
HAL Id: inria-00539973
https://inria.hal.science/inria-00539973

Submitted on 25 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A framework to experiment optimizations for real-time
and embedded software

Hugues Cassé, Karine Heydemann, Haluk Ozaktas, Jonathan Ponroy,
Christine Rochange, Olivier Zendra

To cite this version:
Hugues Cassé, Karine Heydemann, Haluk Ozaktas, Jonathan Ponroy, Christine Rochange, et al.. A
framework to experiment optimizations for real-time and embedded software. International Confer-
ence on Embedded Real Time Software and Systems (ERTS2), May 2010, Toulouse, France. �inria-
00539973�

https://inria.hal.science/inria-00539973
https://hal.archives-ouvertes.fr

 Page 1/10

A framework to experiment optimizations for real-time and
embedded software

 H. Cassé1, K. Heydemann2, H. Ozaktas2, J. Ponroy3, C. Rochange1, O. Zendra3

1: IRIT, Université de Toulouse, 118 route de Narbonne. 31062 Toulouse cedex 9, France
2: UPMC / LIP6, BC 167, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex, France

3: INRIA Nancy Grand Est - LORIA, 615 rue du jardin botanique, CS 20101, 54603 Villers-Lès-Nancy cedex,
France

Abstract: Typical constraints on embedded
systems include code size limits, upper bounds on
energy consumption and hard or soft deadlines. To
meet these requirements, it may be necessary to
improve the software by applying various kinds of
transformations like compiler optimizations, specific
mapping of code and data in the available
memories, code compression, etc. However, a
transformation that aims at improving the software
with respect to a given criterion might engender
side effects on other criteria and these effects must
be carefully analyzed. For this purpose, we have
developed a common framework that makes it
possible to experiment various code transfor-
mations and to evaluate their impact of various
criteria. This work has been carried out within the
French ANR MORE project.

Keywords: energy consumption, code size, real-
time, WCET, optimization

1. Introduction

The design of general-purpose computing systems
is often driven by performance targets and various
hardware and software techniques can be used to
meet requirements. Embedded systems differ from
general-purpose systems by being subject to
specific constraints: the code size may be limited by
the capacity of the memory system; systems
designed to be powered by batteries should exhibit
low energy consumption; the inability to use
efficient but voluminous cooling equipments may
limit the allowed thermal dissipation. In addition,
real-time embedded applications must meet hard or
soft timing deadlines.

To meet these constraints, it might be necessary
that the original software undergoes a series of
transformations of all kinds. For example, some
compiler optimizations might help to reduce the
code size but more aggressive techniques like code
compression may be helpful. The design space for
transformations that can reduce energy
requirements is very large, from compiler
transformations that improve the efficiency and
reduce the number of memory accesses to data
placement strategies that aim at optimizing the use

of the various memories available in the target
hardware. The worst-case execution time – that
must be analyzed to check that deadlines can be
met for real-time tasks – can be reduced through
different kinds of code transformations and
mapping.

However, a transformation that aims at improving
the code with respect to one criterion might
sometimes impact another criterion due to possible
side effects. These effects must be analyzed to
check that all the constraints of the system can be
met.

In an industrial context where time-to-market is
important, being able to experiment several
transformations in short time is desirable. This
motivates the design of a dedicated framework
which is one of the goals of the MORE (Multicriteria
Optimization for Real-time Embedded systems)

1

project that started in 2007 and will end in 2010.

This paper describes the framework developed
within this project and shows how it can be used to
improve embedded software so that it meets its
constraints as closely as possible. The presented
framework is open to a large extent and has been
designed to facilitate the implementation or
emulation of new measurement tools as well as
transformation tools. The tools implemented so far
include an emulator for code compression, an
interface to the gcc compiler to control some
compiler optimizations used to improve the worst-
case execution time, an emulator for data
placement schemes, a cycle-level simulator, an
energy estimator and a WCET estimator.

The paper is organized as follows. In Section 2, the
overall architecture of the framework is described in
details. Section 3 introduces the transformations we
have considered so far to improve the code size,
the energy consumption and the worst-case
execution time of a piece of code. Section 4 is
dedicated to evaluation (measurement and static

1
 The MORE project is supported by the French National

Research Agency (ANR) under agreement n° ANR-06-
ARFU-002

 Page 2/10

analysis) tools. In Section 5, we report the results of
some experimental work carried out using our
framework. Finally, concluding remarks and future
work plans are given in Section 6.

2. Overview of the optimization framework

The goal of building a common software framework
is to facilitate the experimentation of various kinds
of code transformations so that their impact on
different criteria can be analyzed and their
respective results can be compared.

2.1 Supporting library

To make it possible to estimate and compare the
impact of various code transformations on different
criteria (execution time, energy consumption, etc.),
it is desirable to have tools that work on a common
representation of the code and of the target
hardware architecture. This is why we have
decided to build our framework on top of the
OTAWA library that provides such facilities [4].

OTAWA is a library dedicated to the analysis of
Worst-Case Execution Times for hard real-time
tasks. It includes a number of tools to load a binary
code (various target architectures are supported:
PowerPC, ARM7, TriCore, Star12X), to decode it,
and to build a representation of it in the form of a
Control Flow Graph (CFG) where nodes stand for
basic blocks and edges express the possible
execution in sequence of two basic blocks. OTAWA
also provides annotation facilities that allow
hooking attributes to any code object (an
instruction, a basic block, an edge between two
blocks). Examples of user-defined annotations
include timing information for a basic block or the
behavior of an instruction with respect to the
instruction cache. OTAWA is delivered under the
LGPL license which makes it a chosen tool set for
research work.

2.2 Implementation of code transformations

We distinguish two classes of transformations:

‐ some of them modify the structure of the CFG.
For example, loop unrolling, function inlining,
superblock construction add or concatenate
some basic blocks.

‐ other ones keep the code structure but have an
impact on the behavior of instructions. For
example, code compression does not change
the flow of instructions but modifies their fetch
timing.

The first class mainly includes compiler
transformations. One possibility to perform
experiments with these transformations is to
interface with the target compiler so that a new
binary code including the effects of the
transformation can be generated. Within the MORE
project, we have successfully used the GCC-ICI
interface [8] and developed specific plugins to
control built-in compiler optimizations like loop
unrolling and function inlining (see Section 3.3).
Alternatively, the effects of transformations that
modify the code structure could be emulated by
rearranging the CFG representation within the
framework. This would avoid re-building the code
and would make the experiments faster.

The second class of transformations can be
emulated by annotating the impacted instructions
so that their new behavior or timing can be taken
into account by measurement or analysis tools. For
example, code compression can be expressed by
annotating each instruction with the address it
would have in the compressed code: this new
address can be considered by a simulator or a
code analyzer while the compressed binary code
has not really been generated. In the same way, a
transformation that would place data in specific
memory can be emulated by annotating load/store
instructions with their target memory. This way,
there is no need to actually generate the
transformed code to perform analyses. Using this
approach, several kinds of transformations can be
considered during the system design process,
avoiding to really implement those that do not
provide good results.

To summarize, our framework can host several
kinds of facilities to emulate code transformations:
CFG annotations, CFG manipulation and
interfacing with the compiler.

2.3 Implementation of measurement and analysis
tools

Our framework includes a cycle-level simulator built
on top of SystemC. It can currently support targets
with superscalar pipelines, in-order or out-of-order
execution, branch prediction, instruction and data
caches, user-specified memory architecture. If
needed, the user can develop new components
from generic modules to model specific hardware
features. The simulator can be configured through
an XML-like description of the hardware
architecture. By default, the simulator provides the
execution time of the code under analysis.
However, it is possible to add software probes to
get more specific measures that may be used to
compute the code behavior with respect to various
criteria. For example, statistics on the behavior of

 Page 3/10

caches can be used to estimate the energy
consumption of accesses to the memory hierarchy.

The framework also allows the implementation of
static analysis algorithms through the concept of
Code Processor provided in the OTAWA library. A
code processor processes each node of a Control
Flow Graph and uses annotations produced by
previously executed code processors to generate,
in turn, new annotations that improve the
knowledge on the considered piece of code.
Example code processors are pipeline and cache
analyses used for the estimation of Worst-Case
Execution Times.

In the next section, we will provide further details on
the transformation and analysis tools that have
been implemented within the MORE project.

3. Transformations

3.1 Energy-aware memory mapping

Energy-aware memory mapping consists in
techniques and algorithms aiming at reducing the
overall energy used in a computing system thanks
to appropriate placement of information in the
various kind of memories available in the system.
The general idea is to take advantage of the
different behaviors of these heterogeneous
memories with respect to energy. These memories
may be main memory (DRAM and its derivatives),
cache memory (SRAM and its derivatives) or
Scratch-Pad Memory (SPM, made of SRAM and its
derivatives).

In the MORE project, we have so far focused our
work pertaining to energy-aware memory mapping
on the placement of data, not code, because the
latter would have implied difficult to master
interactions with code compression and impaired
WCET analysis. We also focused our efforts on
static placement issues. This means that the data is
placed according to a layout decided before the
actual execution takes place and can never change
at runtime. Indeed, the context of real-time systems
with WCET constraints makes it mandatory for us
to be able to have a good predictability of timing,
which dynamic algorithms tend to significantly
impair.

The overall strategy to decrease energy
consumption through memory placement roughly
consists in trying to place the most accessed data
in the less energy-hungry memories. We especially
target SPM, since this kind of memory is very
efficient energy-wise and very well-suited to
embedded systems. Indeed, an SPM is basically a
cache memory whose logic has been removed,

leaving only the storage part. The management of
the SPM is not performed in hardware, but by the
executed program itself. Note that SPM are not to
be mistaken with software caches. In a software
cache, the cache logic is simply stripped out from
the hardware to be put “as is” in software, which
makes it very energy-hungry. In an SPM, the cache
management algorithms do not exist anymore: the
executed program explicitly takes care of the
management of the SPM. This can be done
manually by the program developer or with help
from the compiler and runtime system.

In our work, we considered several transformations
(or memory mapping strategies) to improve energy
usage thanks to placement in SPM. SPM_firstUsed
is a naive baseline approach and consists in
placing data on a first-come, first served basis: the
first accessed data in the program are placed in the
SPM until it is full. This could be done on-the-fly, at
low cost without prior knowledge of the program.
SPM_smallSizeFirst consists in placing smaller
data in SPM, then larger data if room remains. The
idea is to maximize the number of data in SPM.
Prior knowledge of all the data sizes is necessary
to choose which data go to SPM. Finally,
SPM_highFrequency consists in placing data in
SPM by order of decreasing access frequencies.
The idea is to maximize the number of accesses in
SPM. Prior knowledge of all the access frequencies
is necessary to choose the data that go to SPM.

To implement these transformations in the MORE
project in a completely automated way, we
extended the OTAWA simulator, as follows. First, a
pre-run with the targeted program is performed,
during which a trace of all accesses to each piece
of data is recorded. This trace is then analyzed just
before the actual run. For SPM_firstUsed, we
extract the first accesses from the trace. For
SPM_smallSizeFirst, the accesses are sorted by
size. For SPM_highFrequency, the number of
accesses to each piece of data is computed. This
way, we can build a memory mapping for data
according to the chosen strategy. Finally, when the
program is actually run, this mapping is used by the
simulator to re-route all memory accesses to data
adequately. This makes it possible to smoothly
compute the new WCET and energy usage as
described in Section 4. Note that the data accesses
we consider correspond to low-level, machine
accesses, which are sub-structural with respect to
the data structures in the source program.

3.2 Code compression

Code compression reduces the code size by
compacting the original code into a non executable
format [2]. At runtime, a decompression step is

 Page 4/10

needed to retrieve the initial code. The previously
proposed approaches differ in the compression
strategy (statistical as Huffman coding, dictionary-
based or any combination of both) as well as in the
implementation (by software or in hardware) and in
the location of the decompression engine [2]:
between the cache and the memory for the pre-
cache approaches [9][10], between the cache and
the processor for post-cache schemes [1][13] or
inside the processor core [5][16]. In the latter case,
decompression is then very close to the translation
engine for micro-coded instructions.

 In the MORE project, we decided to use a post-
cache or within-processor code compression
technique that is likely to optimize at the same time
the code size, the energy consumption and the
performance contrary to pre-cache
approach [13][16][10]. Indeed, as compressed code
is stored in the instruction cache, it is likely to
reduce the number of cache misses which might
improve both the execution time and the energy
consumption. Since our intention is to consider
high-performance processors, we have opted for in-
pipeline decompression since post-cache
decompression is very hard to implement for
superscalar processor and might impair the
efficiency of a branch predictor. In addition, an in-
pipeline approach avoids the complexity of handling
different address spaces: the one related to the
compressed code and the other one seen by the
processor for which the code compression is
completely transparent in case of pre-cache or
post-cache decompression. Since the
decompression overhead is critical because
decompression may be needed at each cycle, we
designed dictionary-based compression scheme
that might be less efficient (in terms of compression
rate) than statistical algorithms but that allows
faster decompression.

In our solution, the dictionary contains full
instructions. In order to limit the cost of the
dictionary and to keep its access time short, it is
desirable to restrict its size. Keeping the dictionary
small is also necessary to limit the width of the
dictionary index (log(n) bits are required for an
n-entry dictionary), which is important to insure the
efficiency of the code compression scheme: the
smaller the index width, the better the compression
rate. Moreover, a dictionary does not need to hold
all the instructions that appear in the code: when an
instruction in the dictionary appears only once in
the code, the code size is not improved and even
degraded (since the instruction is stored twice:
once in the code, in a compressed form, and once
in the dictionary).

As far as the dictionary does not hold all the
instructions, the compressed code contains both
compressed and uncompressed instructions. For

our compression scheme design, we have fixed the
dictionary size to 256 entries, which is a standard
size for hardware implementation and one-cycle
decompression [7]. Besides, this size allows
covering a significant part of the static code and
reaching good compression rate even with large
applications (the most redundant instructions are
generally not numerous) [13]. The main issue of a
small dictionary-based compression scheme is how
the dictionary is built. To maximize code size
reduction, it is preferable to include the most
statically repeated instructions of an application
whereas selecting the most executed instructions
favors the reduction of the number of instruction
cache misses [13]. To trade-off the benefit from
both code size and cache miss rate improvement,
our compression scheme has one parameter P
which controls over the dictionary building: P% of
the dictionary is filled with the most executed
instructions and the remaining entries are filled
with the most statically repeated instructions.

 Our compression scheme replaces two or three
successive instructions present in the dictionary by
one 32-bit encoding instruction, which is composed
of an invalid operation code of the target ISA and
indexes of the dictionary entries that store the
corresponding instructions. Once the dictionary is
built, sequences of two or three instructions that are
in the dictionary and that belong to the same basic
block (to avoid impairing branch prediction) are
then selected to form an encoding instruction.
Instead of producing a binary code, which is an
error-prone (due to jump address patching) and so
time-consuming process, instructions that are
compressed are annotated as so. This information
is sufficient to emulate decompression and to take
into account compression in the measurement tools
of our framework.

Decompression is done in the processor pipeline. A
decompression stage must be added except if the
processor already has a stage for translation of
micro-coded instructions into instructions as in the
Intel i686 architecture. The decompression stage is
placed between the fetch and the decode stages.
Non-compressed instructions are simply forwarded
to the decode stage. In case of a compressed
instruction, extra cycles are needed to access the
dictionary. As the dictionary is much smaller and
less complex than a cache, a one-cycle access is
feasible. The dictionary access fills the pipeline with
two or three new instructions depending on the
number of instructions encoded into a single one.

 Page 5/10

3.3 Control of compiler optimizations

The transformations considered to improve the
WCET estimates consist in making the code more
linear (i.e. in removing flow control instructions)
which improves the predictability of processor
states. Such transformations are available in
standard compilers: common examples are loop
unrolling and function inlining optimizations.

The GCC Interactive Compilation Interface [8] has
been designed to allow controlling the compiling
process with limited intrusion in the compiler code:
support is provided to develop plugins that can
interact with GCC during the compilation process.
In the MORE project, we have designed such
plugins to control loop unrolling and function
inlining: by the way of XML files, it is possible to
specify which loop is to be unrolled, and by which
factor, and which function is to be inlined. This
makes it possible to apply the transformations only
when they have a positive impact on the WCET
estimates. It also allows curbing the increase of the
code size in case of size-limited memory.

4. Evaluation tools

4.1 Energy consumption estimation

To carry our work, we extended the OTAWA
functional simulator so that it provides energy
consumption estimations. We decided to implement
this in a simple hence robust way. We added
counters to the simulator to retrieve read and write
access numbers, for each memory component in
our predefined architecture (be they cache
memories, SPMs or DRAM memories). We also
retrieve the unit costs in energy of read and write
accesses, for each memory component. This way,
with the access statistics and unit energy
consumption, we are able to estimate the overall
energy usage for our architecture as summarized in
this formula:

We implemented the functional behavior of each
memory component. For example in an architecture
with DRAM and data cache, when the accessed
data is not in data cache, then several accesses to
DRAM occur to replace the corresponding cache
line by the appropriate one, which increases the
overall energy consumption. We are thus able to
measure the impact of cache misses. New kinds of
memory can thus easily be taken into account for
energy, provided their functional behavior is added
as well as the read and write counters.

The unit read and write energy consumption
numbers are obtained by automatically calling an
external tool called CACTI. First developed by
Wilton and Jouppi, CACTI is an analytical model for
the access and cycles times of on-chip direct-
mapped and set-associative caches. CACTI takes
many parameters (see Figure 1) into account when
computing energy costs, like temperature, cache
size, associativity, block size, transistor technology,
etc.. It can also be used to compute the energy
access costs for other kinds of memories like SPM
or DRAM.

Even though read and write counters are enough to
estimate energy consumption, they are not
sufficient to understand and explain the results.
Other counters were thus added. Cache hits, cache
misses, cache read misses dirty, cache write
misses dirty, SPM fails and successes make it
possible to analyze and understand results
evolution according to memory parameters or
transformation parameters.

These numerous counters also allow us getting
more detailed results, by showing the energy
consumption not only globally but also for each
memory component.

Figure 1. Cache structure in CACTI
(from [10])

 Page 6/10

4.2 WCET analysis

To perform WCET analyses, we have developed a
tool that uses several components available in the
OTAWA library, including:

‐ a binary code loader and CFG builder

‐ an instruction cache analyzer based on
abstract interpretation techniques [6][3]

‐ a data cache analyzer also based on abstract
interpretation techniques

‐ a timing analyzer that evaluates the worst-case
execution time of basic blocks taking into
account the target architecture and the results
of the instruction cache analysis [15]

‐ a flow-fact loader that reads flow fact
annotations provided by the oRange tool [12]

‐ a WCET computer that builds an integer linear
program according to the IPET method [11].
This program is solved using the lp_solve
tool [18].

To estimate the impact of code compression on the
WCET, we have extended the instruction cache
analyzer so that it considers the instruction
addresses in the compressed code (since the
cache holds compressed code). Details about this
extension can be found in [14].

To analyze the effects of data placement strategies,
we have developed an interface to the data
placement tool: through this interface, information
about the memory in which each piece of data is
stored (main memory, and then possibility in the
data cache, or scratchpad memory) is transmitted
to the data cache analyzer and WCET estimation
tool.

5. Experimental validation

5.1 Methodology

To illustrate possible use of our framework, we
have carried out some experiments with four test
programs listed in Table 1. Two of them (adpcm
and compress) belong to the benchmark collection
dedicated to the estimation of WCET analysis tool
maintained at the University of Mälardalen [19]. The
others (helico and seg) have been developed
during the project to fulfil our need to experiment on
codes that exhibit timing analyzability and
manipulate a sufficient amount of data. Their
source code will be made available soon.

adpcm Adaptive pulse code modulation
algorithm.

compress Data compression program.

helico Software that controls a toy
helicopter for a mission including
hovering.

segmentation Image segmentation algorithm.

Table 1: Test programs

We considered a system with a generic 2-way
superscalar processor with in-order execution and
a 2-way associative 1KByte instruction cache (we
voluntarily selected a small cache size to get
realistic results with our small test programs). For
the data, we considered two configurations: the first
one (Config1) includes a 1KByte data cache and
the second one (Config2) a 512-Byte data cache
and and a 512-Byte scratchpad memory. In both
cases, the data cache is two-way set associative
with LRU replacement policy.

5.2 Impact of a data placement strategy

In this section, we show and discuss the effects of
the chosen data placement strategies on energy
consumption, code size and worst case execution
time. The 3 data placement strategies we
considered, SPM_firstUsed, SPM_smallSizeFirst
and SPM_highFrequency, were described in
Section 3.1.

As could be expected, since SPM_firstUsed is a
naïve baseline approach, our experiments showed
that a Config2 hardware configuration with an SPM
managed according to the SPM_firstUsed strategy
increases the energy consumption for all
benchmarks when compared to Config1.
SPM_firstUsed is thus not a good strategy. The
second strategy, SPM_smallSizeFirst, requires
even more energy than the previous one. It is
therefore an even worse transformation. These two
strategies increase energy consumption because
they are not tailored to the executed program but
carved in stone, since they do not take into account
the most frequently accessed data. Conversely,
SPM_highFrequency is based on actual, observed
accesses. This data placement decreases energy
consumption from 8% to 66% on the four
considered benchmarks (see Figure 2) when
compared to Config1. Coupling a cache and an
SPM is thus highly valuable with this strategy and
performs betters than alone cache.

 Page 7/10

helico adpcm segmentation compress

0

10

20

30

40

50

60

70

Energy improvement

Benchmarks

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 i
m

p
ro

v
e

m
e

n
t
(%

)

 Figure 2. Energy impact of SPM_highFrequency

The memory placement strategies we consider are
applied during the compilation stage, by modifying
the memory mapping information that is used when
a benchmark is loaded into memory for execution.
Only the addresses are changed, not the binary
itself, and more specifically not its instructions. In
OTAWA, we emulate this behavior by keeping
memory mapping and working only on data access
addresses. Therefore, the impact of our data
placement memory on code size is non existent.
This give us all the liberty to choose the most
appropriate memory transformation. Note that in
fact, for convenience reasons, we do not actually
change the addresses in the binary, but emulate
this change in the OTAWA simulator.

Regarding to the effect on the WCET criterion, we
only considered our SPM_highFrequency strategy,
the other two being invaluable. As Table 2 shows,
using a Config2 hardware configuration with an
SPM managed by SPM_highFrequency improves
the WCET for each considered benchmark. One
reason for this improvement is because when
considering an architecture with a data cache, the
WCET computed by static analysis may be
significantly overestimated, since it is not always
possible to predict whether a piece of data is in the
data cache or not when it is accessed. This
inaccuracy comes from the facts that all possible
ways are not explored and that static analysis
techniques are used which work by state fusion at
CFG junction points. Replacing (part of) a cache by
an SPM (which has fixed latency) thus removes
part of the uncertainty and makes it possible to
have a less pessimistic, more accurate WCET. A
second reason for this improvement of WCET is the
fact that the overall execution time should be better
because the number of cache hits plus number of
SPM hits in Config2 is higher than the number of
cache hits in Config1.

The segmentation benchmark is not considered
here, because the WCET could be computed only
on a subset of the program.

Benchmark Impact on WCET

adpcm -23.8%

compress -18.5%

helico -5.9%

Table 2: WCET impact of SPM_highFrequency

5.3 Impact of code compression

In this section, we show and discuss the effects of
code compression on code size, energy
consumption and worst-case execution time. As our
compression scheme has a parameter fixing the
percentage of the dictionary that is filled with the
most executed instructions, we have tested its
effects on criteria by varying its value. Both graphs
in Figure 3 show the measured criteria for different
values of P for two out of the four considered
applications, namely segmentation and compress.
These figures show that for compress, the higher
the value of P, the better the ratio for energy
consumption, WCET and ACET.

Figure 3. Impact of the percentage of the
dictionary filled with the most executed

instruction on code size, energy, execution time
(ACET) and WCET for segmentation (leftmost

figure) and compress (rightmost figure).

 Page 8/10

For all benchmarks, code size reduction is at its
maximum when P is set to 0 and decreases as P
increases. This is logical since a smaller P favors
code size reduction whereas a greater P favors
optimizing energy consumption and ACET. The
WCET is always reduced but the improvement is
not correlated to the P value.

However, for some benchmarks as shown for the
segmentation application in Figure 3, there is no
correlation between P and the effects of
compression on energy consumption and WCET.
The energy consumption can be worse with an
higher value of P even if it should favor the
compression of the most executed instructions and
so should reduce the number of instruction cache
misses. This is due to the fact that code
compression changes the code placement which
may increase the number of cache accesses
depending on the alignment of instructions on
cache line boundaries or increase conflict misses in
the instruction cache. The WCET can be either
improved or degraded by compression depending
on the value of P.

adpcm
compress

helico
segmentation

0

0,2

0,4

0,6

0,8

1

1,2

1,4

code size energy WCET

R
a
tio

Figure 4. Effect of code compression on code
size, energy consumption and WCET

For each application, we have chosen a value of P
that either leads to a good trade-off between the
three criteria or to the shortest WCET. The results
are illustrated in Figure 4. For the selected values
of P, energy consumption is reduced from 5% to
40%, code size from 11 to 13%. WCET is reduced
by 6% for compress, by 11% for segmentation and
is almost unchanged for helico (0.2%
improvement). The WCET of adpcm degrades by
compression for any value of P due to change of
code placement. Thus, code compression may
improve the WCET and the energy consumption
while reducing the code size, but fine-tuning of
each application must be carried out to find good
trade-offs if possible since not any value of P leads
to the improvement of all concerned criteria. Hence,
there is a real need for a compression strategy
designed for applications that are subject to various
constraints to find good trade-off and to avoid

degrading one or more criteria, in particular to avoid
impairing cache analysis and so increasing the
WCET. The use of information from WCET analysis
to fill the dictionary could favor the compression of
instructions that have an important impact on the
WCET which may improve the instruction cache
analysis and so improve the WCET[14].

5.4 Impact of function inlining

Function inlining is a compiler transformation that
replaces calls to functions with their bodies. This
removes the call/return instructions as well as the
prologue/epilogue code introduced in each function
by the compiler. This is likely to improve
performance. On the other hand, replicating
function bodies increases the code size and
degrades the temporal locality for accesses to the
instruction cache, which might have a negative
effect on the execution time. These expected
positive/negative effects do not only stand for the
average performance: they also concern the worst-
case performance. However, as far as WCET
estimation is concerned, removing control
instructions, like calls and returns, is likely to
improve the accuracy of results since, throughout
the process of WCET analysis, control instructions
are handled by join operations that introduce
overestimation.

In the MORE project, we have developed a plugin
to control the gcc –finline-functions

optimization through the GCC-ICI interface [8]. With
this plugin, it is possible to select the functions that
should or not be inlined by the compiler.

Table 3 gives the impact on the WCET of function
inlining. As explained above, it is difficult to forecast
the impact of this optimization on the average and
worst-case execution time due to opposite effects:
reduction of flow control against degradation of
temporal locality for instructions. Experimental
results show that inlining eventually improves
WCET estimates. Here, the gain is moderate but
this is related to the small cache size considered in
the paper. A larger cache would help in benefiting
from inlining.

benchmark impact on WCET

adpcm -1.5%
compress -6.5%
helico -7.4%

Table 3: Impact of function inlining on WCET

 Page 9/10

Table 4 shows the increase in the code size due to
function inlining. It can be observed that this
increase is really significant. This suggests that
strategies to tradeoff between the code size
expansion and the WCET improvement should be
set up.

benchmark impact on code size

adpcm +45.5%
compress +44.5%
helico +95.9%

Table 4: Impact of function inlining
on the code size

Finally, Table 5 shows the impact of function
inlining on energy consumption. This impact is very
different from one benchmark to another. The gain
in energy is almost zero for compress and is small
for adpcm, while it is very important for helico.
Indeed, for all benchmarks, inlining significantly
decreases the number of accesses in the
instruction cache and to a lesser extent to the data
cache, which leads to important energy gains.
However, for adpcm and compress, inlining
increases the miss rates for both the instruction
cache and the data cache, which lessens the gain
in energy. For helico, on the contrary, both miss
rates decrease with inlining, thus further improving
energy.

benchmark impact on energy

adpcm -5.2%
compress -0.9%
helico -73.9%

Table 5: Impact of function inlining
on energy consumption

6. Conclusion

Embedded systems are often subject to various
constraints on code size, power requirements,
execution time, etc. To meet these constraints, it
may be necessary to transform the code: the code
size can be reduced using code compression
techniques, the energy consumption can be
lowered with various strategies, among which
specific data placement algorithms, the worst-case
execution time can be improved by limiting the
amount of jumps. However, experimenting several
possible transformations to determine those that
help in meeting the requirements is a costly and
time-consuming process.

In this paper, we have introduced a framework that
was developed within the French ANR MORE
project with the goal of hosting various
transformations and measurement or analysis tools
to facilitate the optimization process. As illustrated
with various examples, this framework provides the
facilities that make it possible to support new
transformations or analyses with limited efforts.
Experimental results have assessed the usability of
the framework.

Using the framework, it is possible to select the
transformations that improve the target criterion,
and it is also possible to evaluate their effects on
other criteria. This is very important since many
systems are not subject to a single constraint but
instead to a combination of several constraints.

Our experimental results suggest that, in this case,
it is necessary to set up appropriate strategies to
combine several transformations while searching a
tradeoff between the target criteria. This point is
currently addressed in the second part of the
MORE project. We are indeed developing an
engine for iterative optimizations that controls the
application of various transformations to determine
the best combining as a function of the system
constraints.

7. References

[1] L. Benini, F. Menichelli, and M. Olivieri: “A Class

of Code Compression Schemes for Reducing

Power Consumption in Embedded

Microprocessor Systems”., IEEE Transaction on

Computers, 54(4), 2004.

[2] A. Beszedes, R. Ferenc, T. Gyimothy, A. Dolen

and K. Karsisto: “Survey of code-size reduction

methods”, ACM Computing Survey, 35(3), 2003.

[3] C. Ballabriga, H. Cassé: “Improving the first-

miss computation in set-associative instruction

caches” Euromicro Conference on Real-Time

Systems (ECRTS), 2008.

[4] H. Cassé, P. Sainrat, “OTAWA, a framework for

experimenting WCET computations”, 3rd

European Congress on Embedded Real-Time

Software, 2006.

[5] M. L. Corliss, E. C. Lewis, A. Roth: “The

implementation and evaluation of dynamic code

decompression using DISE”, ACM Trans.

Embedded Comput. Syst. 4(1), 2005.

[6] C. Ferdinand, F. Martin, R. Wilhelm: “Applying

compiler techniques to cache behavior

prediction” ACM SIGPLAN Workshop on

Language, Compiler and Tool Support for Real-

Time Systems, 1997.

[7] J. Henkel, H. Lekatsas, V. Jakkula: “Design of

an one-cycle decompression hardware for

performance increase in embedded systems”,

 Page 10/10

ACM Design Automation Conference (DAC),

2002.

[8] Y. Huang, L. Peng, C. Wu, Y. Kashnikov,

J. Renneke, G. Fursin: “Transforming GCC into

a research-friendly environment: plugins for

optimization tuning and reordering, function

cloning and program instrumentation”, 2nd Int’l

Workshop on GCC Research Opportunities

(GROW), 2010.

[9] T. M. Kemp, R. K. Montoye, J. D. Harper, J. D.

Palmer, D. J. Auerbach: “A decompression core

for PowerPC”, IBM J. Res. Dev., 42(6),

November, 1998.

[10] C. Lefurgy: “Efficient Execution of Compressed

Programs”. PhD thesis, University of Michigan,

2000.

[11] Y.-T. S. Li, S. Malik: “Performance analysis of

embedded software using implicit path

enumeration”, Workshop on Languages,

Compilers and Tools for Real-time Systems,

1995

[12] M. de Michiel, A. Bonenfant, H. Cassé,

P. Sainrat: “Static loop bound analysis of C

programs based on flow analysis and abstract

interpretation”, IEEE Int’l Conf. on Embedded

and Real-Time Computing Systems and

Applications (RTCSA), 2008.

[13] E. W. Netto, R. Azevedo, P. Centoducatte, G.

Araujo: “Multi-profile based code compression”,

ACM Design Automation Conference (DAC),

2004.

[14] H. Ozaktas, K. Heydemann, C. Rochange,

H. Cassé: “Impact of Code Compression on

Estimated Worst-Case Execution Times”, Int’l

Conference on Real-Time Networks and

Systems (RTNS), October 2009.

[15] C. Rochange, P. Sainrat: “A context-parame-

terized model for static analysis of execution

times” Transactions on HiPEAC, Springer, 2(3)

2007.

[16] M. Thuresson, M. Själander, P. Stenström: “A

Flexible Code Compression Scheme Using

Partitioned Look-Up Table”, HiPEAC

Conference, 2009.

[17] S.J.E Wilton and Norman P. Jouppi: “An

Enhanced Access and Cycle TimeModel for On-

Chip Caches”, Tech. Rep. 93/5, DEC Western

Research Lab, 1994.

[18] /lpsolve.sourceforge.net/.

[19] www.mrtc.mdh.se/projects/wcet/benchmarks.ht

ml

