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Abstract Waste management is a key environmental and socio-economic issue. 

Environmental concerns are encouraging the use of alternative resources and lower emissions 

to air, water and soil. Innovative technologies to deal with waste recovery that produce 

marketable bio-products are emerging. Bioelectrochemical synthesis systems (BESs) are 

based on the primary principle of transforming organic waste into added-value products using 

microorganisms to catalyse chemical reactions. This technology is at the core of a research 

project called BIORARE (BIoelectrosynthesis for ORganic wAste bioREfinery), an 

interdisciplinary project that aims to use anaerobic digestion as a supply chain to feed a BES 

and produce target biomolecules. This technology needs to be driven by environmental 

strategies.  Life Cycle Assessment (LCA) was used to evaluate the BIORARE concept based 

on expert opinion and prior experiments for the production of biosuccinic acid and waste 

management. A multidisciplinary approach based on biochemistry and process engineering 

expertise was used to collect the inventory data. The BES design and the two-step anaerobic 

digestion process have many potential impacts on air pollution or ecotoxicity-related 

categories. The comparison of the BIORARE concept with conventional fermentation 

processes and a water-fed BES technology demonstrated the environmental benefit resulting 
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from the use of both the BES technology and a waste-based substrate as input thus supporting 

the BIORARE concept. Some trade-offs among the impact categories were identified but led 

to options to improve the concept. BES design and synergy management may improve the 

environmental performance of the BIORARE concept.  

Keywords: life cycle assessment, biorefinery, anaerobic digestion, biogas plant, synergies, 

succinic acid 

Introduction 

In the 28 member states of the European Union, several hundred kilograms of municipal 

waste are generated per capita every year (European Commission 2018). According to the 

Waste Framework Directive (WFD) (European Parliament 2008), waste management 

strategies should follow a hierarchy: prevention, preparing for re-use, recycling, matter 

recovery, energy recovery and, as the least desirable option, disposal. Disposal as a solution to 

get rid of waste is subject to debate particularly for municipal bio-waste for which landfilling 

and incineration do not represent the best overall environmental outcome (Evans 2001; Yadav 

and Samadder 2018). Amongst municipal bio-waste treatment methods, anaerobic digestion 

enables stabilization of household organic wastes while producing bio-based added-value 

outputs, which are the biogas and the digestate. The biogas, which is composed of methane 

(CH4) and carbon dioxide (CO2), can be energetically recovered in a combined heat and 

power (CHP) unit, also known as a cogeneration unit, or injected into the natural gas grid 

(Zhang et al. 2016). This makes slashing greenhouse gas emissions possible and also reduces 

energy costs by recycling waste energy. As for the digestate, it can be used to fertilise 

agricultural soils because of its nitrogen and phosphorus content. Given the above useful 

outcomes, anaerobic digestion has become the focus of an increasing number of innovative 

integrated technologies  (Yan et al. 2010; Ras et al. 2011; Fouilland et al. 2014; Escamilla-

Alvarado et al. 2017). Coupling anaerobic digestion with engineered processes has the 

advantage of treating waste-related streams at the same time as generating added-value 

products, as it was recently shown by Reddy et al. (2018).  



3 

 

When used in electrochemical processes, microbial catalysts provide interesting new 

opportunities for waste conversion. Bioelectrochemical systems (BESs) are recent 

technologies which enable the conversion of CO2 into organic chemicals by microorganisms, 

as well as other applications (Rabaey and Rozendal 2010a). BESs basically consist in 

catalysing oxidation and reduction reactions at an anode or a cathode, respectively, using the 

metabolic abilities of electroactive microorganisms. When the system is used to harvest 

energy, the BES is called a microbial fuel cell (MFC). When the energy is invested in the 

system, the BES is called a microbial electrolysis cell (MEC). BES technology has attracted 

considerable attention because it can serve several purposes such as waste treatment, CO2 

reduction and generation of biofuels, electricity, hydrogen and chemicals (Rozendal et al. 

2008b; Wrana et al. 2010; Logan and Rabaey 2012; Sun et al. 2016). Opportunities to sell 

high added-value products produced from low-cost resources such as waste biomass can be 

exploited by integrating BESs in established technologies. In addition to the contribution of 

BESs combined with enhanced treatment and resource recovery technologies for sustainable 

wastewater treatment (Li et al. 2014), a prospective study was conducted by Sadhukhan et al. 

(Sadhukhan et al. 2016) on inherently integrated microbial electrolysis systems within 

biorefineries. This work increases the possibility of exploiting the effectiveness of combining 

biological and electrochemical processes towards a synergistic polygeneration system.  

Here we report on a case study in which a BES was coupled with anaerobic digestion because 

the latter can provide energy and resources to the former. This approach is the main objective 

of the “BIoelectrosynthesis for ORganic wAste bioREfinery” (BIORARE) project. Based on 

scientific, technical, environmental and economic knowledge, the project aims to identify the 

key components and associated specifications for the elaboration of a future industrial 

development strategy. According to the BIORARE concept, organic waste will undergo an 

ambitious recovery process instead of disposal or simple conversion into biogas and digestate. 

However, the BES concept is not yet a fully developed technology with a Technology 

Readiness Level (TRL) 4 “Component and/or breadboard validation in laboratory 
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environment” (Mankins 1995; European Commission 2014). To identify the environmental 

benefits and costs of a breakthrough technology undergoing process development, an 

evaluation was undertaken using a life cycle approach. Supported by ISO standards (ISO 

2006a, b), Life cycle assessment (LCA) is a tool which enables the quantification of the 

potential environmental impacts of a product or a process throughout its life cycle. LCA has 

been widely used to assess goods, services, processes including processes in their early 

development in an eco-design approach (Azapagic 1999; Patel et al. 2012; Espinosa et al. 

2015; Mitterpach et al. 2017; Farahani and Asoodar 2017). However, a comparative LCA of 

non-mature systems with other systems, either non-mature or already up-scaled, is not an easy 

task because of the lack of step back and sufficient available data for a relevant LCA. Indeed, 

in this case, the necessary quantification of inventory data, mass and energy balance and 

scale-up is an ongoing challenge.  

The objective of performing LCA in this case was not to conduct an in-depth environmental 

evaluation of a specific scenario but rather to produce a “picture” of the environmental 

performances of an original but not yet mature system. So far, LCAs of BESs are rare. To our 

knowledge, Foley et al. (2010) published the first LCA of compared systems based on 

anaerobic digestion, MFCs, and MECs, in the context of wastewater treatment and on-site 

production of chemicals. These authors showed that this kind of assessment depends to a great 

extent on basic assumptions, especially on the materials used to build the reactor and the 

target performance; a point also made by Francmanis et al. (2016). Research based on 

futuristic application of BESs in order to produce molecules of interest whilst treating waste is 

rare but offers many possibilities for the development of environmental biorefineries (Lovley 

2006; Rozendal et al. 2008a; Srikanth et al. 2016). Despite the lack of environmental data on 

product generation through BESs, LCA practitioners willing to study BES based technologies 

can refer to published guidelines (Pant et al. 2011) and to the work presented in this paper. A 

market study showed that demand for biosuccinic acid could increase considerably in the near 

future, along with a large commodity chemical market for various applications such as 
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plasticizers, polyurethanes, bioplastics, and chemical intermediates (Weastra 2012). This is 

why the BIORARE concept was directed towards the production of biosuccinic acid, 

especially given that French and European markets for biosuccinic acid are still in their 

infancy.   

This paper makes several innovative contributions: 

- A potential environmental positioning of the coupled system “anaerobic digestion 

/BES” when compared to alternative systems of production 

- A sustainability driven strategy to optimise the coupling system 

And also: 

- An integrated waste treatment line (anaerobic digestion) and BES process modelling 

- An insight into the environmental performance of the integrated system as a function 

of the targeted biomolecules 

We now present the methodology based on process engineering. Our methodology is coupled 

with LCA in a context of not yet mature technology. This approach makes it possible to orient 

an upstream technology towards pollution prevention. Comparative LCAs are used to discuss 

whether or not BIORARE concept is more environmentally efficient than the industrial 

production from sugar fermentation and the production from a water-fed BES technology. 

Materials and methods 

In this section, we describe the BIORARE concept to provide a detailed framework of the 

synergy between a BES and anaerobic digestion (AD). The LCA method is also briefly 

described before being used for the environmental assessment of the BIORARE concept. 

The BIORARE concept 

The innovative aspect of coupling AD with a BES is treating municipal bio-waste in two 

steps, as shown in Figure 1. The first step is fermentation, which produces a substrate rich in 
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volatile fatty acids (VFAs) intended to feed the BES, and an anaerobic digestion plant as a 

valuable source of energy, in the form of biogas. 

 
Fig. 1 Schematic representation of the BIORARE concept including the potential synergies between 

the unit processes 

The BES process is the central element of the BIORARE concept. It is composed of two 

compartments separated by a membrane; both compartments contain a bio-electrode made of 

carbon fibres and host microorganisms (see Figure 2).  

 
 
Fig. 2 Diagram of the BES process in the MEC mode. Electroactive microbial communities develop in 

contact with the electrodes, which are connected by an electrical circuit to ensure electron transfer 
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The BES requires different inputs. Electricity and heat have to be supplied to both 

compartments. A source of carbon (CO2) is required in the bio-cathode compartment, and a 

hydrolysed waste, which is rich in volatile fatty acids (VFAs), is required in the bio-anode 

compartment.  

Microbiological reactions take place in both compartments. In the bio-anode compartment of 

the BES, a consortium of electrogenic microorganisms (especially Geobacter sulfurreducens) 

transforms the input (substrate) into electrons (eq. 1-3) which are then transported to the bio-

cathode (Lovley 2006; Moscoviz et al. 2017);  

Acetate + 2 H2O
 

→  2 CO2 + 7 H+ + 8 e−    (eq.1) 

Propionate + 4 H2O
 

→  3 CO2 + 13 H+ + 14 e−   (eq.2) 

Butyrate + 6 H2O
 

→  4 CO2 + 19 H+ + 20 e−   (eq.3) 
 

In the bio-cathode compartment hosting Clostridium pasteurianum, electrons are used to 

reduce CO2 leading to the production of the targeted bio-based chemical (eq. 4) which is 

finally purified. 

4 CO2 +  14 H+  +  14 e−  Biosuccinic acid +  4 H2O   (eq.4) 

 

In this process, it would be an advantage if the BES material came from a recovery/recycling 

system. By coupling the BES with an anaerobic digestion plant, it would be possible to 

produce the required substrate, heat and electricity, as shown in Figure 1. Anaerobic digestion 

with a pre-fermentation step would be the appropriate type of organic waste treatment to 

make it possible to send a phase rich in carbon compounds (in a gaseous form) to the BES. A 

pre-fermentation step would enable the production of a liquid substrate rich in VFAs (acetate, 

propionate and butyrate). In addition, the CO2 resulting from the degradation of organic 

matter during fermentation would cover 90% of the CO2 input to the BES at the bio-cathode 

(the remaining 10% would be provided by the CO2 produced at the bio-anode). The flow of 

gas would be directly injected into the bio-cathode compartment, while, after decantation and 

separation, VFAs would be injected into the bio-anode compartment. The rest of the substrate 

would be sent to the digestion unit to produce biogas composed of 60 v.% of methane (CH4) 



8 

 

and 40 v.% of CO2. Electricity and heat would be required for most of the process in the 

system and supplied directly by a cogeneration unit in which the biogas is burned. Although 

this coupling is theoretically possible, there are no references to it in the literature and there is 

a general lack of knowledge in this field. This promising bio-based chemical method of 

production needs to be investigated as it has two advantages: producing bio-based chemicals 

(in the bio-cathode) by treating municipal bio-waste (in the bio-anode).  

Life Cycle Assessment  

LCA framework  

LCA is the « compilation and evaluation of the inputs, outputs and the potential 

environmental impacts of a product system throughout its life cycle » (ISO 2006a). ISO 

standards (ISO 2006a, b) and ILCD Handbook (European Commission 2010a, b) provide a 

frame and guidelines on how to conduct a LCA study. LCA practitioners are requested to 

refer to these three sources. LCA is an iterative process, consisting in four steps (see Figure 

3), summarised below. 

 

Fig. 3 The four mandatory stages of a LCA, adapted from ref (ISO 2006b) 

The very first step is of primary importance. The LCA practitioner describes, amongst other 

things, the boundaries of the system, its functions, the functional unit and the allocation rules. 

The inventory analysis step consists in the quantification of the exchanges between the 



9 

 

studied system and its environment. This step is conducted throughout data collection, data 

assessment, modelling, etc.. During this step, a matter and energy balance of the system has to 

be performed. From the inventory, the potential environmental impacts of the system are 

quantified by characterisation. Depending on the method, it is possible to assess around ten 

main impact categories, among which depletion of abiotic resources; acidification; 

eutrophication; marine, freshwater, and terrestrial ecotoxicity; climate change; human 

toxicity; photochemical ozone formation and depletion of the ozone layer. The final step is the 

interpretation of the results with regard to the three first steps. This step provides the 

opportunity to check the consistency and completeness of the study and to perform sensitivity 

analysis to determine how changes in data and methodological choices would affect the 

results of the LCA. 

Goal and scope definition 

The purpose of the present paper is to describe the potential environmental benefits and 

drawbacks of BIORARE technology by taking various parameters into account via 

attributional LCA methodology. The BIORARE strategy consists in producing bio-based 

molecules. The choice of the chemical was based on the theoretical possibility of producing it 

with a BES. Another criterion of choice was the advantage for the environmental of local 

waste-based production. Biosuccinic acid production was chosen for the present study. 

Biosuccinic acid is produced from the transformation of carbon sources such as glucose and 

glycerol with yields over 1.1 gram of succinic acid per gram of total sugar (Cao et al. 2013; 

Fung Lam et al. 2014; Bretz 2015).  

ISO 14040 (ISO 2006b) and ISO 14044 (ISO 2006a) standards define ‘functional unit’ as the 

“quantified performance of a product system for use as a reference unit”. The performance 

should be in agreement with the objective of the system, as it reflects its function. Coupling a 

BES technology with an anaerobic digestion plant leads to a multifunctional system, meaning 

that more than one function is fulfilled. The BIORARE concept will serve two functions that 

need to be quantified: the production of biosuccinic acid and the treatment of municipal bio-
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waste. To determine a quantity for the functional unit, constraints in the process must be 

defined. As the main goal of coupling is to produce bio-based molecules, the quantification of 

the functions is based on the assumed quantity of biosuccinic acid produced using the BES 

technology. There are two possible ways to define this quantity: calculations based on 

predictions concerning the market for bio-based chemicals or an arbitrary calculation. At this 

stage of BES operations, the BIORARE consortium chose an arbitrary quantity of one kiloton 

of biosuccinic acid per year. Treating organic waste is a fortunate side effect. In cases of LCA 

for waste management “the functional unit must be defined in terms of system’s input” (Pant 

et al. 2011). In order to reach the defined production goal, the functional unit of the 

BIORARE scenario is “35 kilotons of municipal bio-waste to produce one kiloton of 

biosuccinic acid”.  

System boundary 

The BIORARE scenario studied here includes all the main process units, fermentation of 

municipal bio-waste preceded by a hygienisation step, anaerobic digestion of the substrate, 

BES, purification of the biomolecules, cogeneration and spreading of the digestate, as shown 

in Figure 4. Emissions to air, water and soil compartments are taken into account as are the 

manufactured products (carbon electrodes, membrane and chemicals) and energy (electricity 

and heat) required. In most LCA studies based on waste reuse (Foulet et al. 2015; Pradel et al. 

2016), no burden is allocated to the waste input and so the latter was also excluded from the 

boundary of the BIORARE scenario. As in most LCA comparative studies, infrastructures 

(civil engineering and transports) were also omitted as they are irrelevant in the present case. 
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Fig. 4 Simplified diagram of the BIORARE coupling scenario showing the boundary of the studied 

system 

Alternative scenarios 

In order to highlight the environmental performances of the BIORARE concept, we need to 

compare it to alternative cases of biosuccinic acid production. The BIORARE concept is thus 

first compared to standard production methods, here referred as a “business-as-usual” (BAU). 

The environmental benefits or burdens of using a BES instead of a classical sugar-based 

fermentation process will be highlighted by this comparison. The latter may reject the interest 

of using a waste-based substrate. For that reason, we also compare the BIORARE concept 

with the same coupling concept except that water is used instead of the waste-based substrate.  

BAU for bio-based succinic acid production: Although succinic acid is mainly produced 

using petrochemical based technologies, fermentation is already used by a number of 

companies including Reverdia, Myriant, Bioamber and BASF. Reverdia and Myriant 

production plants are the most widely referred to in the literature (U.S. Department of Energy 

2010; Cok et al. 2014; Pinazo et al. 2015; Dunn et al. 2015). The standard way to produce 

bio-based succinic acid is by microbial fermentation of glucose obtained from different 
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sources. Myriant is an American biorefinery and uses sorghum grits as its starting material. 

However, as sorghum is not a common crop Europe, it was replaced in this study by an 

abundant low cost, sugar-rich European crop, sugar beet as the production of succinic acid 

was proved to be achievable from sugar beet (Sutton and Doran-Peterson 2001; Morales et al. 

2016; Kootstra 2017). The data available on biosuccinic acid production from sorghum grits 

(Pinazo et al. 2015) were adapted to the case of sugar beet based on the sugar content of the 

two starting materials (Zabed et al. 2014). In the fermentation step, molasses from sugar beet 

was diluted with water, inoculated with Myriant’s proprietary microorganism, and incubated 

to allow the microorganisms to convert glucose into a biosuccinic acid salt. During product 

recovery, the stream was separated into biosuccinic acid and ammonium sulphate (AMS). 

Whereas its competing companies lead in bacteria production processes, Reverdia is the only 

company currently using a low-pH yeast for fermentation. The fermentation process is 

followed by downstream processes such as direct crystallization, which is the conventional 

method for the recovery of organic acids from fermentation broth (Cok et al. 2014). In this 

article, the Myriant and Reverdia biosuccinic acid production systems are also coupled with 

two-step anaerobic digestion and are hereafter referred to as the “Myriant” and “Reverdia” 

scenarios. 

Water-based BES: A wide range of choices is possible regarding BES design as well as the 

input to be oxidized in the anode compartment. So far, this paper has dealt only with 

microbiologically catalysed oxidation of anode inputs. However an electrochemical system 

can also be chemically catalysed as is the case for water oxidation using a BES for the 

production of molecules (Rabaey and Rozendal 2010a; Conrado et al. 2013). To compare the 

BIORARE scenario with a similar method of production of biosuccinic acid, a scenario was 

built based on the coupling of anaerobic digestion and a water-based BES, hereafter “water-

BES”. As shown in Figure 5, water oxidation takes place in the anode compartment on a steel 

abiotic electrode according to the following equation: 𝐻2𝑂 → 2 𝐻+ + 1 

2
 𝑂2 + 2 𝑒−. Contrary 

to the BIORARE BES unit, here the anode compartment hosts no microorganisms and the 
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anode works electrochemically. The bio-cathode compartment of the water-BES is similar to 

the BIORARE BES, i.e. the reduction of CO2 in microbial conditions resulting in the 

production of biomolecules. The design of the water-BES process is described in the 

following section. 

 

Fig. 5 Schematic representation of the water-based BES system 

 

Inventory and modelling of the coupling of bioelectrosynthesis and anaerobic 

digestion 

Lab-scale production of biosuccinic acid through the BES is not sufficiently broad based to be 

comparable with industrial scale technologies. For this reason, the BES designs in the 

BIORARE scenario and in the water-BES scenario were linearly up-scaled to produce 

approximately one kiloton of biosuccinic acid. Like for the two-step anaerobic digestion part, 

the data came from existing plants. 

BES design in the BIORARE scenario: The theoretical coupling of BES and anaerobic 

digestion processes is the main difficulty involved in this study. To build this theoretical 

coupling in the BIORARE project appropriately, expert opinion, laboratory assays and 

literature were used to define the BES unit design (Quéméner et al. 2018) (cell volume, the 

electrode and membrane materials, energy consumption, operational settings, the quantity of 

carbon required, the chemicals targeted, etc.) together with the scale-up required for its 

implementation in an anaerobic digestion plant. The design parameters concerned are 

summarized in Table 1. The collected data either come from the local scientific expertise of 
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the authors (mainly Irstea), or from theoretical calculations, or from literature review. The 

electrochemical parameters, such as current density, the electric potential difference, and the 

coulombic efficiency were determined in experimental assays in a laboratory belonging to the 

BIORARE project partners. The working temperature was set at 35 °C to ensure good 

working conditions for the microorganisms.  

The BES energy requirements (electricity and heat) depend on the quantity of biosuccinic acid 

produced. The electricity is calculated from the product of the electric potential difference, the 

current density and the electrode surface, which is estimated following this equation (eq. 5): 

𝑆𝑒𝑙𝑒𝑐 =
𝑚𝑠𝑢𝑐𝑐𝑖×𝑄𝑒−×𝑛𝑒−

𝐽
  (eq. 5) 

where 𝑆𝑒𝑙𝑒𝑐 is the surface of the electrode in m², 𝑚𝑠𝑢𝑐𝑐𝑖 is the quantity of biosuccinic acid 

produced in kg, 𝑄𝑒− is the charge of mole electron in C.mol
-1

, 𝑛𝑒−  is the number of electrons 

exchanged on the electrode surface and 𝐽 is the current density in A.m
-2

. To estimate the heat 

input, the quantity of biosuccinic acid produced is multiplied by the heat capacity of water 

(4,180 J.kg
-1

.K
-1

) and the temperature difference between the working temperature (35 °C) 

and the room temperature. The energy requirements are expressed in Table 1 as a function of 

the dry matter content of the fermentate used as input in the BES. The input of fermentate 

depends on the chemical oxygen demand (COD) of the BES, in other words, the quantity of 

volatile fatty acids (VFAs) the bioelectrochemical system can handle. CO2 input depends on 

the same quantity. 
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Table 1 Key data used to estimate input and output streams in the BIORARE system 

  

BIORARE BES operating parameters BIORARE BES design 

Current density (A.m
-
²) 20 (a) Anode material carbon cloth (a)(c) 

Electric potential difference 

(V) 
1.14 (a) Cathode material carbon cloth (a)(c) 

Cathode coulombic efficiency 

(%) 
85 (a) 

Total active electrode surface for 

succinic acid production (m²) 
2.1 x10

4 
(b) 

Working temperature (°C) 35 (a) Electrode thickness (m) 5.0x10
-4 

(a) 

Electricity input (J/kgDM)
(1) 

for 

the production of biomolecules 
2.23x10

6 
(b) Type of membrane  cationic (a)(c) 

Heat input (J/kgDM) for 

biomolecules production 
6.28x10

5 
(b) Membrane thickness (m) 5.0x10

-5 
(a) 

CO2 cathode input 

(kg/kgbiosuccinic acid) 
0.31 (b)   

CO2 anode output (g/gCOD)
(2)

 1.76 (b)   

 

(1) DM: Dry matter 

(2) COD: Chemical oxygen demand 

(a) optimised experimental conditions 

(b) theoretical calculations from experimental parameters 

(c) literature (see within the text) 

  

 

As mentioned above, the BES cell is composed of two compartments, both containing one 

electrode, and separated by a membrane. Because of the electrochemical performance of 

carbon-based bio-electrodes in BESs, and their robustness and economic interest, they appear 

to be a good choice for the bio-anode and bio-cathode (Wang et al. 2009; Zhang et al. 2013; 

Bajracharya et al. 2016). Regarding the choice of membrane for this model, we selected a 

cationic one because it is required to minimize leakage of succinate in the anode 

compartment. The thickness of the electrode and of the membrane thicknesses were 

investigated to achieve the best production performances while slowing down the 

deterioration of the materials. The thickness of the electrode was finally set at 500 m and 

that of the membrane at 50 m. Lab-scale experiments did not enable us to predict the 
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lifetime of the BES materials. Previous studies have shown that, depending on the operating 

conditions, carbon-based electrodes can last more than five years (McCreery 2008; Jourdin 

2015; Yang et al. 2016).  As there is no real consensus, a lifetime of ten years was chosen in 

order to maximise the production rate. 

A purification step is required to obtain biomolecules whose purity is close to industrial grade 

(99.5 %). Like for biosuccinic acid, the purification methods reported in the literature mostly 

concern biosuccinic acid obtained by fermentation using yeast or bacteria in broth media 

(Glassner et al. 1995; Huh et al. 2006; Luque et al. 2009; Cao et al. 2013). Typically micro-

filtration and ultra-filtration are used to remove residual cell debris and proteins. The filtrate is 

then condensed by vacuum distillation. After distillation, the succinic acid filtrate is titrated 

with hydrochloric acid (0.12 kg / 1 kg of filtrate) to crystallise it. Washing and distillation are 

then necessary to obtain pure biosuccinic acid. Since to our knowledge, no investigation of a 

method of purification for biosuccinic acid produced by BES has yet been conducted, data 

and the energy balance were taken from the literature (Luque et al. 2009) and adapted for the 

present study. 

 

Water-BES design: The water-BES is based on the same technology as the BIORARE BES, 

with one exception, the anode compartment hosts a water oxidation reaction on an abiotic 

anode. The choice of the anode material was influenced by the existing literature on water 

oxidation using electrosynthesis and on the availability of data on its production phase. 

Stainless steel is a cheap electrode material with low overpotential and its composition (alloy 

of iron, nickel, chromium and other metals) has been shown to be efficient as a water 

oxidation catalyst (LeRoy 1983; Schäfer et al. 2015b, a; Yu et al. 2016), as well as to ensure 

microbial electrocatalysis as a bio-cathode (Dumas et al. 2008; Pocaznoi et al. 2012; 

Bajracharya et al. 2016). For these reasons, the anode and the bio-cathode of the water-BES 

were made of stainless steel, while the membrane was cationic, like the membrane in the 

BIORARE BES (see Table 2). 
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In the anodic compartment, the water is oxidised as follows (eq. 6): 

2 𝐻2𝑂 → 4 𝐻+ + 𝑂2 + 4 𝑒− (eq.6) 

The quantity of water (𝑚𝐻2𝑂) required to produce one kiloton of succinic acid was estimated 

by the following equation (eq. 7): 

𝑚𝐻2𝑂 =
𝐽×𝑀𝐻2𝑂

𝑥𝑒−×𝐶𝐸𝑎𝑛𝑜𝑑𝑒×𝑄𝑒−
× 𝑡 × 𝑆𝑎𝑛𝑜𝑑𝑒 (eq. 7); for which all the parameters are listed in the 

grey cells in Table 2. To reach the biomolecule production target, 0.91 kilotons of water is 

necessary for succinic acid production. The production of O2 as output of the anodic 

compartment depends on the input of H2O (see eq. 6). Regarding the water-BES energy input, 

it is estimated following the methodology described in the BIORARE design section.  

Table 2 Key data used to estimate the water input in the water-BES scenario 

  

Water-BES parameters Water-BES design 

Current density (𝐽) (A.m
-2

) 20 (a) Anode material stainless steel (a)(c) 

Molecular weight of water 

(𝑀𝐻2𝑂) (g.mol
-1

) 
18  Cathode material stainless steel (a)(c) 

Charge of one mole electron 

(𝑄𝑒−) (C.mol
-1

) 96,485  

Total active electrode 

surface for succinic acid 

production (m²) 

1.5x10
4 

(b) 

 Duration of production (𝑡) 

(s.year
-1

) 
3.15x10

7
  Electrode thickness (m) 5.0x10

-4 
(b) 

Electric potential difference 

(V) 
2.24 (a) Type of membrane  cationic (a)(c) 

Anode coulombic efficiency 

(𝐶𝐸𝑎𝑛𝑜𝑑𝑒) (%) 
100 (b) Membrane thickness (m) 5.0x10

-5 
(b) 

Cathode coulombic efficiency 

(%) 
85 (b) 

Electrode and membrane 

lifetime (years) 
10 (c) 

Working temperature (°C) 35 (a)   

Electricity input (J/kgH2O input) 

for biomolecule production 
24.0x10

6 
(b) 

 
 

Heat input (J/kgH2O input) for 

biosuccinic acid production 
62.8x10

6 
(b) 

  

CO2 cathode input 

(kg/kgbiosuccinic acid) 
1.49 (b) 

  

O2 anode output (kg/kgH2O) 0.89 (b)   

(a) optimised experimental conditions 

(b) theoretical calculations from experimental parameters 

(c) literature (see within the text) 
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In order to comply with the functional units, the water-BES is implemented in a two-step AD 

plant. Since no VFA has to be extracted from the fermentate, the latter is sent directly to the 

digestion process. Like in BIORARE, the energy recovered from the biogas is distributed 

among the BES, the fermentation, digestion and purification units, and the CO2 produced by 

fermentation of the bio-waste is sent to the bio-cathode compartment of the BES.      

The same biomolecule purification step is applied as in the BIORARE concept.  

Inventory of two-step anaerobic digestion: Particular attention was paid to the inventory of 

the two-step AD plant respecting existing guidelines on bio-waste management (Manfredi et 

al. 2011). BIORARE project partners (especially Suez Environnement) provided crucial data 

based on expert opinion and field experience (Richard 2013) (Table 3).  
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Table 3 Characteristics and key data for the inventory of the two-step anaerobic digestion 

Fermentation (hydrolysis of biowaste) 

Dry matter content of waste input (wt%) 25 

Dry matter content of fermentate input (wt%) 20 

VM:DM ratio 
(1)

 (%) 85 

CO2 production rate (lCO2
/kgVM) 25 

Water input (kg/kgDM) 6.7 

Operating temperature (°C) 55 

Fermentation gas H2 (v%) 20 

Fermentation gas CO2 (v%) 80 

Gas leak (wt%) 5 

VFA concentration of fermentate expressed in gCOD.l
-1

 22.6 

Anaerobic digestion (methanogenis) 

CO2 in biogas (v%) 40 

CH4 in biogas (v%) 60 

BMP 
(2)

 (l.kgVM
-1

) 450 

Volatile matter of the substrate (wt.%) 15 

Gas leak (wt%) 5 

Biogas produced (kg/kgsusbtrate) 0.12 

Digestate produced (kg/kgsusbtrate) 0.88 

Cogeneration 

Gas flaring (wt%) 5 

Energy conversion (kWh/kgCH4
) 9.94 

Electricity conversion rate (%) 2.8 

Heat conversion rate 38 

Gas leak (wt%) 5 

(1) VM: volatile matter; DM: dry matter 

(2) BMP: biochemical methane potential 

 

The quantity of fermentate required to satisfy the demand for VFAs by the BES is based on 

the dry matter content of the fermentate and the VFA concentration of the dry matter. Based 

on the characteristics of the municipal bio-waste, namely volatile matter content and its rate of 

conversion into CO2, the production of CO2 during fermentation was estimated to be 8 kg for 
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1 kg of bio-waste. Enough CO2 is produced during fermentation to supply the BES in the 

BIORARE scenarios. On the other hand, an external source of CO2 is necessary to meet the 

BES need for the production of biosuccinic acid via the water-BES.   

During the anaerobic digestion process, organic matter is broken down by microorganisms 

resulting in biogas and digestate. The biogas is considered here to be composed of 40 v.% of 

CO2 and 60 v.% of CH4. The production of CH4 matters here because it enables the generation 

of energy through cogeneration. The methane yield of the substrate is determined by the 

biochemical methane potential (BMP), which is one of the most widely used analytical 

methods to estimate the biodegradability of organic substrates under anaerobic conditions. In 

the present study, 450 litres of CH4 is produced per kilogram of volatile matter in the 

substrate, which is within the range of municipal bio-waste BMP (Hansen et al. 2004). The 

energy recovered is then estimated from CH4 production and by taking into account the 

overall energy conversion factors, and reached up to 12 MJ per kilogram of CH4. 

The life cycle models presented in this article were designed using the GaBi 7.2.1 LCA 

software package (Thinkstep 2016). The foreground life cycle inventory (LCI) data were 

collected from experimental tests, detailed documents and previous works from the authors’ 

respective institutions. The background life cycle inventory data came from the ecoinvent 2.2 

database (molasses from sugar beets, cationic membrane and hydrochloric acid) and PE 

international (former name of Thinkstep) database (stainless steel electrode, liquid carbon 

dioxide, process water, process steam from natural gas and French electricity grid mix).  

Impact assessment methodology 

A method of characterisation is required to calculate the potential environmental impacts of 

each scenario. It is the link between the released or consumed substance and its potential 

environmental impacts. The January 2016 update of the CML-IA method is used in this study 

(Heijungs et al. 2001). Ten impact categories are included and group all the streams according 

to their environmental compartments. The categories are abiotic depletion, acidification, 
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eutrophication, climate change, ozone depletion, photochemical ozone creation, human 

toxicity and freshwater, marine and terrestrial ecotoxicity.  Since all the scenarios require the 

use of water, the AWaRe method is used to estimate the water footprint (Boulay et al. 2011, 

2015). 

Results  

The main aim of this study is to assess the environmental burdens of the BIORARE concept. 

The BIORARE scenario first needed to be studied alone to identify key contributing elements. 

Following this analysis, the BIORARE scenario was compared to alternative biosuccinic acid 

production scenarios. No uncertainty analysis was performed in this study because of the lack 

of data. Consequently, confidence intervals are not known, but a significance threshold of 

20% was applied. When the difference in the contribution between two scenarios is less than 

20%, the results are considered non-significant. 

Life cycle assessment of the BIORARE scenario 

The BIORARE scenario comprises several elements. The biomolecule production step is 

mainly driven by the BES unit whereas the waste treatment part comprises a two-step AD, a 

spreading process and a cogeneration unit. Each contributes to several impact categories to 

varying extents depending on the related emissions or background processes such as the 

production of raw materials. Figure 6 shows the relative contribution of the BES unit 

including the biomolecule purification step and of the two-step AD (hygienisation, 

fermentation, digestion and spreading) including the cogeneration unit.  
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Fig. 6 Life cycle impact assessment (LCIA) results of the production of one kiloton of biosuccinic 

acid from 35 kilotons of municipal bio-waste in the BIORARE scenario assessed by the CML-IA 

method (January 2016 update). The ordinate axis represents the contributory part of the BES system 

and the two-step AD in each impact categories, which are represented on the abscissa axis 

Overall, the contribution of the two-step AD and the BES technology were significant. 

Depending on the impact categories considered, one clearly outweighed the other. The two-

step AD is the item which contributes the most especially in the following impact categories: 

acidification, eutrophication, climate change and photochemical oxidation. Acidification, 

eutrophication, climate change and ozone are potential impacts caused by the emissions 

occurring during the digestion, spreading and cogeneration steps. The spreading process is 

responsible for the emissions of nitrogenous substances, known to generate free radicals 

which degrade ozone molecules, and to play a role in acidification and eutrophication 

phenomena (Heijungs et al. 1992; Tang et al. 1998). Due to emissions of CH4, the digestion 

process contributes to photochemical pollution as well as to climate change. However climate 

change is mainly caused by the cogeneration process which converts biogas into energy 

through a combustion reaction. This process contributes significantly to climate change 

because of the production of CO2 during biogas combustion, in addition to the initial CO2 in 

the biogas. Aside from the cogeneration unit, CO2 emissions occur in three other process 
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units, fermentation, digestion and BES. As the contribution of biogenic CO2 to climate change 

is still the subject of debate in scientific and LCA communities (Cherubini et al. 2011, 2013; 

Guest et al. 2013), the ILCD Handbook recommends presenting both neutral and non-neutral 

biogenic CO2 contributions to climate change impacts to make the results more transparent 

(European Commission et al. 2010). To allow LCA practitioners to estimate the potential 

contribution of biogenic CO2 emissions to climate change, biogenic CO2 is taken into account 

considering that the main source material of the BIORARE concept is municipal bio-waste. 

However, no distinct contribution of biogenic CO2 emissions was observable in the LCA 

results. 

Despite its noticeable impacts, the waste treatment part of the BIORARE concept is not the 

main focus of this study since the true function of the BIORARE concept is the production of 

biomolecules, which in this case is ensured by the BES unit. The BES unit contributes more 

to abiotic depletion, human toxicity and all the ecotoxicity-related categories. In order to 

identify which parameters within the BES unit, the latter is divided into five parts: the direct 

emissions, the purification step, the electrodes and the membrane materials production, and 

the electricity consumption (including the background production). As shown in Figure 7, the 

background production of the electrodes and the membrane do not have a significant impact 

on every impact category, in contrast to the cost of electricity from grid system. The cost of 

electricity is nevertheless lowered by the use of renewable energy supply coming from biogas 

cogeneration. This coupling of energy sources also prevent from electric supply interruption 

which leads to a decrease in production (del Pilar Anzola Rojas et al. 2018).The purification 

step also shows a high contribution. The purification of succinic acid contributes significantly 

to many impact categories, in particular to abiotic depletion, freshwater ecotoxicity, human 

toxicity, marine ecotoxicity and ozone layer depletion, due to the use of hydrochloric acid. 
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Fig. 7 LCIA of the contribution of one kiloton of biosuccinic acid produced with the BIORARE BES 

unit from the treatment of 35 kilotons of municipal bio-waste, assessed by the CML-IA method 

(January 2016 update) 

Including a BES unit in waste treatment is shown to have consequences for the environmental 

profile of the BIORARE scenario. To investigate whether or not the BES contribution to 

environmental impacts makes the BIORARE scenario less competitive than other methods of 

production of acid succinic, comparative LCAs are presented in the following sections. 

Environmental benefits and burdens of the BIORARE scenario compared to BAU 

In this section, biosuccinic acid production using the BIORARE concept is compared with 

standard methods of microbial fermentation, i.e. the Reverdia and Myriant processes. Figure 8 

shows the comparative LCA of the corresponding scenarios, labelled “BIORARE”, 

“Reverdia” and “Myriant”. The BIORARE scenario is competitive for half the impact 

categories considered, especially acidification, eutrophication, climate change, human toxicity 

and photochemical oxidation. For the other impact categories, the BIORARE scenario is 

either less advantageous than the BAU scenarios (abiotic depletion and marine ecotoxicity 

categories) or less than both BAU scenarios (freshwater ecotoxicity, ozone layer depletion 

and terrestrial ecotoxicity categories). Since in all the scenarios, the two-step AD aims to treat 

approximately the same amount of waste, the trade-offs within the impact categories are due 
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to the contribution of the biosuccinic acid production technology. The biggest difference in 

impact is on ozone layer depletion and terrestrial ecotoxicity. As mentioned earlier, this is the 

consequence of biosuccinic acid purification, which requires a certain amount of hydrochloric 

acid whose production and use carry heavy environmental burdens. To this extent, it should 

be emphasized that in the Reverdia and Myriant production processes, purification steps could 

not be deconvoluated from the production steps. It is therefore not clear if the lower 

performances of the BIORARE scenario in these impact categories are not due to the BES 

technology itself compared to fermentation technologies or rather to a difference in the 

purification technologies considered in each case. 

 

Fig. 8 Results of LCIA comparison of the production of biosuccinic acid in the BIORARE scenario 

with that in the Reverdia and Myriant scenarios, referred to as BAU scenarios (CML-IA method, 

January 2016 update) 

The BIORARE scenario has to be compared with a scenario based on similar BES technology 

to objectively evaluate the interest of using a waste-based substrate to produce biosuccinic 

acid. The following section compares the BIORARE scenario with a system based on a BES 

which produces biosuccinic acid by water oxidation. 
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LCA comparison of the BIORARE scenario with the water-BES technology 

LCA analysis of the water-BES scenario 

In contrast to the BIORARE scenario, the water-based BES scenario (referred to here as 

water-BES), relies on water oxidation in the anodic compartment to generate electrons which 

are then used in the bio-cathode compartment for the production of biomolecules. A detailed 

analysis is shown in Figure 9 to identify the key parameters involved in the environmental 

burdens of the water-BES. The BES unit is decomposed into seven contributory items: the 

direct emissions, the purification step, the anode input (water), the bio-cathode input (external 

source of carbon dioxide), the electrodes and the membrane materials production, and the 

electricity consumption (including the background production). 

 

Fig. 9 LCIA of the contribution of biosuccinic acid production using water-based BES to the different 

impact categories (CML-IA method, January 2016 update)  

Seven main parameters were identified as potential environmental burdens in the water-BES 

scenario, the electricity cost, the membrane, electrodes, water input into the BES, CO2 input 

into the BES, the purification step and BES emissions into the air. The potential burdens 

caused by the CO2 input, the electricity cost and the membrane are less significant but remain 
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decisive environmental factors (Figure 9). The purification step stands out from the rest in the 

same way as in the BIORARE scenario (Figure 7). 

Comparison of the BIORARE scenario with the water-BES scenario 

LCA makes it possible to identify the life cycle stages which contribute most to the 

environmental performances of a system. In Figure 9, the burden of electricity is less 

pronounced. The BES requires the highest electricity supply of all the units in the BIORARE 

scenario. The results of quantitative analysis of the electricity production, demand and 

consumption for the production of one kiloton of acid succinic by the BES unit are shown in 

Table 4. When expressed as a function of one kilogram of input (dry matter or water), the 

electricity demand of the water-BES is ten times higher than the electricity demand of the 

BIORARE BES (see Table 1). However, this demand is less contrasted when the production 

goal is one kiloton of biomolecules: the electricity demand of the water-BES is only 1.4 

higher than the electricity demand of the BIORARE BES.  

Other process units, such as hygienisation, fermentation, digestion and purification, also 

require electricity to operate. To ensure that all the units operate correctly, additional 

electricity has to be provided to the system. The BES unit, for which the electricity demand 

represents respectively, 68% and 74% of the total electricity demand in the BIORARE 

scenario and the water-BES scenario, consumes all the electricity produced through 

cogeneration of biogas. In the BIORARE scenario, 19x10
6
 MJ of additional electricity have to 

be provided to the system and was attributed to the BES unit since it is the most energy 

consuming. The same attribution was used in all the scenarios presented in the present study. 

In contrast to the electricity burden, the heat burden of the whole system is significantly lower 

than the heat produced by biogas valorisation. Indeed, dozens of megajoules of heat can be 

sold to heat networks, as shown in Table 4. 



28 

 

Table 4 Comparative analysis of the electricity parameters in the BIORARE scenario and the water-

BES scenario 

Parameter 

Biosuccinic acid production 

(1,000 tons) 

BIORARE Water-BES 

Electricity production from biogas (J) 14.1x10
12

 17.2x10
12

 

Electricity input in the BES (J) 15.4x10
12

 21.8x10
12

 

Electricity demand of the whole  scenario (J) 22.7x10
12

 29.2x10
12

 

Additional electricity to supply (J) 8.64x10
21

 12.0x10
12

 

Heat production from biogas (J) 23.5x10
12

 28.7x10
12

 

Heat input in the BES (J)  0.431x10
12

 0.057x10
12

 

Heat requirements of the whole  scenario (J) 6.1x10
12

 5.8x10
12

 

Heat remaining for sale (J) 17.4x10
12

 22.8x10
12

 

 

The difference in the contribution in the two scenarios is less than 20% in three impact 

categories, meaning that overall, no one scenario is more competitive than the others (Figure 

11). This trade-off in impacts is due to the purification step. Between the BIORARE scenario 

and the water-BES scenario, the hydrochloric acid input and the electricity input of the 

purification unit are of the same order of magnitude. Therefore both scenarios contribute to 

the freshwater ecotoxicity, marine ecotoxicity and ozone layer depletion categories. 
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Fig. 10 Comparative LCIA of the BIORARE scenario with the water-based BES scenario for the 

production of biosuccinic acid, assessed by the CML-IA method (January 2016 update) 

Water footprint analysis 

The water input impact is not considered by the CML-IA method. Since the two-step AD 

system requires water as an input (for fermentation), as well as for the beet farming stage and 

the water-BES, it is important to model the water footprint in the BIORARE, BAU and water-

BES scenarios correctly. For the fermentation process, 6.72 kg of water are recommended to 

treat 1 kg of dry matter (see Table 3) (Richard, 2013). The water input of the water-BES was 

estimated as previously described. For the beets production, the process was directly taken 

from the ecoinvent 2.2 database (molasses from sugar beets) and includes consumption of 

water. For this reason the water footprint of the scenarios was investigated using a more 

reliable method, AWaRe (Boulay et al. 2011, 2015). The water footprints of the BIORARE, 

BAU and water-BES scenarios are shown in Figure 11.  Overall, the BAU scenario, in this 

case Reverdia, is the least advantageous regarding water scarcity. Cultivating the biomass 

used to produce biosuccinic acid in industrial microbial fermentation requires a large amount 

of water. The two-step AD makes no significant contribution. Indeed, the main contribution to 

the water footprint is caused by the production of biosuccinic acid. In the BIORARE and the 
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water-BES scenarios, the purification step represents the major contribution due to 

background processes involving hydrochloric acid.  

 

Fig. 11 Comparison of the water footprint of the scenarios BIORARE, BAU and water-BES when 

producing one kiloton of biosuccinic (AWaRe method) 

Discussion 

The comparative LCAs of this study showed that the biosuccinic acid production part has 

significant influence on the environmental performances of the BIORARE scenario, 

discounting the contribution of the two-step AD. However, trade-offs were identified between 

impact categories. These results are vulnerable to modelling limitations and thus data quality. 

When comparing a mature system with a non-mature one, an imbalance in the 

representativeness of data is inevitable. Indeed, a mature system implies a relative 

representativeness of technological data and temporal scale, whereas a non-mature system is 

by nature defined with low reliable and unrepresentative data. For this reason, such 

comparisons are to be taken carefully. First, the results should always be transparent and not 

lead to an inflexible conclusion. Then, sensitivity assessment could be performed in order to 

deal with modelling limitations. In the case of the BIORARE scenario, a sensitivity 

assessment would require value ranges, data on industrial-scale feasibility and an analysis of 

flow dependency.  
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The difficulty in performing such assessment is that the BIORARE technology is here a proof 

of concept developed incrementally through experimentations, expert calculations and 

literature review. As a consequence, the calculations are not stabled enough to provide value 

intervals, in addition to the dependency between parameters. However, it could be of interest 

to assess value intervals based on theoretical calculations of the parameters of the BES unit. 

They could have a significant influence on the environmental performances of the BIORARE 

scenario. For instance, if the current density of the BES unit varies, then the electricity cost, 

the amount of anodic input and the electrode quantity vary along.  

As shown in Figures 7 and 9, the electricity input from an external source has a significant 

contribution to the environmental impacts and depend on the amount of electricity produced 

by the cogeneration unit. The latter depends on the amount of substrate treated in the 

digestion unit, for which the BES parameters are calibrated, thus highlighting 

interdependency, called synergies, between the input/output flows of the BIORARE concept. 

For this reason, a research agenda could be set in order to assess the consequences of the BES 

parameters variation on the system productivity itself and the two-step AD operation. Indeed, 

the latter contributes significantly to climate change because of the CO2 emissions of the 

fermentation, the digestion and the cogeneration steps. The first assumption was to direct the 

CO2 from the fermentation unit towards the BES cathodic compartment because of its purity, 

i.e. approximately 80 v.%. However, the quantity of CO2 produced in the fermentation plant is 

not enough to meet the BES need for CO2. For this reason, the management of CO2 streams 

could be called into question. The biogas produced during the anaerobic digestion process is 

generally composed of 40 v.% of CO2. It would be of interest to analyse the sensitivity of the 

synergy involving CO2 streams between the BES unit and the anaerobic digestion unit. The 

synergy would be achieved by injecting the biogas directly into the bio-cathode compartment 

where the microbial community would use the required amount of CO2 to produce the 

targeted biomolecules, thus producing a “purer” biogas with a higher CH4 content, but there is 

no guarantee this is feasible at industrial scale. 
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The lack of scaling relevance makes it difficult to draw reliable conclusions. In the present 

study, the data used to model the BIORARE concept and the BAU technologies were 

carefully chosen to be consistent with the scenarios. Despite the quest for quality data, the 

production scale can be identified as a weak point. Indeed, the purification step of the 

biosuccinic acid and the lifetime hypothesis of the BES materials could be put forward as 

arguments. First, the technology used for the purification of biosuccinic acid was shown to be 

an eco-unfriendly process. The ways of purifying biomolecules with a BES could be argued 

because so far no high-fidelity technology exists to recover chemicals from such systems at a 

large scale. A LCA agenda would be to perform a comparative LCA of all existing relevant 

purification technologies regardless their TRL level. The second scaling sensitive point of the 

BIORARE concept is the consumable materials. The contribution of the electrodes and the 

membrane production to potential impacts was low (see Figure 7) but could increase if the 

lifetime is actually shorter. What is more, the lifetime of the BES materials may be either 

longer or shorter depending on the biomolecule targeted but data are difficult to find because 

of the industrial secrecy and the lack of hindsight. It would be useful to conduct the same 

study using a panel of different molecules which can be produced by a BES, for example 

butanol, acrylic acid and 1,4-butanediol (Pandit and Mahadevan 2011; Zaybak et al. 2013; 

Sadhukhan et al. 2016).  

To tackle the issue of market competitiveness, we searched for an existing non-mature 

technology that could compete with the BIORARE technology. The BES technology has been 

studied for years in both microbial and abiotic conditions. The water-based BES was 

developed in the latter. When comparing the BIORARE concept with a similar concept that 

needs water instead of waste-based substrate, it appears to be more advantageous to use a 

microbial BES rather than an abiotic BES. The outcome of this comparative LCA is 

promising but it is based on theoretical calculations and hypotheses. For instance, the electric 

potential difference of the water-based BES is an optimistic value that could be higher at 

larger scale, thus increasing the energy demand of the BES unit. It would then be of interest to 
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study the BIORARE concept and the water-BES system at pilot scale in the field in order to 

adjust the electrochemical parameters. 

Conclusions 

Using an interdisciplinary approach to implement a bioelectrochemical system (BES) within a 

two-step anaerobic digestion (AD) plant would enable the production of biosuccinic acid and 

energy (biogas) while at the same time reducing municipal bio-waste. The advantage of such 

coupling is creating synergies between the two systems: the distribution of the energy 

resulting from biogas combustion and of the co-products of fermentation, i.e. carbon dioxide 

(CO2) and a carbon-rich substrate. Conceiving a synergistic technology may reduce 

environmental burdens. Indeed, using CO2 from a fermentation unit located nearby in addition 

to using heat and electricity produced from biogas, would avoid having to purchase external 

supplies.  

However, this does not entirely avoid environmental impacts. Throughout the present paper, 

the BIORARE concept has been shown to be more or less competitive than alternative ways 

of producing biosuccinic acid depending on the impact category considered as well as on the 

alternative production technology studied. Beyond the environmental impacts caused by the 

two-step AD, the production of biosuccinic acid with a BES unit has potential impacts due to 

the background processes of electrode, membrane and purification technologies. It is possible 

to predict that reviewing the BES design and possible synergies between the process units 

would change the environmental impacts of the system under study, but not whether the 

change would be positive or negative way. The same applies to the quantity of materials 

required, because the BES performances could be enhanced by increasing the current density 

of the BES, thus resulting in a smaller volume of electrodes and membrane (in other words, a 

smaller BES). This assumption could be checked by conducting a sensitivity analysis, which 

will be the subject of a future prospective paper.  
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