I and doesn’t
create or cancel any image information.

If we assume that H is continuous and strictly increasing, it follows that H(I) is an image whose
distribution function is uniform on [0,1]. This transformation is called histogram equalization.
General information on histogram modification can be found, for example, in [2].

2.2 A description of classical methods.

Consider two images I; and I, whose cumulative histograms are H; and Hs. In order to make
them have the same histogram, we have to choose a cumulative histogram H, and to make them
correspond to H by a contrast change. In the light of the above proposition, we see that the only
way to perform such a transformation is to replace each image I; by ¢;(I;) where ¢; = H ! o H;.
All histogram equalization methods are based on this principle.

1. “Classical equalization” method H is the identity function on [0,1]. Each image I; be-
comes H;(I;), i.e. each histogram is equalized. This method is easy to perform. However, if
both histograms are similar and far from being constant, it is not judicious to flatten them
to make them correspond. Indeed, the contrast change, used to transform the histogram of
an image, affects the aspect of this image, all the more when its first histogram is far from
the flat histogram to reach. As is well known and easy to check, the effect of this method is
perceptually bad because of the enhancement of quantization noise (contouring artifacts).

2. Specification One of the images is chosen as a reference, and H is taken as the cumulative
histogram of this reference. For example, if I; is the reference, I; remains unchanged and

1This definition is not restrictive, the range of an image can be put on [0, 1] by an affine transformation.



I, becomes H;, ' o Hy(I,), which has the same histogram as I; (we say that hs is specified
on hy). This method is called histogram specification [2]. It can be judicious if both images
have the same kind of dynamic range. Only one histogram is modified. For the same reason
as in equalization, this method can also product contouring artifacts. A little alteration of
each image should be less affecting than a big modification of one of them.

h2 hl

_____

Figure 1: h; and ho are the histograms of two images I; and I5. hg is the direct average of h
and ho, but h seems to be the most natural compromise between them.

3. Mean If we want H as a compromise between H; and Hs, the simplest function which we can
think of, is the average of those two cumulative histograms. However, the following example
proves that this idea is not judicious : let I; and I» be two images, whose histograms h; and
hy are represented at the top of the Fig.1. The images have no common grey level. Now,
their cumulative histograms H; and H, are similar, being two step functions, respectively
centered at ny and na. It follows than the most natural intermediary (in the sense stated
in the introduction) for them should be a step function, placed exactly in the middle of H;
and H, (H is that histogram). Now, let H3 be the average of the cumulative histograms
H, and H>. We see that Hs is made up of two successive steps instead of one. Actually, hs
is not a good compromise between h; and hy. Indeed, the composition of I; by Hs ™! o Hy
spreads out the grey levels of the image on the two regions centered at ny and ne, in order to
make its histogram correspond as much as possible to hg. This “stretching” has at least one
drawback : the grey levels of I;, which were uniformly distributed around n;, are separated
in two distant regions, and this separation creates some structure in I; which didn’t appear
before. If we use H instead of Hjs, this phenomenon doesn’t appear : the grey levels of I
and I, are just translated in order to be distributed around 2422,

2.3 Axioms of midway equalization

We keep the notations of the previous section. We search for two contrast changes 1 and ¢y such
that ¢1(I1) and @2(I) have the same histogram. Thus,

o1 ope =Hy 7 o Ho.

In order to select the right method, two axiomatic methods are possible : a first one would enhance
invariance and conservation principles for all images. Now, another more intuitive way to specify
axiomatically a method is to state what the expected result should be for a short list of key
examples. Here, we choose this second axiomatic specification method by considering two very
simple particular cases : the case when I; and I differ by a constant and the case where I; and
I, indeed derive from the same image up to a contrast change, namely I = f(I) and I, = g(I).

Aziom 1 : If I2 = _[1 + )\, then 901(-[1) = (pz(_[z) = .[1 + %



In the example presented in the previous section (Fig.1), this axiom yields exactly the only sound
midway histogram. Assume now that I; and I> represent the same image, i.e. that there exists an
image I and two increasing functions f and g : [0,1] = [0, 1] such that Iy = f(I) and I, = g(I).
We shall consider two alternative axioms, both natural in this context.

Aziom 2 : in the case f = g~ !, the intermediate image between I; and I is I
or,

Aziom 8 : the intermediate image between I; and I, is a direct average F(f(I),g(I)) where
F :[0,1)2 = [0,1] is a real function, independent of f and g.

This axiom means that there exists a function F' such that for every pair of images (I1,I2), the
inverse of their intermediate cumulative histogram will be F(H, !, H, ).

We shall now examine the pairs of axioms 1 & 2, and 1 & 3 in turn. Each pair leads to a
different midway equalization method.

Analysis of Axioms 1 & 2 : the Square Root method. Notice that axiom 2 implies the
axiom 1. Indeed, if I, = I1 + A, we can write I, = (Iy + 3) + 3 and I, = (I + 3) — 2. Then
the intermediate image is I; + % The choice of the axioms 1 and 2 leads to construct as a new
histogram Hye,, = H o f (if H is the cumulative histogram of I). The function f is unknown, but
verifies the equality

H 'oHy,=(Hof ) 'o(Hog)=fof

Thus, the general method following this case consists precisely in building an increasing func-
tion ¢ such that ¢ o) = H; " o Hy and replacing I by (1) and I; by ¢~ (1) (i.e. we assume
171 = ¢2). In the next section, we will see how to construct such a function. We can argue that
if such a square iterative root exists, it will be closer to the identity than the function Hy ! o Hs.

Consequently, the changes performed on both images by using ¢ or 1)~! will be smaller than the
one which is performed on only one image by specification.

Analysis of Axioms 1 & 3 : the Inverse Average Equalization. If the axioms 1 and 3
are satisfied, the axiom 1 implies that :

Vi, VA, F(:L'+)\,x)=x+%,

which yields F(z,y) = Z£, V(z,y) € [0,1]%. Thus, we have :

Proposition 2 the only intermediate image between f(I) and g(I) satisfying the axioms 1 and 3
- F(D)+g(d)
is L2

The intermediate cumulative histogram constructed in this way is

Hnew =

PREA AL AR M
B H '+ Hol

=

The general method deduced from the preceding proposition will be called Inverse Average Equal-
ization (i.a.e.). The contrast changes involved are :

id+ Hy ' o Hy id+ Hy ' o Hy

p1 = 5 and ¢ = 2

The Cox et al. algorithm. We shall now prove that the Inverse Average Equalization is
nothing but a continuous version of the discrete algorithm proposed by Cox et al. in [1]. The



dynamic histogram warping (DHW) presented in [1] uses dynamic programming for matching
directly histogram values. Only one-to-one, one-to-many or many-to-one mappings are allowed.
Suppose the range [ng,71] in [; has been mapped with the intensity ns in Ir. Cox et al.
propose to simultaneously warp both histograms by replacing the previous grey levels in both
nq 4 -
images by 2 ng = % Now, we have Hy (™4™ ) ~ Hj(n,), then :
Ny + Hl_l o Hg(nz)
nog =~ 2

In the same way, if n € [ng, 1], we have

n+Hy 'o Hy(n)
2

ng =~

It follows that I; is actually composed by ¥ = w o Hy and I by 92 = W o Hs.
Thus, the intermediate histogram constructed this way is :

- o HT+HT
H:H10¢11:H20w21:(%)1

Their algorithm is a very efficient way to perform this transformation on discrete data.

3 Square Iterative Root. Theory.

Let us see how the method deriving from Axioms 1 & 2 can be performed in practical terms. Any
solution 1 of the functional equation

PN =

is called an iterative root of the given function . Iterative roots are studied in Iterative functional
equations by M.Kuczma, B.Choczewski and R.Ger [3]. Some of the results of this section (propo-
sitions 3, 6 and 7) can be found in this book. We reformulate them here in the image processing
numerical context, which is new.

In our case, we are just interested in square iterative roots (N = 2) of functions from an in-
terval into itself. We shall even limit ourselves to the case where ¢ : [0,1] — [0, 1] is an increasing
homeomorphism 2. Consequently, we call square iterative root (s.i.r.) of ¢ every increasing home-
omorphism % : [0,1] — [0, 1] such that ¢ o¢) = ¢. For example, z — zV? is a square iterative root
of x — z2.

This definition leads to several questions, as the existence or uniqueness of such an iterative
root. Let us start with some remarks.

e We already know that ¢(0) = 9(0) = 0 and (1) = ¢(1) = 1. If ¢ and ¢ are C! functions,
then ¢'(0) = ¢'(0)* and ¢'(1) = ¥'(1).

e If 2, €]0,1[ is such that p(z,) = z,, then 9, (respectively 9, 1)) just relies on ¢jg ]
(resp. ¢y,,17)- Then, we can limit the search for as.i.r. to the case ¢(x ) > z for all z in ]0, 1.
The case ¢(z) < z follows immediately : ¥ isas.i.rof ¢ iff 1—¢(1—z)isas.ir. of 1—p(1—x).

e If p(z) >z on |0,1[, and if ¢ is a s.i.r. of ¢, then z < P(z) < ¢(z) Vz €]0,1].

3.1 Construction of a Square Iterative Root

Proposition 3 Let (xg,y0) be a point strictly located between the graph of ¢ and the line y = x.
Then ¢ has an infinite amount of square iterative Toots v such that ¥ (xe) = yo-



¢°(3) (xoj E

p(zo) y=2

Yo A foes ;

2o P(zo)p(z0)

Figure 2: Construction of an Square Iterative Root.

Proof :

Let (xo,y0) be a point in the area described above. We want to build a square iterative root
¥ of ¢, such that ¥(x¢) = yo. We are already able to know the sequences of positive and negative
iterates of xg by 1. Indeed, we know ¢ and

Vn € Z, °C (z0) = ¢°"(20), $°C™ N (20) = ¢°"(3o)

Next, since we want 9 to be an increasing function, its graph must remain in the sequence of
rectangles defined by those iterations (Fig.2). Finally, if we define 9 as a continuous and in-
creasing function on [zg,1)(z)], then 1 is defined and continuous on [0, 1]. Indeed, ¢! is de-
fined and continuous on [¢)(2),¥°®) (20)] (because 1 is an homeomorphism from [z, ()] onto
[¢(20),4°? (20)]). Therefore 1) = p o1~ ! is also defined and continuous on [¢)(z0),1°?) (20)].
The continuity of ¢ at ¥(zo) is ensured by the construction. This process implies that the function
¥ constructed is continuous on ]0, 1], and by extension, on [0, 1].

O

In order to illustrate the process described above, we have used it to construct some square
iterative roots of the function z — /z in Fig.3. For each choice of the point (z¢,yo), ¥ has been
defined as an affine function on the set [z, yo].

Our problem is now to single out a root among all possible square roots, which would be more
judicious than the other ones. In what follows, we analyze the properties of all square roots and
discuss criteria for a best choice.

3.2 Properties of Square Iterative Roots
3.2.1 Oscillations

Proposition 4 Let ¢ : [0,1] — [0,1] be an increasing homeomorphism, and 1 and 1 be two
square iterative roots of w. Then, for every positive number €, there is an infinite amount of
z € [0,¢e] (likewise in [1 —,1]) such that ¢1 and ¢, cross each other at .

Proof : Assume that there exists a positive number € such that

v 6]076[7 ¢1($) Z ¢2(~'c)

2this is not specified in their paper, but it can be deduced from their code.
3The case “® : [0,a] — [0,a]” with a > 0 can be deduced from the previous one via the function ¢(z) = %t‘b(aw).
If ¢ is a s.i.r. of @, then z — ayp(2) is a s.i.r. of .
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Figure 3: Some square iterative roots of the function z — 2. The darker curve is the explicit
sir. z — a:\/Z%).

Since v, is continuous and v (0) = 0, there exists a positive number ¢ such that Vz €]0,4[, ¢¥1(z) €
10,¢[. Thus,
Vz €]0,inf(d,€)[, Y1 0 ¥1(x) > 2 0 1 (x) > b2 0 Pa(z)
(the second inequality comes from the fact that 12 is increasing). Now, the extremal terms must
be equal to ¢(x). Then, all the terms are equal, ¥; and 12 take the same values on [0, inf(d,¢)]
and consequently 1; and 12 are equal everywhere (see the explicit construction).
O

3.2.2 Self-similarity

Proposition 5 Let ¢ be linear on [0,€] (€ > 0), with o slope a > 1. Then, if v, a square root of
@, is C* on a neighborhood of 0, ¥(x) = /ax on [0,¢].

Proof :  Let ¢ be a square iterative root of ¢ and zy be a point in [0,£]. We define the
sequences (n), (yn) and (ry) as (zn) = ¥~"(z0), (yn) = ¢(zn), and

Yn — Yn+1
Tn — LTp41

rn =

Then, the sequences ra, and 73,41 remain constant : odd rectangles (resp. even) are similar
(Fig.4). Moreover, the graph of 7 in two odd (resp. two even) rectangles is the same, up to a
similarity. The points (Z2y,%2,) (resp. the points (Z2n41,y2n+1)) are all on a line going through
(0,0). Consequently, 1 is a C! function in a neighborhood of 0 if and only if both lines are the
same for all zg in [0,¢], i.e. iff ¢¥(z) = /az on [0, e]. We can also add, following the same argument,
that this function is the only square root which is concave near 0.

O

3.3 (' Square Iterative Roots

We focus our attention on the case when ¢ is a C' function on the open set ]0,1[, and when ¢’
doesn’t reach Q..

Proposition 6 Let ¢ be a C! increasing homeomorphism on 10,1[, such that ¢' > 0. There
erists an infinite amount of square iterative roots v, which are C functions on the open set ]0,1].
Moreover, in the previous construction, one only has to build v as a C function on |zg,yo[ such

that ' (yo~) = d)“‘,’l((fo‘ﬁ) to be sure that v is a C function on 0, 1][.
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Figure 4: Behaviour of a square iterative root in the linear case.

Proof : The derivability and continuity of the derivative on the open sets are easy to prove. Let
see what happens at the edges of the intervals. Let ¢ be a square iterative root of ¢ going through
(wﬂayO)' Then,

Va €lyo, ¢(z0)], Iy €lzo, 0], © =Y (y)

So, if yo < z < (o) :

V(@) —(yo)  wly) —@lwo) y—20

T — Yo y—mz0  P(y) —¥(x0)

¥~ is continuous, then y — x¢ when v (y) — ¥(x). Thus

P() —Y(yo) _ ¢'(20)

Zz)yo xr — yo - f(pl (xo“l‘)

O

Proposition 7 There exists a C! increasing homeomorphism ¢ : [0,1] — [0,1], none of whose
square iterative roots is C* on [0,1].

Proof : We construct (fig.5) a C! increasing function ¢, satisfying :

V2

pla) = 3 on [0, 3], (&) = 1+ 3 (1) on [%2,1]

3 3]7

Let ¢ be a C* sir. of . Then, ¢ must at least be linear on [0, 3] and [‘/_ 1], with respective

slopes\/7 and [ Hence, (%5 ) =14 f However, one iteration of the point (3, %) give

¢(§) = 2. It follows that there is no C" function 1, which is a s.i.r. of ¢. O

The previous proposition implies that it is useless to search for some C! square iterative root.
In what follows, we will see that the concavity of ¢ doesn’t imply the existence of a concave square
root. However, it leads us to an interesting property, which will help us to determine what kind
of reasonable criterion we can use, in order to choose among all these solutions.
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Figure 5: Example of C' function ¢ without any C* square iterative root.

3.4 Behavior towards the concavity of ¢

The previous example is also suitable for showing that there isn’t always a concave square root
if ¢ is a concave function. Indeed, in the previous construction, we can ensure the concavity of
. Next, if ¢ is a concave s.i.r. of ¢, ¢ has to be linear on [0, 1] and [‘/75, 1] (see the part about
self-similarity). Now, we have :

Proposition 8 If ¢ is concave near 0, and if there exists a concave square root i for o, then ¢
18 unique.

Proof : Assume that ¢ and v are two distinct concave square roots of ¢. Let a > 0 be such
that ¢ is concave on [0,a]. It exists zo in [0,a] such that yo = 91(zo) > y) = Y2(mg). Let
o = b1 *(20) and y, = 11 *(yo) be the iterates of o and yo by ¢; !, and (x},), (y;,) those of
xo and y by yt. All these values are of course in [0,a]. Then, for each positive integer k :

¢(y2r+2) = ¢(War42) _ P(T2r42)
Yokt2 —Y'opp2 T T2kt
Indeed, the first term is the slope of the chord between (yax+2, ¢(y2k+2)) and (Ysz 1o, P(Yss42)), and

the second one is the slope of the chord between (z2g+2,9(22r+2)) and (0,0). Now, 0 < Zagi2 <
Yspyo < Y2k+2, thus the previous inequality follows from the concavity of ¢. Consequently :

ot ot
Vk >0, Y2k — Y o < Yok4+2 — Y op42
Tk T2k+2

The sequence (y“;;{% ) is increasing, and then is always larger than its first term, which is positive.

Now, if 91 and 15 are concave, they have right derivatives at 0, which must be equal to /¢'(0).
It follows that the sequences %; and % must have the same limit, and thus

!
2k — k—
T2k

which contradicts the previous property. d

4 The Choice of the Square Root

4.1 How to choose the “best” square iterative root 7

Let I; and I, be the images, whose histograms have to be brought closer. According to the above
considerations, we have to find a continuous function 1, for which ¢ o ¢) = H; ™ o Hy. Then,
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Figure 6: Iterations of wl_l and ¢2_1.

¥(I2) and ¢~'(I1) will have the same histogram, which will be an intermediary between H; and
H,. Now, we have seen that there is an infinite amount of such functions. Even if we search
C"' square roots on the open set ]0,1[ (in case H; ™" o H is a C" function itself), there exists an
infinite amount of solutions. On the other hand, there exist C1 homeomorphisms on [0, 1], none
of whose square root is C' on the closed set [0, 1], and one can find concave functions deprived of
any concave s.i.r. Thus, no usual structural criterion seems at hand to single out a right square
root.

Let us come back to the previous proposition (prop.8): if a function ¢ has a concave square
root 1, then this square root is the “right” one, the one we look for. Look at Fig.3 : it shows a
variety of bad solutions for p(z) = /z. We have seen that those solutions are oscillating around
each other, whatever ¢ is (Prop.4). In this case, each solution oscillates around the concave one
P(z) = arx/%, and changes its convexity an infinite amount of times near 0 (and near 1). Thus, the
concave solution is the one which “oscillates” as little as possible. In the next section, we propose
a variational criterion based on a non oscillation requirement.

4.2 Behavior towards the noise

Assume that we have a uniform quantization noise b added to I (—0.5 < b < 0.5). Then, after a
composition by a function ¢ : [0, 255] — [0, 255] :

(I +b) ~ () +9'(I)b (first order)

The noise becomes ' (I)b, which depends on the grey level of the point. It follows that the noise is
not uniform any more. The more the variations of 1)’ are important, the less the noise is uniform.
Now, the uniformity of noise requirement is the most relevant one in applications. Therefore, if we
want to perform a histogram modification, we must try to choose 3’ with the smallest variations
around its mean. However, in our case, the contrast change used for the second image involves
™!, we should consequently try to minimize : fol (' —1)2+ fOI(W_l) —1)2. Now, we can write

wevrs [(Amp = et [(G vt = [w-pras D)
P =1 +/ — =1 :/v,/)—l +/ — -1 v,/):/w—l 14+ —
/0 o Y1) 0 o ¥ 0 (4
In practice, we observed that this minimization gives almost the same results as the minimization

of fol (yp' — 1)% (because 1)’ is close to 1). Therefore, we shall make the approximation :
Principle : The square root which alters the least the uniformity of the quantization noise must

minimize [ (' — 1)°.

10



4.3 Results on examples

We have seen and explained why the best square root for our problem is the one which “oscillates”
as little as possible. On the other hand, a “good” solution, from the quantization noise point of
view, has to make [ 1’ ? as small as possible. In order to understand the link between both criteria,
we have made the following experiment : let ¢ be a concave function, whose concave square root
f we know. First, we compute the value yg in [%, cp(%)], which minimizes the discrete version of
J ? (computed on the sequence of iterates of the point (1,40)). Next, we compare this value to
the value of the concave s.i.r. f at % The results are in the following table (we use 30 iterations
of the point, and the precision on yq is better than 1072) :

4 f Yo f(%)
N JI% 0.612553 | 0.612547
Tof [In(e—Dz+1) | 06184 | 0.62011
zi rz 0.7074 0.7071
fof  arctan 0.5891 0.5903

Thus, for those functions, the value yo computed is quite close to the value at % of the solution
we would like to construct.

4.4 S.I.R. Algorithm

Our algorithm is the following one (for the description, ¢ > Id) : first, let z, = 1. We choose
¥(3) in the open set |1, (L), such that the sequence (¢°F (L), ¢p°*+1) (1)), 7 oscillates as few
as possible. Now, the values of ¢ at all iterates (negative or positive) of 1 are fixed (see Fig.2).
We already know that, once '¢(%) is chosen, the construction of ¢ as a continuous and increasing
function on [§,1(3)] is enough to completely define ¢ as continuous and increasing on [0, 1].
Indeed, the values of ¢ at the other points of the set [0,1] will be defined as iterates of those on
[1,4(3)]- So, we suggest to construct ¢ on a dichotomic subdivision of [, 4(3)].

The first step consists on the construction of ¢(%). This value must lie in ]3,(%)[, and is
actually chosen in the open set such that the iterates of (3,4 (3)) minimize the discrete version of
¥'. We follow the same rule to construct by dichotomy the values of ¢ on ]3,%(3)[.

Then, for k = 0..K (k is the current depth of the dichotomy, and K the final one), for each

(20y - k) € {0, l}k, let
k i
1 1 1 1
n=(a(3) 0G) -3+
We want to construct ¢ (zo). Now, the value chosen must remain coherent with the points previ-

ously constructed in the dichotomy. Consequently, let Xo and X; be the points on both sides of
o which have already been dealt with in previous steps of the dichotomy :

k—1 i
%o =(Ce(3) 066G 3+ 5
1 1 1

X1 =Xo+ (5)’671("?(5) - 5)

xo is the middle of [Xg, X;] (see Fig.7) and 1(Xo) and ¢(X;) are already fixed. Therefore, we
choose 9(xg) in the open set J¢(Xo), 9 (X1)[, such that the sequences of the iterates of (zg, 1)(xg))
minimizes the discrete version of [ ¢'°.

Thanks to this algorithm, we are able to construct a “good” square root for any function ¢
which doesn’t cross the line y = = on ]0,1[. If a function ¢ is an increasing homeomorphism on
[0,1], we can use the same algorithm on each interval [zg,z1] such that ¢(xo) = g, p(z1) = 21,
and ¢(z) # = on ]zg,z1[. This way, we can compute a “good” square root for any increasing
homeomorphism on [0, 1], and next for any increasing homeomorphism on a segment [a, b].
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Figure 7: Construction of ¢ on [, 4(3)].

5 Comparison of the methods. Experiences and applica-
tions

5.1 Theoretical Comparison of the methods

First, let us remark that if I, = AI; then the s.i.r. equalization builds as an intermediate image
between I, and I; the image I = \/XIl, whereas the inverse average equalization builds I = %Il.
Now, when ) is close to 1, VA ~ %, thus the results obtained with both methods are quite similar.
By the same arguments, we can show in a more general way that when H; ' o H, is close to Id,
the results obtained with the two methods are almost identical.

However, the i.a.e. method is more conservative since it maintains the mean of the two images
constant. Indeed, if we note I; the mean of I;, we have :

1 1 1

I = / zhi(x)dx =1 — / H;(x)dz = / H; (z)dx.
0 0 0

Then the average of the two means is :

L+ 1, _/H1_1+H2_1
2 2

and remains the same before and after the inverse average equalization. This is not the case for
the s.i.r method : if I, = AI3, then the average of their means before the transformation is %I_l
and becomes v AI;. This conservation principle leads us to assume that the use of the i.a.e. is
certainly more relevant in iterative algorithms.

5.2 Results on a stereo pair

Fig.8 shows a pair of aerial images in the region of Toulouse. Although the angle variation between
both views is small, and the photographs are taken at nearly the same time, we see that the lighting
conditions vary significantly. Fig.9 shows the result of the specification of the histogram of each
image on the other one. Fig.10 shows both images after equalization with the s.i.r. method, Fig.11
after inverse average equalization, and Fig.12 represents the cumulative histograms of the images
before and after the different transformations. We can see that the histograms of the images
after both equalizations are close and really intermediate between the previous ones. All the
comparisons which follow are made between specification and the s.i.r. equalization but qualitative
results would be very similar and conclusions identical with the inverse average equalization.

If we scan some image details (Fig.14 and 15), the damages caused by a direct specification
become obvious. Let us specify the darker image on the brightest one. Then the information
loss, due to the reduction of dynamic range, can be detected in the brightest areas. Look at the
roof of the bright building in the top left corner of the image (Fig.14) : the chimneys project
horizontal shadows on the roof. In the specified image, these shadows have almost completely
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vanished, and we can’t even discern the presence of a chimney anymore. In the same image after
s.i.r. equalization, the shadows are still entirely recognizable, and their size reduction remains
minimal. Fig.15 illustrates the same phenomenon, observed in the bottom center of the image.
The structure present at the bottom of the image has completely disappeared after specification
and remains visible after midway equalization. These examples show how visual information can
be lost by specification and how midway algorithms reduce significantly this loss.

5.3 Multi-Channel images

Fig.16 shows two pieces of multi-channel images of Toulouse. The first one is extracted of the blue
channel, and the other from the infrared channel. Fig.17 and 18 show the same images after the
s.i.r. and the i.a.e. algorithm. The main interest of matching the histograms of such images is to
make their visual comparison easier and more relevant. Moreover, we observed that the results of
correlation-based stereo algorihtms on multi-channel pairs were never worse and often improved
after this kind of equalization.

5.4 Different shots of the same picture

Fig.20 shows two different shots of the same painting, Le Radeau de la méduse*, by Théodore
Géricault, found on the internet. The second one is brighter and seems to be damaged at the
bottom left. Fig.21 shows the same couple after s.i.r. equalization. The results of the inverse
average equalization on this example are similar.

5.5 Effects on the quantization noise

Let us see the effects of midway equalization on the quantization noise. Let I and I be two images,
and I; and I> the same images after quantization on the integers of [0,255]. We will assume as a
good approximation that the quantization noise b; = I; — I; is uniformly distributed on [—0.5,0.5].

Thus, E(b;) = 0 and its standard deviation is 4/ f_065.5 z?dz = /{5 ~ 0.289. The following table

shows what becomes the standard deviation of b; and b, a~fter the different transfogmations 5. For
example, if I; after specification on I becomes I1 5, and I; after specification on I, becomes I 3,

we consider that the quantization noise b; is transformed in by = Ly — Ii,é-

Specification La.e. S.i.r.
stereo left 1.207121 0.646560 | 0.442230
stereo right 0.611246 0.479748 | 0.538039
blue channel 1.848390 1.069263 | 1.040278
infrared channel 0.145176 0.961488 | 0.480899
meduse left 0.598254 0.458458 | 0.540970
meduse right 0.393870 0.354508 | 0.462411

We observe that the effects of the I.a.e. and of the S.i.r. on the noise are far more symmetrical
than those of specification. With these methods, the standard deviation of the noise is multiplied
by a number smaller than 2.5, except in the case of the multi-channel images. Indeed, those
images are farther from each other and consequently subject to more drastic transformations. In
this case, the ratio is smaller than 3.7.

4Musée du Louvre, Paris.

5The non-quantized images used to compute these results have been obtained in the following way : for the
multi-channel images and the stereo pair, we had the original non-quantized images ; for the painting, the images
were already quantized, so we added a simulated noise, uniformly distributed on [—0.5, 0.5].
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5.6 The Shannon point of view : effects on the spectrum

In general, the composition of an image by a function doesn’t maintain the property “to be well
sampled, according to Shannon-Whittaker sampling theorem”. Now, we argue that when we use
correlation technics on a stereo pair, in order to get the depth map of the area, the images must
be well sampled if we want a good precision ([5]).

In theory, we understand that a modification of the histogram via the s.i.r. algorithm must
be smoother for the spectrum than direct specification. Indeed, if ¢ : [0,1] — [0,1] can be
approximated by a polynomial function : ¥(s) = s + ass? + ass® + ..., then :

¢(I)=f+a2f*f+a3f*f*f+...

The values a; must be as small as possible in order for ¢(I ) to remain well sampled. This happens
if ¢ remains as close to identity as possible and is smooth enough. Now, we have seen that the
functions used in the s.i.r. (see for example Fig.13) and the i.a.e. methods are indeed closer to the
identity than the one used in specification (H; ™' o Hy). However, it is not enough to conclude.

Consequently, in order to check experimentaly the effects of the different transformations on
the spectrum, we construct the following example : the left half of each image of the couple Fig.8 is
zoomed by FFT, which gives I; and I,. Next, we specify I; on I, (result Il) and we compute the
modification of I; via the s.i.r. algorithm (result L)) or the i.a.e. (result Il) Finally, we compute
the spectrums of Iy, I;, I; and A (Fig.22). We see that the spectrums of I, and I; remain more
in the central square than that of I;. Actually, if we compute the rate of energy which goes out
of the central square after different modifications, we get 0.0107 for specification, 0.0027 for s.i.r.,
and 0.0013 for i.a.e. The energy stays more condensed in the spectral support of 11 after an s.i.r.
or an i.a.e. modification. Consequently, I; and I} remain better sampled than I

5.7 Comparison using the Kullback-Leibler distance

Finally, we choose to compare experimentaly the results of both midway equalizations for a statisti-
cal distance. The following table contains the Kullback-Leibler distances 7 between the histograms
of the previous pairs, before, and after each kind of transformation.

before any transformation | after IL.a.e. | after S.i.r.
stereo pair 1.622677 0.005506 0.001155
Different channels 1.586096 0.008154 0.017710
Radeau de la Meduse 0.298163 0.001402 0.001435

We can observe that the algorithm giving the best performances depends on the input pair.
So, these results don’t allow us to conclude experimentally on the choice of the method.

6 Conclusion

This paper presented two ways of giving to a pair of images the same histogram, while remaining
coherent with their previous gray level dynamics. This intermediate histogram has been con-
structed following two pairs of general and elementary axioms, which have led to one method or
the other. We have seen that they can be applied to a wide range of image pairs, giving in each
case a better representation of the images for observation, comparison or ulterior manipulations.
It has been shown that those transformations are smoother for the images than direct specification

6Most natural images have a spectrum really concentrated in the center of its support. It follows that after a
transform like a histogram modification, the spectrum sprawls but doesn’t go much out of its support. The ratios
of energy presented above illustrate this fact. However, we win a factor larger than 5 and this gain can be really
useful in satellite imaging applications to depth map recovery.

"The distance between two histograms was computed symmetrically as %( [ hilog Z—; + [ halog Z—f) The his-
tograms were previously lightly smoothed in order to avoid them to vanish at some point.
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: they reduce the loss of visual information generated by this kind of alteration and are better to-
wards the quantization noise. They are also more respectful of the property “to be well sampled”.
The theoretical and experimental comparison of these midway equalizations was not enough to
conclude on the choice of the best method. Both methods being acceptable, only practice allows
to decide. From the structural point of view, the result given by i.a.e. is simpler and unique, given
by an explicit formula. The s.i.r. equalization has to be considered as an alternative, and gives
experimentally similar results, but its construction is certainly needlessly complicated, and more
sensible to robustness problems. Consequently, we consider that the i.a.e. should be recommended
as a standard method, which can be applied efficiently by the algorithm proposed by Cox et al.
An extension of this theory to movie equalization is being currently studied by the author.
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Figure 9: Same images after specification of their histograms on each other (left : the histogram
of the first image has been specified on the second, and right : the histogram of the second image
has been specified on the first).

Figure 11: Stereo pair after equalization via the i.a.e. algorithm
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Figure 12: Cumulative histograms of the stereo pair (Fig.8) before and after each transformation.
1 and 4 : Cumulative histograms of the first and second image, 2 : Common histogram after i.a.e.,
and 3 : Common histogram after s.i.r. equalization
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Figure 13: The first curve (1) represents H; ' o Hy for the stereo pair and the second one (2) is
the square iterative root computed in this case.

Figure 14: First extract of the stereo pair. From left to right : in the original image, in the
specified one, in the equalized image.

Figure 15: Second extract of the same pair. From left to right : in the original image, in the
specified one, in the equalized image.
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Figure 19: Blue and infrared channel after specification on each other.
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Figure 20: Two shots of the Radeau de la Méduse, by Géricault

Figure 21: The same images after s.i.r. equalization.

Figure 22: Spectrums of Image I, I, ﬂ and fl. We can see that the spectrums of I~1 and fl
remain more condensed in the central square than the one of I.
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