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Abstract
Cost register automata (CRA) are machines reading an input word while computing values using
write-only registers: values from registers are combined using the two operations, as well as the
constants, of a semiring. Particularly interesting is the subclass of copyless CRAs where the content of
a register cannot be used twice for updating the registers. Originally deterministic, non-deterministic
variant of CRA may also be defined: the semantics is then obtained by combining the values of all
accepting runs with the additive operation of the semiring (as for weighted automata). We show that
finitely-ambiguous copyless non-deterministic CRAs (i.e. the ones that admit a bounded number
of accepting runs on every input word) can be effectively transformed into an equivalent copyless
(deterministic) CRA, without requiring any specific property on the semiring. As a corollary, this
also shows that regular look-ahead can effectively be removed from copyless CRAs.
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1 Introduction

Quantitative languages extend “classical” languages by associating with each word a weight
or a cost from an algebraic structure. Such algebraic structures could be monoids, semirings,
fields or any other convenient structures. Quantitative languages have been successfully
applied to various domains such as natural language processing [15] or modelisation of
stochastic systems [17, 16]. The seminal work on quantitative languages from Schützenberger
[18] introduces the model of weighted automata, that associates with each word a weight
from a semiring. The weight of a run is the product of its transition weights whereas the
weights of the multiple runs on a single word (due to non-determinism) are combined by
sum. Classical word languages are then the particular case of weighted languages over the
Boolean semiring. There have been a long line of research that studied properties of weighted
automata [10]. As for finite-state automata, two-way [6] and alternating [12, 7] automata
have been considered, as well as extensions to infinite words [8].

Recently, Alur et al. [3] introduced another automata model for defining mappings from
words to some algebraic structures (in particular semirings), named Cost Register Automata
(CRA). These are deterministic machines equipped with a finite collection of registers storing
values: while reading the input word, each transition reads an input letter and updates
the registers by combining the current contents of registers and values from the considered

© Théodore Lopez, Benjamin Monmege, and Jean-Marc Talbot;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 75; pp. 75:1–75:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1901-1274
mailto:theodore.lopez@univ-amu.fr
https://orcid.org/0000-0002-4717-9955
mailto:benjamin.monmege@univ-amu.fr
mailto:jean-marc.talbot@univ-amu.fr
https://doi.org/10.4230/LIPIcs.MFCS.2019.75
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


75:2 Determinisation of Finitely-Ambiguous Copyless Cost Register Automata

algebraic structure. A distinguished subclass of CRAs is the one of copyless CRAs: intuitively,
for such a machine, the content of a register cannot be used twice for updating the registers.
Properties regarding expressiveness of this class have been studied in [14, 13]. The decision
problem of equivalence of copyless CRA on the tropical semiring is proved undecidable in [1].
Some other works have also considered the register minimisation problem (computing the
smallest number of registers to define a particular function) for copyless CRAs [5, 9].

Following [14], we consider both deterministic and non-deterministic copyless CRAs
on semirings (to distinguish them, we call NCRA the class of non-deterministic CRAs).
Non-determinism is resolved, as in weighted automata, by the sum operation of the semiring:
the value associated with some input word is computed as the sum of the values computed
by each accepting run on this input. We investigate a limited form of non-determinism,
k-ambiguity: a non-deterministic CRA is said to be k-ambiguous if it has at most k accepting
runs per input. In the context of weighted automata, k-ambiguous weighted automata are
strictly more powerful than deterministic weighted automata, yet less powerful than weighted
automata, leading to an appealing class of weighted languages with good decision properties
(the equivalence problem becomes decidable for k-ambiguous weighted automata over the
(max,+)-semiring [11]). Surprisingly, in the context of CRAs, our main result is:

I Theorem 1. Every finitely-ambiguous copyless NCRA can be effectively transformed into
an equivalent copyless (deterministic) CRA.

Moreover, the example developed in [14, Theorem 2] allows one to build a linearly-
ambiguous copyless NCRA that cannot be recognised with a finitely-ambiguous copyless
NCRA, showing that our result cannot be improved regarding ambiguity. An alternative way
to resolve non-determinism is to consider a regular look-ahead. When reading a word from
left to right, the look-ahead provides some (regular) information about the unread suffix of
the word that allows to determine the unique transition to be applied at each step. In this
case, the machine is said to be deterministic with look-ahead. In [3], this class is introduced
and named CRA-RLA. It is proved there that for copyless CRA-RLA, the look-ahead can be
removed preserving the copyless property provided that the considered algebraic structure is
extended with unary mappings (using the so-called streaming string-to-tree transducers [2]
as an intermediate step). In [14], Mazowiecki and Riveros proved that copyless CRA, unlike
weighted automata, are not closed under reverse but claimed that “Like for unambiguous
copyless CRAs, we do not know if extending copyless CRAs with regular look-ahead results
in a more expressive model”. However, they defined the subclass of bounded-alternation
copyless CRAs which are closed under reverse and for which deterministic look-aheads do
not increase expressiveness.

A look-ahead can be given as a complete co-deterministic automaton B and transitions of
the CRA A are then parameterised by some state of B. It is folklore that one can compute
the product of A and B to obtain a machine equivalent to A which is look-ahead free, now
non-deterministic, but still unambiguous. This construction still applies when A is a copyless
CRA and the product yields an unambiguous copyless CRA. Therefore, by Theorem 1, we
close the open problem stated in [14]:

I Theorem 2. Every copyless CRA with look-ahead can be effectively transformed into an
equivalent copyless CRA.

The article is structured as follows: in Section 2, we define CRAs as well as several
subclasses (copyless CRAs, �-less CRAs, and bounded-copy CRAs). They are defined by
means of flow graphs representing the flow of registers during runs in an abstract way. The
proof of Theorem 1 is given as a cascade of three transformations leading from one subclass
to another one, that are described successively in Sections 3, 4 and 5.
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2 Cost register automata

Terms and substitutions. Fix a semiring S = (S,+,×, 0, 1) and a finite set of variables X
disjoint from S. We denote by Term(X ) the set of terms generated by the grammar:

t ::= s | x | t+ t | t× t
where s ∈ S and x ∈ X . For a term t ∈ Term(X ), we denote by Var(t) its set of variables.
We call t a ground term if Var(t) = ∅, and then define JtK ∈ S to be the evaluation of t with
respect to S. We call a term t ∈ Term(X ) copyless if every variable appears at most once
in t. In the following, we will represent terms as binary trees, where leaves are labelled by
variables or constants, and internal nodes are labelled by operations of the semiring.

I Example 3. On the semiring (N,+,×, 0, 1), examples of terms are 3x + 1 (we often
make implicit the product operator) or y + 2zx + 3, making use of the associativity of
both operators to drop useless parentheses. On the semiring (Z ∪ {∞},min,+,∞, 0), the
same terms are written min(3 + x, 1) and min(y, 2 + z + x, 3). Other examples of terms on
the non-commutative semiring (P({a, b}∗),∪, ·, ∅, {ε}) of languages over alphabet {a, b} are
{a}x{ε, aab} ∪ y ∪ {b}. All these terms are copyless.

A substitution is a mapping σ : X → Term(X ). We denote the set of all substitutions over
X by Subs(X ). If t is a term, we let [x 7→ t] be the substitution defined by [x 7→ t](x) = t

and [x 7→ t](y) = y for all variables y 6= x. A ground substitution σ is a substitution where
the term σ(x) is ground for every x ∈ X . Substitutions are extended canonically to a term
morphism, and may thus be composed: σ1 ◦ σ2(x) = σ1(σ2(x)).

A valuation is defined as a substitution of the form ν : X → S. We denote the set of all
valuations over X by Val(X ). Clearly, any valuation ν composed with a substitution σ defines
a ground substitution. We say that two terms t1 and t2 are equivalent (denoted by t1 ≡ t2) if
Jν(t1)K = Jν(t2)K for every valuation ν ∈ Val(X ). Similarly, we say that two substitutions σ1
and σ2 are equivalent (denoted by σ1 ≡ σ2) if σ1(x) ≡ σ2(x) for every x ∈ X .

Non-deterministic cost register automata. A non-deterministic CRA (NCRA) over the
semiring S is a tuple A = (Q,Σ,X ,∆, I, νini, F, ϕ), where Q is a finite set of states, Σ is the
input alphabet, X a finite set of registers, ∆ ⊆ Q× Σ× Subs(X )×Q is the finite transition
relation with updates of the registers, I ⊆ Q is the set of initial states, νini : I → Val(X )
defines an initial valuation of the registers for each initial state, F is the set of final states and
ϕ : F → Term(X ) the final output function. Transition (q, a, σ, q′) is denoted by q a|σ−−→ q′.

A configuration of A is a tuple (q, ν) where q ∈ Q and ν ∈ Val(X ) represents the current
values in the registers of A. Given a word w = a1 · · · an ∈ Σ∗, a run ρ of A over w is a sequence
of configurations linked by transitions (q0, ν0) a1|σ1−−−→ (q1, ν1) a2|σ2−−−→ · · · an|σn−−−−→ (qn, νn) such
that q0 ∈ I, ν0 = νini(q0), for 1 ≤ i ≤ n, qi−1

ai|σi−−−→ qi is a transition and νi(x) = Jνi−1◦σi(x)K
for each x ∈ X . A run is accepting if it ends in a final state qn ∈ F . The output of an
accepting run ρ = (q0, ν0) a1|σ1−−−→ · · · an|σn−−−−→ (qn, νn), denoted by JρK, is the value Jνn(ϕ(qn))K.
The output of A over w is defined as JAK(w) = 0 if there is no accepting run of A over w, and
JAK(w) =

∑
ρJρK over all accepting runs ρ over w otherwise. Two NCRAs are said equivalent

if they compute the same output on every input word.
For some positive k, a NCRA A is k-ambiguous if there are at most k accepting runs

over each word w. A is finitely-ambiguous if it is k-ambiguous for some k, and unambiguous
if it is 1-ambiguous. A NCRA is said to be deterministic, and denoted by CRA, if I is a
singleton and for all q ∈ Q, a ∈ Σ, there exists at most one state q′ ∈ Q and one register
update σ ∈ Subs(X ) such that q a|σ−−→ q′ ∈ ∆.
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Ax 7→ 0 B

x 7→ 0

x

0 | x 7→ 2x

1 | x 7→ 2x+ 1

1 | x 7→ 2x+ 1

0 | x 7→ 4x

x, y 7→ 0 y

0 | x 7→ 2x; y 7→ 4y

1 | x 7→ 2x+ 1; y 7→ 2x+ 1

x 7→ 0
t 7→ 1 xt

0 | x 7→ 2x; t 7→ 2t

1 | x 7→ 2x+ 1; t 7→ 1

Figure 1 Three equivalent automata: an unambiguous copyless NCRA An (on the left), a �-less
CRA Ad (in the middle), a copyless CRA Ac (on the right).

I Example 4. Consider the copyless NCRA An depicted on the left of Figure 1 over the
alphabet {0, 1} and the semiring (N,+,×, 0, 1). It has a single register x, so that we hereby
denote configurations by pairs (q, ν(x)). Every word w ∈ {0, 1}∗ has two runs, only one being
accepting: thus An is unambiguous. For instance, on the word w = 10100, the two runs are

(A, 0) 1|x7→2x+1−−−−−−−→ (A, 1) 0|x 7→2x−−−−−→ (A, 2) 1|x 7→2x+1−−−−−−−→ (A, 5) 0|x 7→2x−−−−−→ (A, 10) 0|x 7→2x−−−−−→ (A, 20)
(A, 0) 1|x7→2x+1−−−−−−−→ (A, 1) 0|x 7→2x−−−−−→ (A, 2) 1|x 7→2x+1−−−−−−−→ (B, 5) 0|x7→4x−−−−−→ (B, 20) 0|x 7→4x−−−−−→ (B, 80)

Therefore, A is a state computing the integer value of the word as binary representation
with less significant bits first. To accept, we must jump into the unique final state B while
reading the last 1 (or start directly in B if the word contains only 0s), then multiplying by 4
for each remaining 0: it is as if each 0 of the last block of 0s is considered to be duplicated
by the CRA. The same function can also be recognised by a deterministic CRA, using two
registers x and y, depicted in the middle of Figure 1. Instead of using non-determinism to
guess the last 1 of the word, Ad always computes both the multiplications by 2 and 4 in
separate registers x and y when reading 0. On each letter 1 though, the content of register
y is reset to the same content as register x: operationally, this means that the content of
register x must be duplicated when reading 1.

Flow of registers. A crucial notion in NCRAs is their ability to copy, or not, contents of
registers into several registers. A NCRA is therefore called copyless if no register updates σ
of ∆ or terms of ϕ copy some register (see [3]). A more graphical definition of copyless can
be achieved by gathering the flows of registers in a notion of flow graphs, that we define now,
inspired by a close notion of dependency graph introduced in [4]:

I Definition 5. A flow graph over the set of variables X is a (finite) directed acyclic
(multi)graph (V,E) where V = (X × {0, 1, . . . , `max}) ] {Ω} (with `max ≥ 0) is a finite set
of vertices (x, `) where ` is called the layer of the vertex (with `max being the maximal layer
of the flow graph), and E : V 2 → N being a multiset of edges satisfying:
1. E is consistent with the layers: E((x1, `1), (x2, `2)) 6= 0 =⇒ `2 = `1 + 1 , and
2. Ω has no outgoing edges and all its ingoing edges come from the maximal layer:

E((x, `),Ω) 6= 0 =⇒ ` = `max .

Each run ρ = q0
a1|σ1−−−→ q1

a2|σ2−−−→ · · · ak|σk−−−→ qk of a NCRA A is associated with the flow
graph GA(ρ) = (V,E) defined by: V = X ×{0, . . . , k}∪{Ω}; for ` ∈ {1, . . . , k}, and x, y ∈ X ,
E((x, ` − 1), (y, `)) is the number of occurrences of the variable x in σ`(y); E((x, k),Ω) is
the number of occurrences of x in ϕ(qk), and 0 if qk /∈ F .

Copyless restriction of NCRAs can be recovered directly on the flow graphs generated by
their runs. For this reason, we say that a vertex of a flow graph is a copy vertex if it is the
source of at least two edges. We use those to define two other related properties of the flow
graphs that will be used in the following.
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I Definition 6. A flow graph (V,E) is diamondless (shorten as �-less in the following) if
there is at most one path linking every pair of vertices. It is called k-copy if every vertex can
reach at most k copy vertices. We say that it is copyless if it is 0-copy.

I Example 7. Consider once again the word 10100, and the unique run of the CRA Ad of
Figure 1. Here is a pictural representation of the associated flow graph:

x

y
Ω

0 1 2 3 4 5

One can observe on this picture that Ad is not copyless, since register x is copied when
reading letter 1. However, there are no diamonds (neither in this particular run, nor in any
possible run), which means that Ad is �-less.

By extension, a NCRA is said to be copyless (resp. �-less or k-copy) if the flow graphs of
all possible accepting runs of the NCRA are copyless (resp. �-less or k-copy). It is said to
be bounded-copy if it is k-copy for a certain value k. This alternative definition of copyless
NCRA is equivalent to one of [3], whenever CRAs are supposed to be trimmed (i.e. all states
are reachable from the initial ones and can reach a final state). Note that in the flow graphs
of a �-less CRAs, the multiset E is indeed a set (all pairs evaluate to 0 or 1). However, this
does not imply that the CRA is copyless since a register can appear in the updates of two
different registers. The �-less property simply ensures that every register will flow at most
once in the final output, in every possible execution: there may exist copies, but when it is
the case, we are sure that at most one copy will resist up to the end; however, this exact
copy can not be known yet as it might depend on the input word.

Contribution. Our main result is Theorem 1 stated already in the introduction. As the
class of copyless CRA is obviously included into the class of finitely-ambiguous copyless
NCRA, this result implies that these two classes define the same family of functions.

I Example 8. Our running example can indeed be recognised by the copyless CRA Ac on
the right of Figure 1 which keeps in a register x the binary value of the input, and keeps in
another register t the powers of 2 corresponding to the current longest suffix of letter 0. We
multiply x by t in the final output function, and reset t when reading a letter 1.

Our construction is split into a cascade of transformations detailed in the next sections:

finitely-ambiguous
copyless NCRA

�-less
CRA

bounded-copy
CRA

copyless
CRA

Prop. 9 Prop. 11 Prop. 19

The first step in the construction is given in Section 3: a determinisation procedure of the
finitely-ambiguous copyless CRA allows us to build a (deterministic) CRA, that may not be
copyless, thus trading non-determinism for copies. This new CRA will indeed be �-less. The
second step is to reduce the number of copies in order to build an equivalent CRA that is
bounded-copy: this is not trivial since the �-less property does not forbid that unboundedly
many copies can be performed. The idea is to delay copies until a moment where we know
that enough copies have become useless. This more difficult step is the main contribution of
this article and presented in Section 4. Finally, it remains to show in Section 5 how to remove
all copies of the bounded-copy CRA, by replicating the registers as many times as needed.

MFCS 2019
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3 From finitely-ambiguous CRAs to diamondless CRAs

As a first step in our construction, we start by transforming every k-ambiguous NCRA into
a �-less CRA: this is a determinisation step where we maintain replicas of the registers,
indexed by the states and a number in {1, . . . , k} to distinguish the k possible runs.

I Proposition 9. For every finitely-ambiguous copyless NCRA, we can compute an equivalent
�-less CRA.

I Example 10. Starting from the unambiguous copyless NCRA An of Figure 1, we obtain
a �-less CRA A′ isomorphic to the CRA Ad: the single state represents the set {A,B} of
states of A, while registers (x,A) and (x,B) of A′ are the registers x and y on the picture.

The next step aims to limit the number of copies of the �-less CRA. Indeed, �-less CRAs
are not necessarily copyless, and may even copy certain registers an unbounded number of
times (in arbitrarily long runs). This is the case for the �-less CRA Ad of Figure 1: for
instance, the flow graph associated with the run over the word 11111 · · · is of the form

x

y

· · ·
· · ·

0 1 2 3 4 5

and has thus an unbounded number of copies of register x, that are all reachable from vertex
(x, 0); thus, Ad is not bounded-copy.

4 From diamondless CRAs to bounded-copy CRAs

In this section, we prove the most difficult step of the overall construction:

I Proposition 11. For every �-less CRA, we can construct an equivalent bounded-copy CRA.

As seen in the example of the previous section, this result is not straightforward as �-less
CRAs may have an unbounded number of copies. Our approach somehow extends the one
developed for streaming string transducers in [4]. However, the proof is simpler in the case of
transducers where only a single operation exists (the product of a monoid). This allows one
to represent in an alternative way the valuation of a register as a product of constants and
other registers: instead of storing in registers the value of these products, it is going to be
abstracted, storing in fresh registers the constant values separating two consecutive registers
in products. In the setting of semirings, with two operations, it is much more intricate to do
so, since the content of a register has to be viewed now as a term involving both operations.
Hence, it is less clear a priori what could be the constants separating two “consecutive”
registers of this term. We start by clarifying this, introducing special terms we call shapes,
associated with coefficients that are these separating constants. Similar kind of shapes are
used in [14, Theorem 3] to remove unambiguous non-determinism from bounded-alternation
NCRAs, i.e. NCRAs that can only alternate a bounded number of times between sums and
products in the register updates. The treatment of shapes is more complex in our case since
we have no such limitation on alternations.

Shapes and coefficients. The shape of a term t over the set of variables X is a term with
no constants, but with additional variables, obtained as follows. First, all constants are
removed from the term to obtain a term t̃ where all leaves are labelled with variables of X :
for instance, if t = (3x1(5 + 2) + 4)× (2x2) + 3, then t̃ = x1 × x2. Doing so, we lose much
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information on the term, that we then recover by decorating every subterm t′ of t̃ with some
fresh coefficients α, β, γ, replacing the root of t′ by αt′β + γ: α, β represent respectively the
left and the right multiplicative coefficient, and γ the additive coefficient. The shape of t
is the term obtained by decorating each subterm of t̃. It is associated with a valuation χ
mapping each coefficient of the shape to its value. On the example, the shape obtained is
α3[(α1x1β1 + γ1) × (α2x2β2 + γ2)]β3 + γ3, and the valuation of its coefficients is defined
by χ(α1) = 3, χ(β1) = 7, χ(γ1) = 4, χ(α2) = 2, χ(β2) = χ(α3) = χ(β3) = 1, χ(γ2) = 0,
χ(γ3) = 3.1 For the special case of a constant term t (without any variables), the shape is
reduced to a special coefficient ω.

Shapes are canonical way to store terms. In particular, note that there is only a finite
number of shapes of copyless terms over X , denoted by Shape(X ), though there are infinitely
many possible coefficient valuations associated with these shapes. This will allow us to store
the shapes in states of the bounded-copy CRA, while keeping in registers the valuations of
coefficients (that could not fit in a CRA with a finite number of states).

Given a shape τ and an associated coefficient valuation χ, we denote by χ(τ) the term
obtained by replacing each coefficient of τ by its value: thus, χ(τ) is a term over variables X .

I Proposition 12. There is a linear-time algorithm that, given a term t, builds a shape τ
of t and a coefficient valuation χ, such that t and χ(τ) are equivalent terms.

Unfolding of a CRA. In the rest of the section, we let A = (Q,Σ,X ,∆, I = {qini}, νini, F, ϕ)
be a �-less CRA. We construct another CRA A∞ = (Q′,Σ,X ′,∆′, I = {q′ini}, ν′ini, F ′, ϕ′)
equivalent to A, by unfolding: states contain shapes, and registers store the valuations of
all corresponding coefficients. At first, A∞ will thus have an infinite number of states: we
explain afterwards how to reduce it to a finite number.

States of A∞ are pairs (q, s), where q is a state of A and s maps each pair (x, `) ∈
X×{1, . . . , `max}, where `max ∈ N depends on the state ofA∞, to a term of Shape(X×{`−1}),
and each pair (x, 0) to a shape of the form ω: s records the register updates applied so far,
keeping only the shapes in memory. We call s the shape substitution of the state. Moreover,
we enforce all coefficients appearing in all the shapes of s to be different. Notice that such
a state (q, s) is associated uniquely with a flow graph G = (X × {0, . . . , `max} ] {Ω}, E)
where E is the set2 defined by ((x, ` − 1), (y, `)) ∈ E iff (x, ` − 1) appears in s(y, `), and
((x, `max),Ω) ∈ E iff x ∈ ϕ(q). In the following, we use the notions of layers originating from
flow graphs directly on s. All vertices of the flow graph that cannot reach a vertex of the
maximal layer are useless : their value will not be used in the output of the CRA. Hence, we
clean up s by mapping them to constant coefficients ω. In the following, we always consider
that shape substitutions s are cleaned up this way.

Registers of A∞ are all the possible coefficients appearing in its states (notice that there is
an infinite number of them). However, at each point of the execution of A∞, only coefficients
that appear in the shape substitution of the current state are initialised, other registers being
useless at this point. We may call coefficients the registers of A∞ to emphasise their role.

The initial state is q′ini = (qini, sini) with sini mapping (x, 0) to a distinct coefficient ωx
for all x (`max = 0 for this state); hence, only coefficients ωx appear in these shapes of q′ini
and their value is given by ν′ini(q′ini)(ωx) = νini(qini)(x). All other registers can be set to 0
(their value will never be used in the following).

1 Notice that the use of separate left and right multiplicative is only necessary in non-commutative
semirings: in commutative ones, we could merge both of them in a single α coefficient.

2 E turns out to be not some arbitrary multiset, as we start from a �-less CRA A
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ωx, ωy 7→ 0

ωy

α1xβ1+γ1

α2xβ2+γ2

α2ωxβ2+γ2

α1xβ1+γ1

α2yβ2+γ2

α2ωyβ2+γ2

ω′
y

α3xβ3+γ3

α4xβ4+γ4

α4(α1ωxβ1+γ1)β4+γ4

α3xβ3+γ3

α4xβ4+γ4

α4(α2ωxβ2+γ2)β4+γ4

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

1 |
α1, α

2 7→
2

β1, β
2, γ

1, γ
2 7→

1

0 |
α1 7→ 2α2 7→ 4β1 , β2 7→ 1

1 |
α3, α4 7→ 2

β3, β4, γ3, γ4 7→ 1

0 |
α3 7→ 2
α4 7→ 4
β3, β4 7→ 1

Figure 2 An infinite CRA equivalent to the �-less CRA Ad.

Final states of F ′ are all pairs (q, s) with q ∈ F , and the associated final output ϕ′
is the term using only coefficients obtained by applying the shape substitution as many
times as the number of layers from the maximal layer, in order to remove all variables (x, `):
ϕ′(q, s) =

[
x 7→ s`max+1(x, `max) ∀x ∈ X

] (
ϕ(q)

)
where sh is the composition of s with

itself h times, and `max is the maximal layer of the flow graph associated with s.
We finally describe the transitions of A∞. For all states (q, s) ∈ Q′ and transitions

q
a|σ−−→ q′ in ∆, we add a transition (q, s) a|σ′

−−→ (q′, s′) in ∆′, where s′ is the extension of s
with an additional layer. If the maximal layer of s is `max, then the maximal layer of s′ is
`max + 1. For the additional maximal layer `max + 1, for all x ∈ X , the term σ(x) associated
with the update of the register x in A can be decomposed, by Prop. 12, into a shape τ and a
valuation χ of its fresh coefficients: we have χ(τ) ≡ σ(x). Then, we let s′(x, `max + 1) be the
shape τ in which every variable y is replaced by (y, `max). Corresponding (fresh) coefficients
κ of τ are set to their value in χ: σ′(κ) = χ(κ). Layers 0, 1, . . . , `max are kept intact, except
that vertices that can no longer reach layer `max+1 are mapped to a constant shape ω. More
precisely, for all ` ∈ {0, 1, . . . , `max} and x ∈ X , if (x, `) can reach layer `max + 1 (in the
so-extended flow graph) then s′(x, `) = s(x, `) and the corresponding coefficients κ remain
the same by the update σ′(κ) = κ. Otherwise s′(x, `) is mapped to a constant shape ω and
σ′(ω) = 0: coefficients of s(x, `) are freed, e.g. by resetting them to 0 by σ′.

I Example 13. We illustrate this construction on the �-less CRA Ad of Figure 1. A portion
of the infinite CRA is shown in Figure 2. We depict in each state the associated flow graph
(without the output vertices) as well as the shapes that are different than the corresponding
shapes in the predecessor state. In the updates, we only show the values different from 0.
Notice the dotted edge in the state reached after having read word 11: this edge disappears
from the flow graph since the vertex (y, 1) can no longer reach the maximal layer.

The infinite CRA A∞ satisfies the following invariant: each run ρ of A, ending in state q,
is bijectively mapped to a run ρ′ of A∞ that ends in a state (q, s) associated with a flow
graph isomorphic to GA(ρ). Moreover,

I Invariant 14. For all words w, if (q, ν) is the (unique) configuration reached by A over
word w, the configuration ((q′, s), ν′) reached by A′ reading w satisfies: q = q′ and for
every x ∈ X , ν(x) = Jν′ ◦ s`max+1(x, `max)K where `max + 1 is the number of layers in s.
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ωx

ωy

ωx, ωy 7→ 0

ωy

ωx

ωy

α1xβ1+γ1

α2xβ2+γ2

α2ωxβ2+γ2

1 | α1, α2 7→ 2
β1, β2, γ1, γ2 7→ 1

0 | ωx 7→ 2ωx

ωy 7→ 2ωy

1 |
ωx 7→ α1ωxβ1 + γ1
α1, α2 7→ 2
β1, β2, γ1, γ2 7→ 1

0 |

α1 7→ 2α1
β1 7→ β1
γ1 7→ 2γ1
α2 7→ 4α2
β2 7→ β2
γ2 7→ 4γ2

Figure 3 Finite CRA obtained by merging copyless layers of the CRA in Figure 2.

In particular, both CRAs are equivalent by construction since

JAK(w) = Jν(ϕ(q))K
=

q[
x 7→ ν′ ◦ s`max+1(x, `max) ∀x ∈ X

]
(ϕ(q))

y
= Jν′(ϕ′(q, s))K = JA′K(w)

The goal is now to make A∞ finite by contracting the flow graph associated with its states.
The main operation is the merging of a layer with the previous one; this merge will require
some copies of registers. Starting from the finite �-less (but not necessarily bounded-copy)
CRA A, the merge operation will turn A∞ into a finite CRA, that is moreover bounded-copy.

Merge of two consecutive layers. Let s be the shape substitution in a state of A∞ with
maximal layer `max and let L be some layer. We now explain how to merge the layers L− 1
and L of s, leading to a new shape substitution s′ with one layer less. This will require an
update σ′ of the coefficients appearing in the corresponding shapes. s′ and σ′ are defined as
follows for all layers ` ∈ {0, 1, . . . , `max}:
1. if ` < L− 1, nothing is changed: for all x ∈ X , s′(x, `) = s(x, `) and all the corresponding

coefficients κ are left unchanged, i.e. σ′(κ) = κ;
2. if ` ≥ L, we simply shift down all the layers by one: for all x ∈ X , s′(x, `) = s(x, `+ 1)

and the corresponding coefficients κ are left unchanged too;
3. if ` = L−1, we must incorporate the shapes in-between layers L−1 and L into layer L−1:

if s(x, L) is a constant shape ω, then we simply shift it as before: s′(x, L− 1) = ω and
coefficient ω is left unchanged by σ′;
otherwise, consider the term t = s2(x, L) obtained by replacing all variables y appearing
in the shape s(x, L) by the shape s(y, L − 1). Unfortunately, t may not be a shape
anymore, but Proposition 12 allows us to recover a new shape τ from t with new
coefficients whose values are given by χ. We thus have to store s′(x, L− 1) = τ in the
state of A∞ and update the coefficients accordingly, so that σ′(s′(x, L−1)) = χ(τ) ≡ t.

The most promising merge to perform in the infinite CRA A∞ in a state (q, s) is the merge
of a copyless layer L (such that the substitution [x 7→ s(x, L)] is copyless) with layer L− 1.

I Example 15. Consider the infinite CRA A∞ built in Figure 2. Three of its depicted states
contain copyless layers: notice in particular that, in the state above right, it becomes possible
to merge the first two layers after removing the useless (dotted) edge in the flow graph. After
these merges, we obtain the finite copyless (and thus bounded-copy) CRA of Figure 3.

The definition of the new transition function (and coefficient updates) given above is
correct, but not precise enough to prove afterwards that we obtain a bounded-copy CRA.
Therefore, we need to describe an operational method to build s′ and σ′ with as few copies
of coefficients as possible. There are two difficulties.
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First, when glueing together s(x, L+ 1) with all the shapes s(y, L) (with (y, L) appearing
in s(x, L+1)), we need to gather the coefficients at the glueing interface. There are two cases:

s(x, L+1)

α1(y, L)β1+γ1

αtβ+γ
s(y, L)

α′
1(z, L)β′

1+γ′
1

ω
s(z, L)

=⇒

t

α2tβ2+γ2 ω2

Consider first the case where s(y, L) is a (non-constant) shape of the form αtβ + γ with t
a term. Let α1(y, L)β1 + γ1 be the subterm of s(x, L+ 1) where (y, L) appears. The glueing
should replace this subterm by α1(αtβ+γ)β1 +γ1 ≡ α1αtββ1 +α1γβ1 +γ1. This is obtained
by replacing it by a shape α2tβ2 + γ2 with α2, β2 and γ2 fresh coefficients that we set via
σ′(α2) = α1α, σ′(β2) = ββ1 and σ′(γ2) = α1γβ1 + γ1. Coefficients of t are preserved by the
update σ′. Notice that σ′ uses twice the content of coefficients α1 and β1.

The other case is the one where s(y, L) is a constant shape ω. Then, we replace in s(x, L+1)
the subterm α′1(y, L)β′1 + γ′1 by a fresh constant coefficient ω2, set via σ′(ω2) = α′1ωβ

′
1 + γ′1.

After glueing, in case where certain shapes we glued were constant shapes ω, a final step
is required. Either the term does not contain variables of X anymore (all variables have been
replaced by constant shapes ω), and we then replace the whole term t by a constant shape ω
with σ′(ω) = t. Or, there are still variables of X , in which case we need to remove all ω-leaves.
They are removed one by one, thus modifying the term and the update of coefficients. If
there is a subterm of the form α1(ω2 � ω3)β1 + γ1 with two ω-leaves (and � ∈ {+,×}), we
replace this subterm by a fresh constant coefficient ω4 set via σ′(ω4) = α1(ω2 � ω3)β1 + γ1.
Once removed all those terms, there might remain isolated ω-leaves: consider thus a subterm
with a single ω-leaf, e.g. of the form α1

(
(α2tβ2 + γ2)� ω3

)
β1 + γ1 with t a shape without

any ω. Notice that we can rewrite this term as:

α1
(
(α2tβ2 + γ2)� ω3

)
β1 + γ1 ≡

{
α1α2tβ2β1 + α1(γ2 + ω3)β1 + γ1 if � = +
α1α2tβ2ω3β1 + α1γ2ω3β1 + γ1 if � = ×

Then, this subterm is replaced by a shape α4tβ4 + γ4 with the coefficient updates:

σ′(α4) = α1α2 σ′(β4) =
{
β2β1 if � = +
β2ω3β1 if � = ×

σ′(γ4) = α1(γ2 � ω3)β1 + γ1

Notice the copy of ω3 in the case � = ×, and the copies of α1 and β1 in both cases.
During a whole merge step, we can show that the only coefficients to be copied are the

ones of layer L+1 and of the constant shapes ω of layer L, and these are copied at most twice.

Primarily-copyless layer. The merge of copyless layers with their predecessor may not be
sufficient to obtain a finite CRA, as shown in the following more involved example.

I Example 16. Consider the �-less CRA A3 over the semiring (P({a, b}),∪, ·, ∅, {ε}) and
alphabet {a, b}, with one state q and three registers x, y, z, that outputs ϕ(q) = x and
with transitions q a|σa−−−→ q and q a|σb−−−→ q using updates σa = [x 7→ xy, y 7→ a, z 7→ zya] and
σb = [x 7→ ε, y 7→ zb, z 7→ ε]. Here are the flow graphs G and G′ obtained after reading the
input words aaa and baba respectively:
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x

y

z

Ω

0 1 2 3 4

G′:

The flow graph G′ illustrates that A3 is not bounded-copy, since the flow graphs on input
words (ba)n require a chain of n copies. In G though, no layer is copyless, and thus no
merging based on copyless layers can be performed. Notice that the value of register z is not
used in the output, but it would be so if the word aaa is extended with b: thus, we cannot
simply remove register z to recover some copyless layers. Here, the idea is rather to notice
that the second time we see register y being copied (in-between layers 1 and 2), we learn the
fact that indeed the previous content of register y is not copied many times (because of the
�-less hypothesis): if we do not consider this copy anymore, layer 2 becomes copyless and can
thus safely be merged with layer 1. It will cost copies, but not too much, as we will see later.

Hence, removing copyless layers is not a sufficient criterion to obtain a finite (bounded-
copy) CRA from A∞. To define the correct criterion, we distinguish some special vertices
in a flow graph. A source is a vertex (x, `) without predecessors (in the state of A∞, this
means that s(x, `) = ω). The sources of a vertex are all its ancestors that are sources: in
the previous flow graph G of Example 16, sources of (x, 2) are (x, 0), (y, 0) and (y, 1). A
source is primary if it is a source, with lowest layer, of a vertex in the maximal layer: (x, 0),
(y, 0), (z, 0) and (y, 3) are all the primary sources of G (note that (y, 3) is source with lowest
layer of (y, 3) itself), while (y, 1) and (y, 2) are not. A vertex is primary if it is a descendant
of a primary source. All other vertices are called secondary: in G, (y, 1) and (y, 2) are all
the secondary vertices. In particular, all vertices of the maximal layer are primary. On the
minimal layer, all vertices that can reach the maximal layer are primary sources. Notice that
whenever the flow graph is extended, some primary sources may turn secondary, and new
primary sources may appear, but only on the maximal layer; also, vertices may not reach the
maximal layer anymore in which case they are removed. A layer L is primarily-copyless when
only secondary vertices of layer L− 1 are possibly copied, i.e. all primary vertices (x, L− 1)
are linked to a single vertex of layer L. In G, only layers 2 and 3 are primarily-copyless.

Obviously, we do not build the infinite CRA A∞, but instead build a finite CRA A′ step
by step by extending it along transitions and directly merging each primarily-copyless layers
with the previous one, as much as possible. The idea is that merging such primarily-copyless
layers will cost some copies of coefficients, but not too many, yielding the fact that A′ is a
bounded-copy CRA with a finite number of states equivalent to the �-less CRA A. These
properties are proved in the rest of the section, and imply Proposition 11.

A′ is equivalent to A. By Invariant 14, the infinite CRA (without merge of primarily-
copyless layers) is equivalent to A. Then, we prove that it remains true when we perform
the merge of two consecutive layers. It is a consequence of the following invariant:

I Invariant 17. Let s be a shape substitution with `max + 1 layers, and let s′ and σ′ be
the shape substitution and update obtained by merging layers L and L − 1 from s. Then
σ′ ◦ s′`max(x, `max − 1) ≡ s`max+1(x, `max).

A′ is finite. Given a state (q, s) ∈ Q′, using Lemma 18 (below), s has less than |X |4 vertices.
The substitution is exactly defined by the shapes s(x, `) for every vertices (x, `). In each of
these shapes, each register in X appears at most once and there are |X |O(|X |) possible of
such shapes. Thus, |Q′| ≤ |Q| · |X |O(|X |5) and A′ is finite.
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Figure 4 Merging of primarily copyless layers with the previous one.

I Lemma 18. For all states (q, s) in A′, the flow graph associated with s has less than |X |2
primary sources, |X |3 layers, and |X |4 vertices.

Proof. Recall that there are |X | vertices per layer. In the flow graph, each vertex of the
maximal layer defines exactly one minimal layer for its ancestors. All primary sources are
on those layers and there are at most |X | such layers. Each layer contains at most |X |
vertices, thus there are at most |X |2 primary sources in the flow graph. Also, this implies
that the bound on the number of vertices is a direct consequence of the bound on the
number of layers. We note `1, . . . , `k the layers where primary sources are, with k ≤ |X | and
0 = `1 < `2 < · · · < `k (the first layer contains only primary sources). For 1 ≤ i < k, we now
bound the number of layers separating `i from `i+1.

Recall that a copy vertex is a vertex with at least two out-going edges. A primary copy
vertex is a copy vertex that is primary. A bad layer is a layer that is not primarily-copyless
layer. Bad layers are exactly layers that remain after the removal of all primarily-copyless
layers. Note that by definition, a bad layer contains at least one primary copy vertex. Also,
as every primary vertex only reaches primary vertices and as the flow graph is �-less, a
primary copy vertex reaches primary vertices of the next layer that pairwise cannot flow in
the same vertex while they all flow in the maximal layer.

Figure 4 depicts vertices of a flow graph between two layers `i and `i+1 before removing
primarily copyless layers on the left and after on the right. Primary vertices are represented
in black, secondary vertices are represented in red, and vertices that cannot reach the last
layer are represented in gray. Vertices (r, `i) and (s, `i+1) are primary sources. Between `i
and `i+1, there are 3 primary copy vertices: (y, 2), (r, 3) and (r, 5). Layers `i, 1 and 2 are
merged, as well as layers 4 and 5, and also layers 6 and `i+1.

As the flow graph is �-less, every primary vertex (x, `i) flows at most once in every
primary vertex of layer `i+1. We note nx,i the number of vertices of layer `i+1 reachable
from (x, `i), we have that nx,i ≤ |X |. Then, (x, `i) reaches at most nx,i − 1 copy vertices
between layers `i (included) and `i+1 (excluded), all of which are primary. Since this holds
for all primary vertices of layer `i, there are at most |X | (|X | − 1) primary copy vertices
between layers `i and `i+1. This directly implies the same bound for the number of (bad)
layers. The argument still holds for (bad) layers between `k and the maximal layer `max of
the flow graph. As a consequence, there are at most |X |2 (|X | − 1) ≤ |X |3 layers in s. J

A′ is bounded-copy. We need some additional intuition on how secondary vertices flow.
Consider a secondary vertex v that flows into vertices of the last layer, that are primary.
Along the path from v to the last layer, there are secondary vertices, followed by primary
vertices. The first primary vertex encountered is called a target of v: in the flow graph G of
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Example 16, targets of (y, 1) are (x, 2) and (z, 2). Notice that every target is a descendant of
some primary source, by definition of primary vertices. A primary vertex is its own target.
Primary sources of a vertex are all the sources of its targets, that are primary: again in the
example G, primary sources of (y, 2) are (x, 0), (y, 0) and (z, 0).

We define a measure on the coefficients of all the shapes in a state of A′ that bounds
the number of times it can copy into other coefficients in the future. The measure of a
coefficient κ appearing in the shape of a vertex v = (x, `) of the shape substitution is defined
as the tuple ‖κ‖ = (`, p, c, `π, g) where p is the number of primary sources in s restricted
to the previous layers {0, . . . , `− 1}; c = 1 if the coefficient κ is an ω-coefficient, and c = 0
otherwise; `π is the maximal layer of a primary source of vertex v; g is the number of targets
of vertex v. We can show that along the update of every transition of A′, if a coefficient κ is
used to update the value of another coefficient κ′ then ‖κ‖ ≥ ‖κ′‖ (where tuples are ordered
lexicographically). Moreover, if κ is used in at least two coefficients, then ‖κ‖ > ‖κ′‖. We
can bound the length of all decreasing sequences of tuples by 2|X |9. When a coefficient is
copied, it flows into at most 2|X | coefficients. Thus, A′ is (2|X |)2|X |9 -copy.

5 From bounded-copy CRAs to copyless CRAs

The final step of our construction is to remove all copies from a bounded-copy CRA. This is
achieved in a purely greedy manner: it suffices to have enough replicas of each register from the
beginning, and then split the replicas evenly when the bounded-copy CRA performs copies.

I Proposition 19. For every k-copy CRA, we can construct an equivalent copyless CRA.

I Remark 20. Note that our definition of bounded-copy differs from the one of [4]. There, flow
graphs are first trimmed with respect to the output vertex, and k-copy means that there are
at most k copy vertices in the whole trimmed flow graph. In this sense, 0-copy implies �-less
in our setting. Therefore, removing copies is the core of their transformation from functional
copyless (non-deterministic) streaming string transducers into copyless deterministic ones.

This ends the proof of Theorem 1. Actually, this last step in the proof extends easily
to show that bounded-copy finitely-ambiguous CRAs can be effectively transformed into
equivalent finitely-ambiguous CRAs. Applying then Theorem 1, we obtain

I Corollary 21. Every bounded-copy finitely-ambiguous NCRA can be effectively transformed
into an equivalent copyless CRA.

6 Conclusion

We have shown a construction removing the finite-ambiguity of a copyless NCRA, with
an application to the removal of regular look-aheads in copyless CRA-RLAs in arbitrary
semirings. It can be shown that the result does no longer hold for linear-ambiguous copyless
NCRAs using the example of [14, Theorem 2], therefore finite-ambiguity seems the weakest
condition for which our result holds. Moreover, existing techniques of regular look-ahead
removal for streaming string-to-tree transducers [3] cannot be used directly, as the addition
of unary mappings update strictly increases the expressive power of copyless CRAs. Going
back to the example of Figure 1, notice that the application of our construction from the
finitely-ambiguous NCRA An yields a copyless CRA that is bigger than the alternative
solution Ac: it has more states, and more registers. As future works, we thus plan to study
minimisation of copyless CRAs in the general setting of semirings. Our results work even
for non-commutative semirings. However it heavily relies on the distributivity property of
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semirings, in order to normalise the terms into shapes. The transformation from a �-less CRA
to a bounded-copy CRA also relies on the capability to multiply two registers (coefficients)
together: this is thus unclear how to extend our approach to the so-called additive copyless
CRAs where products in register updates must happen between a register and a constant.
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