
HAL Id: hal-02267701
https://hal.science/hal-02267701

Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SysML for embedded automotive Systems: a practical
approach

E Andrianarison, J-D Piques

To cite this version:
E Andrianarison, J-D Piques. SysML for embedded automotive Systems: a practical approach. ERTS2
2010, Embedded Real Time Software & Systems, May 2010, Toulouse, France. �hal-02267701�

https://hal.science/hal-02267701
https://hal.archives-ouvertes.fr

 Page 1/10

SysML for embedded automotive Systems: a practical approach

E. Andrianarison1, J-D. Piques2

1: VALEO Center for Electronics Excellence, 2 av. Fernand Pouillon , F-94042 Créteil Cedex
2: VALEO Engine and Electrical Systems, 14 avenue des Béguines, F-95892 Cery-Pontoise Cedex

Abstract: While SysML (System Modeling
Language) is a leading topic for System Engineering
(SE) in all domains, there is no pragmatic
implementation of SE for automotive embedded
systems and products. In this paper, a proposal is
developed to meet the needs of Valeo product lines.

Keywords: Model Driven Engineering, System
Modeling, SysML, System Engineering

1. Overview

As an introduction to the proposed SysML method,
Part 2 is intended to emphasize major challenges
related to system engineering in automotive and
expectations from a model based approach.
Methodological background and SysML positioning
regarding research are developed in Part 3. Part 4
illustrates a SysML implementation of the model-
driven SE process, experimented at Valeo’s on pilot
projects. Part 5 describes how SysML must be
supported by an integrated set of tools. Remaining
open issues are finally addressed in Part 6, to go
further on the subject.

2. Motivations

2.1. Automotive challenges
While intrinsic systems complexity is often
highlighted, the increasing complexity of
organizations responsible for system development
shall also be emphasized. The quest for the holly
grail of R&D competitiveness and the globalization of
the automotive industry have revealed a need for
efficient use of worldwide competence centers and
thus collaboration of teams located throughout the
world. Thus, many (not saying all) automotive
developments use multidisciplinary and distributed
concurrent engineering.
To mitigate risks, automotive actors are deploying
processes (CMMI, HIS-SPICE...) requiring more and
more formalization and effort in document writing.
Furthermore increasing complexity and safety
expectations (upcoming ISO26262) are also in favor
of that. Such trend has huge impacts on automotive
actors who historically worked out a fine-grained
trade off between cost, quality, performance and
development cycles. Automotive lean processes
have now to cope with higher formalization needs
and still whilst ensuring flexibility and R&D efficiency.
What is ultimately at stake is to improve

formalization, avoiding administrative documentation
drawbacks and degradation of expected gains.
At the same time, this context is also a unique
opportunity while automotive industry is facing a
major market breakthrough with a move towards
electrical and hybrid vehicles. New products are
expected and innovation is taking over usual carry
over. From this point of view, system approach and
higher formalization are key levers to secure
investments and work out innovative systems and
products.

2.2. Drawbacks of document centric approach
Implementation of requirement driven processes with
document centric data management has been
achieved in domains requiring high traceability of
safety related designs. Taking benefit of their
feedback, the following drawbacks have been
identified:
• to achieve a minimum formal level with text,

consistent effort is spent in writing valid
requirements that are testable, clear, consistent ..

• engineering models such as state machines or
architectures are difficult and expensive to
transform into textual requirements

• consistency and configuration of these artifacts
are hard to manage efficiently. This often leads to
disconnect engineering artifacts and project
documents

All these issues are impacting R&D efficiency and
ability to achieve quick iterations, whereas adopting
a model centric approach allows:
• to re-focus engineers on added value tasks by

increasing actual time spent on design
• to ensure a seamless and costless traceability /

consistency between different design elements
(functional/organic architectures …)

• to provide graphical means which ease
information sharing among different discipline
teams

2.3. Benefits of model based approach
On top of that, major system engineering
improvements are also expected. Sufficient effort
shall be dedicated to problem statement and new
means to work out and formalize stakeholders’
needs are required. As different architectures and
products are competing, support for design
exploration and decision making is required.
The short coming ISO26262 regulation reinforcing
functional safety activities is in favor of a tight
coupling between system and safety processes.

 Page 2/10

Interfacing functional and dysfunctional descriptions
is a prerequisite to achieve “Safety in the loop”
(SaIL).
More generally, model based approach will provide a
seamless and efficient way to rework designs in
iterative innovation developments.

3. Methodological background

3.1. System engineering mindset
A common issue is to define what a system is, and
when to use system engineering. Actually, the critical
point is how you consider the “object” under design,
not what the “object” actually is. Adopting a system
approach, involves considering various aspects in a
parallel and consistent way. These different focuses
are commonly called points of view (viewpoints).
These points of views may apply to system as well
as components, parts …
Methods and thoughts mentioned here are not only
targeting pure systems in Valeo but are also
applicable to components/products, to ensure
managed transition to the different implementation
disciplines.

3.2. Point of views
Among research projects focusing on complex
system modeling, SAGACE ([1], [2]) demonstrates
that 9 “orthogonal” viewpoints allow a complete and
optimized formalization of all system concerns.
From this theoretical basis, selection of viewpoints
has been achieved taking into account current risks
related to each concern on Valeo systems and
products. For migration path reasons and to cope
with system engineers’ learning curve, a first step
focus is dedicated to the 6 (among 9) following
viewpoints:
• External actors needs (static)
• Interactions scenarios/mission profiles
• Provided services to external actors
• Internal operations
• Physical resources and related breakdown
• Internal operations mapping onto resources
Most viewpoints related to system fairness regarding
adaptation to context, actors, resources or services
changes have been discarded.

3.3. EAST-ADL2 as automotive ontology
In order to make sure that models are meaningful,
concepts used (functions, ECU, actuators…) and
links shall be formally defined to provide an
automotive ontology. During the last past 10 years,
successive European automotive projects have
contributed to work out EAST-ADL2 (Automotive
Description Language, [3]) which defines an
architecture framework and provides a metamodel of
automotive specific artifacts.
Here also, a subset has been defined regarding
Valeo specific needs as an automotive supplier:

• FunctionalDesignArchitecture, FunctionModeling
HardwareDesignArchitecture, Behavior,Requirement
• ErrorBehavior, SafetyRequirement, SafetyCase

to support the upcoming ISO26262
The related artifacts are inspiring the on-going
definition of the Valeo SysML modeling to ensure a
later model to model transformation (M2M) with
EAST-ADL models. The following artifacts have
been discarded for the first step: Functional Analysis
Architecture, Feature Modeling, Environment
Modeling, Variability, Support, Verification Validation.
3.4. SysML opportunity
Nevertheless, there is currently no modeling
industrial tool available on the market using this
automotive Domain Specific Language (DSL).
Being method agnostic and providing a very general
boxology with “low” semantics, SysML therefore may
be used to describe selected SAGACE system
viewpoints and EAST-ADL2 artifacts. This allows for
instance to use the same SysML block definition
diagram (BDD) to describe either a functional or a
physical breakdown. Thus SysML appears to be a
unique opportunity to implement “EAST ADL2
friendly models” and take benefit from the defined
architecture framework.
SysML method added value consists in:
• Selecting a diagram subset (among 9 available)

which allows viewpoints and artifacts
implementation in a convenient way for system
engineers (learning curve optimization)

• Providing defined semantics to ensure diagrams
meaning

• Providing an obvious diagram sequence which
ensures modeling efficiency regarding company
processes

• Taking into account interfaced processes and
tools constraints such as Reqtify from Geensoft
for requirement traceability or Simulink from The
Mathworks for continuous modeling

The current method is therefore targeting the
optimum trade off for Valeo deployment and is built
from existing state of the art. It does not claim for
any theoretical novelty while having merged relevant
best practices from existing approaches listed in the
bibliography ([4], [5], [6], [7], [8]), such as EIRIS
method. This implementation is also taking
maximum benefits from available features of the
selected SysML tool for Valeo pilot projects, namely
Artisan Studio from Atego.
Furthermore, for the first step, no particular
emphasis was put on execution and simulation of the
SysML model.
3.5. Valeo SysML example
Diagrams selected to illustrate the approach are
extracted from a tutorial example used as training on
pilot projects. For confidentiality and readability
reasons it has been preferred to using diagrams
directly extracted from pilot projects.

 Page 3/10

The method described below is under validation on
pilot projects and is obviously subject to changes
and improvements, to take into account field return.

4. Model-driven System Engineering process

The overall System Engineering process begins with
the project context, considering the system to be
developed as a black box, studying the environment,
and then successively going deeper into the details.
More precisely the System Engineering process is
divided into four major phases:
• Stakeholder needs definition

• Requirements analysis

• Logical architecture design

• Physical architecture design
In the following, the process and the sequence of
activities will be described in a pure sequential way.
However, in practice different steps could be
performed simultaneously with iterative and mutual
refinements. Moreover, even though not detailed in
this paper, each phase systematically ends with a
traceability analysis to check the completeness of
activities performed and artifacts developed.
Finally, the kind of diagrams used at each step will
be given by acronyms in brackets at title level: Block
Definition Diagrams (BDD), Internal Block Diagrams
(IBD), Use Case diagrams (UC), Sequence
Diagrams (SD), STate Machine diagrams (STM),
ACTivity Diagrams (ACT), REQuirements diagrams
(REQ).

4.1. Stakeholder needs definition

Probably the most important step in a system
development process is collecting initial needs to
secure the goals that the system under development
is to pursue.
The key steps of this phase are:
• Identify all the stakeholder needs
• Define the boundaries of the system and external

actors involved
• Identify the user level operating modes
• Identify and describe the operational use cases
• Link the stakeholder requirements to the

operational use cases
At this stage, all analyses are performed from the
system external user point of view, the system being
considered as a black box. The output of this phase
is the Stakeholder Needs Document (SND) that
makes a synthesis of all activities performed.

4.1.1. Stakeholder needs identification (REQ)
All individuals and organizations that may have an
interest in the system are the potential source of
requirements and therefore should be identified prior
to all other activities. The key point is that
stakeholder needs should describe the services

expected by the system user, and not how the
system will fulfill these needs.
The sources of stakeholder needs will be managed
outside of the SysML model, within requirements
documents or specific databases. It is particularly
important to capture mission-level performance
requirements and measures of effectiveness that will
be used later to select the best candidate solutions.
The next step is to import stakeholder needs (with all
their relevant fields) into mirroring SysML
requirement objects (with same identifiers). A
gateway mechanism such as Reqtify is required to
perform a mono-directional synchronization (from
external data to SysML) in case of change of source
data. Because the standard SysML requirement
format is quite limited, the extension mechanism of
stereotypes is used to add new specific attributes to
keep track of extra information contents. The first
application of stereotyping attributes is to
differentiate requirements imported from external
requirement repositories from those created directly
inside the SysML model. Moreover, other
stereotyped tags should be declared to store specific
information or resulting from the elicitation activities.

4.1.2. System context modeling (BDD)
The system context model represents the direct
environment of the system and gives initial
information about the system boundaries and the
communication flowing between the system and
external systems and users that the system interacts
with.
The first step is to identify the different stages of the
system lifecycle, from manufacturing to recycling.
For each stage of the system lifecycle, one SysML
block definition diagram is declared to model the
operational context. The system itself appears in the
center of the diagram as a single black box SysML
block.

bdd Operational Context [Hybrid Vehicle]

«block»
Hybrid Vehicle Platform

«block»
Environment

Driver

Fuelling
Station

Electric Station

Road Contact

User

11 Drives

*

*

Generates Perturbations

1

1

Provides Fuel

1

1

Provides Electricity

1

*

Moves on

1

1

Reloads Energy

bdd Operational Context [Hybrid Vehicle]

«block»
Hybrid Vehicle Platform

«block»
Environment

Driver

Fuelling
Station

Electric Station

Road Contact

User

11 Drives

*

*

Generates Perturbations

1

1

Provides Fuel

1

1

Provides Electricity

1

*

Moves on

1

1

Reloads Energy

Figure 1: Operational context diagram

The next step consists in representing all currently
known interaction partners, using SysML actor
objects. An actor is not necessarily a concrete

 Page 4/10

individual or system, but a role played by an outside
element in interaction.
Then, interactions between actors and the system
are represented as SysML association relationships.
The purpose is to identify basic information helpful to
determine the services requested from the system
embedded in its environment (the use cases), and
not to give technical details of these services.
Even though, the context diagrams may seem
obvious, in practice, searching for actors can lead to
very fruitful discussions between the different
stakeholders.

4.1.3. User modes identification (STM)
A mode characterizes a situation in the system life
for which a specific expected behavior can be
defined. It represents a state invariant of the system
from the external user point of view, e.g. regarding
the service given to the user and not how this
service is performed by the system.
The goal is to derive a unique state machine
aggregating all the modes and main transitions
identified in the interactions with external users.
Therefore, establishing the user mode state machine
is an iterative process tightly coupled and interleaved
with operational use case identification described in
the next chapter.

Parking Maintenance

Energy reloading

Battery reloading Fuel refilling

Driving

/

[End of life]/

[Key ON]/ [Key OFF]/

[Failure suspected]/

[No failure]/

[Fuel pistol engaged]/

[Plug disconnected]/

[Plug connected]/

[Fuel pistol disengaged]/

Parking Maintenance

Battery reloading Fuel refillingBattery reloading Fuel refilling

Energy reloading

Battery reloading Fuel refilling

Driving

/

[End of life]/

[Key ON]/ [Key OFF]/

[Failure suspected]/

[No failure]/

[Fuel pistol engaged]/

[Plug disconnected]/

[Plug connected]/

[Fuel pistol disengaged]/

Figure 2: User modes state diagram

4.1.4. Operational use cases identification (UC,
SD)

Use cases represent the services expected from the
system, which means that they will be key elements
to the requirement analysis stage. Indeed, use cases
will help to refine stakeholder expectations and
therefore identify system requirements in greater
details.
Uses cases will be identified starting from the
context model, asking what the actors want of the
system, especially with regard to their roles and to

incoming information flows. More precisely, a use
case always refers to at least one actor; it is started
by an external trigger; and it ends with a user result.
Moreover, as many use case diagrams as stages of
the system lifecycle will be described.

Driver

Fuelling
Station

Road Contact

User

Electric Station

Accelerate

Drive Vehicle

Fill Fuel Tank

Load Electric
Battery

Brake

Park Vehicle

Start

Stop

«include»

«include»

«include»

«extend»

«extend»

Hybrid Vehicle Platform

uc Operational Use Cases [Hybrid Vehicle]

Driver

Fuelling
Station

Road Contact

User

Electric Station

Accelerate

Drive Vehicle

Fill Fuel Tank

Load Electric
Battery

Brake

Park Vehicle

Start

Stop

«include»

«include»

«include»

«extend»

«extend»

Hybrid Vehicle Platform

uc Operational Use Cases [Hybrid Vehicle]

Figure 3: Use case diagram (user level)

In fact, a use case can be seen as a group of
scenarios performed by the same main actor, with
the same starting point and leading to the same
ending point. These scenarios describe sequences
of actions, beginning with the same pre-condition
(trigger) and ending with the same post-condition
(result); the pre-condition and the post-condition
corresponding to modes in the user mode state
machine mentioned in the previous chapter The
purpose is to describe the sequence of steps
involved in the different alternative scenarios, either
leading to the expected result or to failure. This is
done using SysML sequence diagrams.
It is particularly important to notice that, at this stage,
scenarios will only be described at user interaction
level. The sequence diagram established here is
primarily aimed at identifying the system interfaces.
It will be further refined at requirement analysis stage
to identify functions performed by the system.

4.1.5. Traceability to stakeholder needs (REQ)
We remember that stakeholder (or initial)
requirements refer to statements that define the
expectations of the systems in terms of mission
objectives, environment, constraints and measures
of effectiveness/suitability, from the system user
point of view. In order to make sure that all
stakeholder needs are covered by the operational
use cases, respective traceability links have to be
established between SysML use case objects and
requirements.

 Page 5/10

req System Requirements Allocation to UC [Accelerate]

Accelerate

«requirement»

id#
S06

txt
During transients, torque assistance
will be provided by the electrical
engine to the internal combustion
engine.

Torque assistance

«satisfy»

req System Requirements Allocation to UC [Accelerate]

Accelerate

«requirement»

id#
S06

txt
During transients, torque assistance
will be provided by the electrical
engine to the internal combustion
engine.

Torque assistance

«satisfy»

Figure 4: Requirement traceability diagram

4.2. Requirement analysis

The objective of the requirement analysis phase is to
analyze the inputs previously collected, to move from
a problem statement to an abstract solution.
The key steps of this phase are:
• Describe the interfaces of the system with

external actors precisely
• Identify the system level operating states
• Develop and refine the system use cases
• Develop and refine the system requirements into

external function and interface descriptions
• Link system functions and interfaces to the

system requirements
At this stage all analyses are performed from system
designer point of view, the system still being
considered as a black box. The output of this phase
is the System Requirement Document (SyRD),
which summarizes all activities performed.

4.2.1. System interfaces description (IBD)
The objective of the system interface description
phase is to give more details on the interaction flows
between the actors and the system (always seen as
a black box). The system physical external interfaces
are described using internal block diagrams.

ibd External Physical Interfaces [Hybrid Vehicle Platform]

: Hybrid Vehicle Platform

ElectricStationCommmunicationPort : CommunicationProtocol

ElectricPlug : Current

ZEVModeButton : On-Off signal

StartVehicleButton : On-Off signal

AcceleratorPedal : Continuous signal

BrakePedal : Continuous signal

RoadContact : Torque

DiagnosisToolCommunicationPort : DiagnosisProtocol

Driver
Electric Station

Road Contact

Diagnosis Tool

StartSignal : On-Off signal
«ItemFlow»

ibd External Physical Interfaces [Hybrid Vehicle Platform]

: Hybrid Vehicle Platform

ElectricStationCommmunicationPort : CommunicationProtocol

ElectricPlug : Current

ZEVModeButton : On-Off signal

StartVehicleButton : On-Off signal

AcceleratorPedal : Continuous signal

BrakePedal : Continuous signal

RoadContact : Torque

DiagnosisToolCommunicationPort : DiagnosisProtocol

ElectricStationCommmunicationPort : CommunicationProtocol

ElectricPlug : Current

ZEVModeButton : On-Off signal

StartVehicleButton : On-Off signal

AcceleratorPedal : Continuous signal

BrakePedal : Continuous signal

RoadContact : Torque

DiagnosisToolCommunicationPort : DiagnosisProtocol

ElectricStationCommmunicationPort : CommunicationProtocol

ElectricPlug : Current

ZEVModeButton : On-Off signal

StartVehicleButton : On-Off signal

AcceleratorPedal : Continuous signal

BrakePedal : Continuous signal

RoadContact : Torque

DiagnosisToolCommunicationPort : DiagnosisProtocol

Driver
Electric Station

Road Contact

Diagnosis Tool

StartSignal : On-Off signal
«ItemFlow»
StartSignal : On-Off signal
«ItemFlow»
StartSignal : On-Off signal
«ItemFlow»

Figure 5: External interfaces description

To specify the kind of admissible data flow, a type
indication shall be associated with each port, using
SysML item types or flow specifications.
Several internal block diagrams are defined to
describe the different contexts of use. Moreover, it is

also possible to define several internal block
diagrams for the same context of use, each diagram
corresponding to a specific kind of interface (e.g.:
mechanical, electrical, data processing buses…) to
ease information sharing with involved disciplines.

4.2.2. System states identification (STM)
The objective of this step is to derive a unique state
machine, resulting from the aggregation of all the
states and main transitions identified in the system
scenarios it participates in. This state machine will
be the central element of the system model to which
complementary artifacts will be later attached to, with
the final target in mind being its validation by
simulation.
The system state machine is not necessarily a
refinement of the user mode state machine, as
possibly new sub-states or suppressed states and
even a completely different structure may be
defined. Practically, establishing the system state
machine is an iterative process tightly coupled and
interleaved with system scenarios refinement
described in the next chapter.

4.2.3. System scenario refinement (SD)
The objective of this stage is to refine user level
scenarios in order to identify services to be provided
by the system. Therefore, this activity is similar to a
classical external functional analysis.
The sequence diagrams previously established to
describe actors/system interactions are
complemented by functions to be performed by the
system (always seen as a black box). As shown on
the figure below, these functions are denoted as
loop interactions on the system lifeline and modeled
as SysML operations attached to the system block.

:Hybrid Vehicle PlatformDriver Road Contact

driver pushes accelerator pedal

par

system increases vehicle speed

also par

system control traction

also par

powertrain delivers positive
torque to wheels

:Hybrid Vehicle PlatformDriver Road Contact

driver pushes accelerator pedal
evPushAcceleratorevPushAccelerator

par

system increases vehicle speed

also par

also par

end par

system increases vehicle speed Fct_AccelerateVehicleFct_AccelerateVehicle

also par

system control tractionsystem control traction
Fct_ControlTractionFct_ControlTractionalso par

powertrain delivers positive
torque to wheels
powertrain delivers positive
torque to wheels

evPowertrainPositiveTorqueevPowertrainPositiveTorque

end par

system increases vehicle speed Fct_AccelerateVehicleFct_AccelerateVehicle

also par

system control tractionsystem control traction
Fct_ControlTractionFct_ControlTraction

system control traction
Fct_ControlTractionFct_ControlTractionalso par

powertrain delivers positive
torque to wheels
powertrain delivers positive
torque to wheels

evPowertrainPositiveTorqueevPowertrainPositiveTorque
powertrain delivers positive
torque to wheels

evPowertrainPositiveTorqueevPowertrainPositiveTorque

Figure 6: Scenario description (system level)

The refinement of user scenarios into system
scenarios will possibly lead to new interaction events
and even to a new structure of use cases.

4.2.4. System requirement capture
The process under validation in the pilot projects is
to avoid a redundant writing of system requirements
as textual requirements in an external requirement
management repository, and to choose the SysML
model artifacts as the reference for system and
component requirements specification.
Indeed, interface requirements are modeled by ports
and related type definitions, while functional

 Page 6/10

requirements are represented by operations, both
being owned by the system block.

bdd External Functions And Interfaces [Hybrid Vehicle Platform]

«block»

flow ports
in AcceleratorPedal : Continuous signal
in BrakePedal : Continuous signal
inout DiagnosisToolCommunicationPort : DiagnosisProtocol
in ElectricPlug : Current
inout ElectricStationCommmunicationPort : CommunicationProtocol
inout RoadContact : Torque
in StartVehicleButton : On-Off signal
in ZEVModeButton : On-Off signal

operations
Fct_StartVehicle ()
Fct_RecoverBrakingEnergy ()
Fct_ChargeBatteryLowVoltageStation ()
Fct_ChargeBatteryHighVoltageStation ()
Fct_AccelerateVehicle ()
Fct_ControlTraction ()
Fct_DecelerateVehicle ()
Fct_StopVehicle ()
Fct_TorqueAssist ()

Hybrid Vehicle Platform

bdd External Functions And Interfaces [Hybrid Vehicle Platform]

«block»

flow ports
in AcceleratorPedal : Continuous signal
in BrakePedal : Continuous signal
inout DiagnosisToolCommunicationPort : DiagnosisProtocol
in ElectricPlug : Current
inout ElectricStationCommmunicationPort : CommunicationProtocol
inout RoadContact : Torque
in StartVehicleButton : On-Off signal
in ZEVModeButton : On-Off signal

operations
Fct_StartVehicle ()
Fct_RecoverBrakingEnergy ()
Fct_ChargeBatteryLowVoltageStation ()
Fct_ChargeBatteryHighVoltageStation ()
Fct_AccelerateVehicle ()
Fct_ControlTraction ()
Fct_DecelerateVehicle ()
Fct_StopVehicle ()
Fct_TorqueAssist ()

Hybrid Vehicle Platform

Figure 7: System requirements as block properties

4.3. Logical architecture design

The objective of the logical architecture design
phase is to describe how the system will be internally
structured to realize the expected features, but
without any consideration of their upcoming physical
implementation.
The key steps of this phase are:
• Identify the set of internal functions to be

provided by the system
• Describe how these internal functions are

activated depending on the system state
• Group these functions into coherent logical

blocks
• Develop and refine the logical interfaces between

the logical blocks
• Link internal functions and interfaces to the

logical blocks
• Take into consideration any existing and relevant

architecture
At this stage all analyses are performed from system
internal point of view, the system being considered
as a white box.
The modeling elements developed in this phase are
included in the System Design Document (SyDD),
which makes a synthesis of all logical and physical
design solutions and their mapping.

4.3.1. Internal functions identification (ACT)
The objective of this step is to provide details on the
internal behavior of system block operations.
Therefore, the kind of task performed is similar to a
classical internal functional analysis.
The activity diagrams use data flow and control flow
representations in a hierarchical decomposition to
work out internal activities that should be performed.
The lowest level activities (namely leaves activities)
of this hierarchy represent internal functions.

MonitorVehicleConditions

: MeasureVehicleVelocity

vehSensors

vehVelocity

: EstimateBatterySOC

vehSensors

BatterySOC

: EstimateTorqueRequest

vehCmd

vehTorqueRequest

: MonitorTraction

vehSensors

vehTractionStatus

: EstimateVehicleConditions

vehTorqueRequest

vehCond

BatterySOC vehVelocity vehTractionStatus

vehCond

vehCmd vehSensors

«continuous»
«continuous»

«continuous»

«continuous»

«continuous»

«continuous»

«continuous» «continuous»
«continuous»

: MeasureVehicleVelocity: EstimateBatterySOC: EstimateTorqueRequest
: MonitorTraction

: EstimateVehicleConditions

vehCond

vehCmd vehSensors

vehSensors

vehVelocity

vehSensors

vehVelocity

: MeasureVehicleVelocity

vehSensors

BatterySOC

vehSensors

BatterySOC

: EstimateBatterySOC

vehCmd

vehTorqueRequest

vehCmd

vehTorqueRequest

: EstimateTorqueRequest

vehSensors

vehTractionStatus

vehSensors

vehTractionStatus

: MonitorTraction

vehTorqueRequest

vehCond

BatterySOC vehVelocity vehTractionStatusvehTorqueRequest

vehCond

BatterySOC vehVelocity vehTractionStatus

: EstimateVehicleConditions

vehCond

vehCmd vehSensors
MonitorVehicleConditions

vehSensors

vehVelocity

vehSensors

vehVelocity

: MeasureVehicleVelocity

vehSensors

vehVelocity

vehSensors

BatterySOC

vehSensors

BatterySOC

: EstimateBatterySOC

vehSensors

BatterySOC

vehCmd

vehTorqueRequest

vehCmd

vehTorqueRequest

: EstimateTorqueRequest

vehCmd

vehTorqueRequest

vehSensors

vehTractionStatus

vehSensors

vehTractionStatus

: MonitorTraction

vehSensors

vehTractionStatus

vehTorqueRequest

vehCond

BatterySOC vehVelocity vehTractionStatusvehTorqueRequest

vehCond

BatterySOC vehVelocity vehTractionStatus

: EstimateVehicleConditions

vehTorqueRequest

vehCond

BatterySOC vehVelocity vehTractionStatus

vehCond

vehCmd vehSensors

«continuous»
«continuous»

«continuous»

«continuous»

«continuous»

«continuous»

«continuous» «continuous»
«continuous»

Figure 8: Lowest level activity diagram describing
system internal functions

The key point is that the upper level activity
diagrams describing the internal behavior are
triggered by the system state machine, which will be
an interesting and mandatory property for later
execution of the system model.

4.3.2. Logical blocks definition
The objective of this step is to factorize and group
system internal functions (leaves activities) into sub-
sets to support the analysis of alternatives during
physical architectural analysis. These subsets, called
logical blocks, are abstractions of the components
that will be implemented by the system; they perform
the system functionality without imposing
implementation constraints. The selection of each
logical block is based on qualitative or quantitative
criteria such as modularity or reuse of existing
components.
The logical blocks are declared as SysML blocks
with allocation relationships to the leaves activities
performed. Moreover, operations are declared at
block level to perform the activities which have been
allocated to.

4.3.3. Logical architecture definition (BDD)
The logical architecture describes the compositional
relationships between the upper level system block
and constitutive logical blocks. It serves as an
intermediate level of abstraction between the system
requirements and the physical architecture. This
intermediate level can reduce the impact of both
requirements and technology changes on the
physical design.
This description is performed using a block definition
diagram.

 Page 7/10

bdd Logical Components [Hybrid System Platform]

«block»
ElectricPowerStorage

«block»
ReversibleEPowerControl

«block»
ICEngineTorqueDelivery

«block»
ReversibleEPowerDelivery

«block»
ICEngineTorqueControl

«block»
PowerStorageLoading

«block»
DC-DC_Conversion

«block»
TorqueTransmission

«block»
WheelTorqueBalance

«block»
FrontWheeling

«block»
RearWheeling

«block»
CommunicationInterfacesControl

«block»
RatioReduction

«block»
BrakeSensing

«block»
AcceleratorSensing

«block»
VehicleEnergyManagement

«block»
Hybrid Vehicle Platform (Logical)

«block»
RearWheelTorqueBalance

«block»
FrontWheelTorqueBalance

«block»
ElectricPowerStorageControl

«block»
VehicleElectricPlugging

«block»
OnBoardElectricityDelivery

21

fw

21

rw

1 1

acc

1

1

bp 1

1

dcdc

1

1

rr

2

1

df

1

1

trsm

1

1

bc

1

1

em

1

1

ice 1

1

ecu

1

1

cic

1 1

bkp

1

1

pdm

1

1

bpc

1

1

emc

11
vp

11
oben

diff

diff

bdd Logical Components [Hybrid System Platform]

«block»
ElectricPowerStorage

«block»
ReversibleEPowerControl

«block»
ICEngineTorqueDelivery

«block»
ReversibleEPowerDelivery

«block»
ICEngineTorqueControl

«block»
PowerStorageLoading

«block»
DC-DC_Conversion

«block»
TorqueTransmission

«block»
WheelTorqueBalance

«block»
FrontWheeling

«block»
RearWheeling

«block»
CommunicationInterfacesControl

«block»
RatioReduction

«block»
BrakeSensing

«block»
AcceleratorSensing

«block»
VehicleEnergyManagement

«block»
Hybrid Vehicle Platform (Logical)

«block»
RearWheelTorqueBalance

«block»
FrontWheelTorqueBalance

«block»
ElectricPowerStorageControl

«block»
VehicleElectricPlugging

«block»
OnBoardElectricityDelivery

21

fw

21

rw

1 1

acc

1

1

bp 1

1

dcdc

1

1

rr

2

1

df

1

1

trsm

1

1

bc

1

1

em

1

1

ice 1

1

ecu

1

1

cic

1 1

bkp

1

1

pdm

1

1

bpc

1

1

emc

11
vp

11
oben

diff

diff

Figure 9: Logical architecture

4.3.4. Logical internal interfaces description
(IBD)

The objective of the internal logical interface
description step is to give more details on the
interaction flows between the internal logical blocks.
The system logical internal interfaces are described
using internal block diagrams. To specify the kind of
admissible data flow, a type indication shall be
associated with each port, using SysML item types
or flow specifications.

4.4. Physical architecture design

The focus of the physical architecture design phase
is on the development of a physical architecture (e.g.
a set of components or component parts) capable of
performing the internal functions required by the
logical architecture.
The key steps of this phase are:
• Define relevant measures of effectiveness to

identify candidate physical architectures to be
investigated

• Investigate the most promising candidate
solutions, and for each one:
o Define a physical architecture capable of

performing the required functions
o Allocate the logical functions to physical

components
o Develop and refine the components physical

interfaces and interactions
o Develop and refine the components

requirements
o Evaluate the measures of effectiveness

• Select the best physical architecture solution
based on measure of effectiveness criteria

The modeling elements developed in this phase are
included in the System Design Document (SyDD),
which makes a synthesis of all logical and physical
design solutions.
The output of this phase is a also a set of
Component Needs Documents (CND), which

correspond to specifications for the components or
disciplines modules to be implemented.

4.4.1. Physical blocks definition
The focus of the physical architecture design phase
is on the allocation of logical operations to the
components of a physical architectural structure.
This structure may result from a previous trade study
or a given (legacy) architecture.
The partitioning criteria used for allocation should
reduce the impact of requirements and technology
changes and more effectively address key issues
such as performance, reliability, efficient re-use of
COTS, maintainability, security and cost.
At the lowest level of the architectural
decomposition, the functional allocation shall
address the realization, e.g. which operation shall be
implemented by which physical component
developed by a single specific discipline (e.g.
hardware, software, mechanics…).
The physical blocks are declared in the same way as
logical blocks, using SysML blocks and linked with
allocation relationships to the logical blocks they
implement. Moreover, operations are implemented at
block level to perform the activities which have
allocated to.

4.4.2. Physical architecture definition (BDD)
The physical architecture describes the
compositional relationships between the upper level
(physical) system block and its constitutive physical
blocks. This description is performed using a block
definition diagram in the same way as for the logical
architecture.

4.4.3. Physical internal interfaces description
(IBD)

The objective of the internal physical interface
description step is to provide more details on the
interaction flows between the internal physical
blocks, using internal block diagrams.

ibd Electrical Interfaces [A Solution]

«block»
Hybrid Vehicle Plateform (Physical A)

«part»
dcdc : DC-DCConverter

dcdc_bpPrt : BatteryVoltage

dcdc_obenPrt : OnBoardVoltage

«part»
bc : BatteryCharger

bc_bpPrt : BatteryVoltage

bc_vepPrt : LoadVoltage

«part»
emc : ElectricMotorController

emc_bcPrt : LoadVoltage

emc_bpPrt : BatteryVoltage

emc_emPrt : ElectricMotorFlow

«part»
emg : ElectricMotorGenerator

emg_emcPrt : ElectricMotorFlow

«part»
vep : VehicleElectricPlug

vep_bcPrt : LoadVoltage

«part»
oben : OnBoardElectricNetwork

oben_dcdcPrt : OnBoardVoltage

«part»
bp : BatteryPack

bp_bcPrt : BatteryVoltage bp_dcdcPrt : BatteryVoltage

bp_emcPrt : BatteryVoltage

ElectricPlug : Current

ibd Electrical Interfaces [A Solution]

«block»
Hybrid Vehicle Plateform (Physical A)

«part»
dcdc : DC-DCConverter

«part»
bc : BatteryCharger

«part»
emc : ElectricMotorController

«part»
emg : ElectricMotorGenerator

«part»
vep : VehicleElectricPlug

«part»
oben : OnBoardElectricNetwork

«part»
bp : BatteryPack

ElectricPlug : Current

«part»
dcdc : DC-DCConverter

dcdc_bpPrt : BatteryVoltage

dcdc_obenPrt : OnBoardVoltage

dcdc_bpPrt : BatteryVoltage

dcdc_obenPrt : OnBoardVoltage

«part»
bc : BatteryCharger

bc_bpPrt : BatteryVoltage

bc_vepPrt : LoadVoltage

bc_bpPrt : BatteryVoltage

bc_vepPrt : LoadVoltage

«part»
emc : ElectricMotorController

emc_bcPrt : LoadVoltage

emc_bpPrt : BatteryVoltage

emc_emPrt : ElectricMotorFlow

emc_bcPrt : LoadVoltage

emc_bpPrt : BatteryVoltage

emc_emPrt : ElectricMotorFlow

«part»
emg : ElectricMotorGenerator

emg_emcPrt : ElectricMotorFlowemg_emcPrt : ElectricMotorFlow

«part»
vep : VehicleElectricPlug

vep_bcPrt : LoadVoltagevep_bcPrt : LoadVoltage

«part»
oben : OnBoardElectricNetwork

oben_dcdcPrt : OnBoardVoltageoben_dcdcPrt : OnBoardVoltage

«part»
bp : BatteryPack

bp_bcPrt : BatteryVoltage bp_dcdcPrt : BatteryVoltage

bp_emcPrt : BatteryVoltage

bp_bcPrt : BatteryVoltage bp_dcdcPrt : BatteryVoltage

bp_emcPrt : BatteryVoltage

ElectricPlug : Current

«part»
dcdc : DC-DCConverter

dcdc_bpPrt : BatteryVoltage

dcdc_obenPrt : OnBoardVoltage

dcdc_bpPrt : BatteryVoltage

dcdc_obenPrt : OnBoardVoltage

dcdc_bpPrt : BatteryVoltage

dcdc_obenPrt : OnBoardVoltage

«part»
bc : BatteryCharger

bc_bpPrt : BatteryVoltage

bc_vepPrt : LoadVoltage

bc_bpPrt : BatteryVoltage

bc_vepPrt : LoadVoltage

bc_bpPrt : BatteryVoltage

bc_vepPrt : LoadVoltage

«part»
emc : ElectricMotorController

emc_bcPrt : LoadVoltage

emc_bpPrt : BatteryVoltage

emc_emPrt : ElectricMotorFlow

emc_bcPrt : LoadVoltage

emc_bpPrt : BatteryVoltage

emc_emPrt : ElectricMotorFlow

emc_bcPrt : LoadVoltage

emc_bpPrt : BatteryVoltage

emc_emPrt : ElectricMotorFlow

«part»
emg : ElectricMotorGenerator

emg_emcPrt : ElectricMotorFlowemg_emcPrt : ElectricMotorFlowemg_emcPrt : ElectricMotorFlow

«part»
vep : VehicleElectricPlug

vep_bcPrt : LoadVoltagevep_bcPrt : LoadVoltagevep_bcPrt : LoadVoltage

«part»
oben : OnBoardElectricNetwork

oben_dcdcPrt : OnBoardVoltageoben_dcdcPrt : OnBoardVoltageoben_dcdcPrt : OnBoardVoltage

«part»
bp : BatteryPack

bp_bcPrt : BatteryVoltage bp_dcdcPrt : BatteryVoltage

bp_emcPrt : BatteryVoltage

bp_bcPrt : BatteryVoltage bp_dcdcPrt : BatteryVoltage

bp_emcPrt : BatteryVoltage

bp_bcPrt : BatteryVoltage bp_dcdcPrt : BatteryVoltage

bp_emcPrt : BatteryVoltage

ElectricPlug : Current

Figure 10: Physical internal interfaces description

 Page 8/10

To avoid information overload on the same diagram,
several internal block diagrams will be described,
each diagram corresponding to a specific kind of
interface (ex: mechanical, electrical, data processing
buses,…).

4.4.4. Component interactions definition (SD)
The focus of black-box sequence diagrams
described at system level was on the identification of
the required sequences of system functions
(operations). Because some physical components
may require significant refinement to address
discipline-specific concerns and fully specify the
related requirements, it may be necessary to
establish white-box sequence diagrams focused on
the collaboration between the different components.
The derivation of white-box sequence diagrams is
performed by refining the system level related
sequence diagrams and splitting the black-box
system lifeline into as many lifelines as constitutive
physical components.
Moreover, a physical component may include a state
machine as part of its specification, if it has
significant state-based behavior.

4.4.5. Best physical architecture choice
Since there may be several competing hardware
and/or software physical architectures that meet a
given set of functional and performance
requirements (e.g. the same logical architecture),
several physical architecture alternatives may be
investigated. The optimum physical design concept
is selected based upon a set of measures of
effectiveness (MoEs), that are weighted according to
relative importance.

bdd Candidates Physical Architectures [Hybrid System Platform]

«block»

values
Electric Engine Configuration = Central Motor
Hybrid mode emission = 95 g/km CO2
Vehicle cargo capacity = 200 kg
ZEV mode autonomy = 70 km
ZEV mode velocity = 105 km/h

Hybrid Vehicle Plateform (Physical A)
«block»

values
Electric Engine Configuration = Wheel Motors
Hybrid mode emission = 90 g/km CO2
Vehicle cargo capacity = 150 kg
ZEV mode autonomy = 55 km
ZEV mode velocity = 110 km/h

Hybrid Vehicle Plateform (Physical B)

«block»
Hybrid Vehicle Platform

bdd Candidates Physical Architectures [Hybrid System Platform]

«block»

values
Electric Engine Configuration = Central Motor
Hybrid mode emission = 95 g/km CO2
Vehicle cargo capacity = 200 kg
ZEV mode autonomy = 70 km
ZEV mode velocity = 105 km/h

Hybrid Vehicle Plateform (Physical A)
«block»

values
Electric Engine Configuration = Wheel Motors
Hybrid mode emission = 90 g/km CO2
Vehicle cargo capacity = 150 kg
ZEV mode autonomy = 55 km
ZEV mode velocity = 110 km/h

Hybrid Vehicle Plateform (Physical B)

«block»
Hybrid Vehicle Platform

Figure 11: Physical candidate alternatives
comparison

The estimations of MoEs result from specific
engineering analyses performed with appropriate
tools such as modeling and simulation environments
and with different analysis objectives (performance,
robustness, safety, cost…). The results from
engineering analyses are therefore not elaborated
using the SysML tool but incorporated back into the
system model as value properties attached to the
upper level system block describing the
corresponding physical alternative.

4.4.6. Component Requirements Specification
The physical architecture model results in the
specification of the components to be implemented
by each specific discipline (e.g. hardware, software,
mechanics…). The component specifications are
typically captured as blocks with the appropriate
black-box specification features attached as
operations, ports or properties. The black-box
component specification also includes functional
requirements derived from scenarios analysis, and
performance properties whose values (measures of
effectiveness) have been determined through
engineering analysis and trade studies.
The Component Needs Document (CND) describing
the component requirements from the system
designer point of view, is therefore automatically
generated from the SysML model, through an
extraction of all artifacts attached to the physical
block under consideration.

5. Towards a systems development integrated
environment

This chapter describes how the SysML system
model must be supported by the development
environment to provide an integrated framework for
system development. A system development
environment refers to the tools and repositories used
for system engineering.

USER

Repository

Customer
Needs

USER

Repository

Customer
Needs

USER

Repository

Customer
Needs

User
Requirements

SYSTEM
PRODUCT

Architecture
Tools

Architecture Breakdown

User
Requirements

SYSTEM
PRODUCT

Architecture
Tools

Architecture Breakdown

User
Requirements

SYSTEM
PRODUCT

Architecture
Tools

Architecture Breakdown

COMPONENT
DISCIPLINE

Refined requirements
Design/Validation Elements

Development
Tools

Component
Requirements

COMPONENT
DISCIPLINE

Refined requirements
Design/Validation Elements

Development
Tools

Component
Requirements

REQTIFY

Traceability
results

REQTIFYREQTIFY

Traceability
results

Figure 12: Tools for an integrated systems
development environment

5.1. Requirement management and traceability

The requirement traceability management activity is
invoked throughout the whole system engineering
process, to establish traceability between the
stakeholder requirements, the system model
artifacts, and the system and components
specifications. The stakeholder requirements are
typically captured in text specifications external to
the SysML modeling environment. The SysML
modeling tool provides a mechanism to import text
requirements by creating mirroring requirements
directly into the SysML model and to maintain
synchronization between the source requirements

 Page 9/10

and the corresponding SysML requirement objects.
The analyses performed by the system modeling tool
can result in proposing updates to the requirements
baseline, but the textual requirements are formally
updated and controlled in the requirement
management tool.
Traceability reports are generated and used to
analyze how the system design meets the system
requirements and to perform impact analysis in case
of changes. In fact, two kinds of analyses are
performed:
• Internal traceability analysis, between the SysML

model artifacts, directly generated using the
SysML tool,

• External traceability analysis, between the text
requirements repository and the SysML model
boundary, performed, using a standard
requirement traceability tool such as Reqtify.

5.2. Configuration management

Configuration management tools ensure that models
and other development artifacts are maintained in a
controlled fashion and that baselines are well
identified.
The SysML tool is used with internal configuration
management and change control features activated
to provide a small granularity on configuration items
manipulated. However, for major milestones, the
packages contents of the SysML database are
baselined and put under the standard configuration
management tool. Therefore, packages are used to
partition the model and constitute the unit of external
configuration control.

5.3. System simulation

The SysML system model information can be used
as a basis for building an executable system model
to analyze the dynamics of the system. To support
this, the static system modeling environment must
be complemented by an execution environment. This
execution environment could be either directly
supported by the SysML tool or performed by an
external simulation tool.
The approach selected for pilot projects is to transfer
only components architecture description information
to discipline specific tools in charge of refining an
implementation dynamic model. For instance,
internal blocks diagrams describing the software
architecture of a control law are translated into
Simulink dataflow models, with a direct mapping of
blocks, flows and ports. The internal behavior of the
component will be thereafter detailed and simulated
in the Simulink modeling and execution environment.

5.4. Document generation

Document generation tools are used to prepare and
manage formal documentation of the system design,
in a format that is easily comprehensible by a broad
range of stakeholders. These documents are an

effective way to organize, validate and communicate
system design information. Thanks to the feature of
the SysML tool, automatic document generation can
be run on demand to collect and format data from
the SysML model, without any special effort. The
only thing to do is to pre-define the expected
document format (e.g. SyDD, CND…) by defining a
specific template, which can be re-used on different
projects, to generate documents related to project
specific milestones.

5.5. Data exchange mechanisms

The interface between the system modeling tool and
the discipline-related ones (e.g. hardware, software,
mechanics…) is a critical issue. Indeed, the system
modeling tool provides the component specifications
for the different disciplines and it is crucial to avoid
loss of information and reworking of data exchanged.
Among the possible alternatives, approaches
independent from the tools are preferred to those
using tool-dependent interaction exchange protocol
(for instance APIs). From this point of view, a file-
based exchange mechanism based on neutral
format or standard interchange format is a good
answer.
Preferred relevant interchange standards are:
• RIF/ReqIF (Requirement Interchange Format) to

exchange requirements between requirement
management or traceability tools

• XMI (XML Metadata Interchange format) to
exchange system models artifacts between
SysML tools (with possible extension to other
modeling and simulation tools)

• ISO AP-233 (Application Protocol 233) to transmit
system engineering descriptions to domains or
disciplines

Since the current level of maturity of these standards
seems insufficient, confidence is put on short term
improvements.

6. Lessons learned and perspectives

6.1. Boosting required cultural changes

As SysML method is implementing SE processes, it
enables reinforcement of currently weak practices.
For instance, deep understanding of the problem,
before focusing on solution, is not currently natural
and may be improved. The commonly used method
to achieve external functional analysis APTE
(APplication des Techniques d' Entreprise), may be
improved as well. Moving to a use case driven
approach taking into account interaction needs is a
key improvement that SysML method naturally
introduces but which may hurt current habits.

New ability to perform quick iterations between
levels and viewpoints may worry project managers,
used to progress indicators related to sequential
process.

 Page 10/10

Therefore, training engineers is a key point, but
achieving a mindset breakthrough definitely requires
functional and project managers to be committed.

6.2. SysML adoption by engineers
While a DSL tool strictly focuses on users’ needs,
SysML tools provide confusing features and GUI
which are unneeded. Whereas a wide range of users
from system, hardware, software, mechanics
disciplines are targeted, ergonomics and user
friendliness is an issue for non software disciplines.
SysML tool customization is therefore a key factor of
success. SysML profiles or simply GUI simplification
are definitely mandatory.
Different categories of users have been identified:
• Experts, defining SE methodology and SysML

implementation. They are in charge of method
and tool customization and evolution

• System leaders, having detailed understanding of
implemented process. They are in charge of
tailoring system modeling on a given project

• Contributors, having skills to model diagrams
related to specific system engineering tasks

• Readers with reduced SysML knowledge,
validating and verifying system description in the
model

For efficiency reasons, each user category should
model using a relevant specialized GUI depending
on its skill level and task to be performed. At the
moment, standard SysML tools are used by experts
and pilot users, in order to tune SysML method and
underlying data model. Based on field return, tool
customizations will be specified and implemented in
order to ensure wide adoption and user efficiency.
6.3. SysML modeling as central enabling brick

6.3.1. ISO26262 compliance
Upcoming ISO26262 regulation will require a higher
level of formalization and traceability. At the interface
between system and safety development teams,
sharing of a common reference architecture is a key
enabler. This helps avoiding system / safety
concepts inconsistencies during design iterations.
Furthermore, what is expected is to share a common
sound basis for both functional and dysfunctional
studies and related simulations. While safety related
effort will increase, automated safety analysis would
help reduce costs impact.
This topic is covered by an internal project extension
named “SaIL” (Safety In the Loop).

6.3.2. Coupling to behavior simulation tools
A key topic is the strategy for system model
verification and validation and particularly model
simulation. For the time being, SysML does not
seem to be able to propose major breakthrough
improvements regarding simulation; this topic will
require deeper study. The current adopted strategy
is a close collaboration with tools such as Simulink
or Statemate to be able to execute the system model

(or part of it) in the simulation environment. Still,
there are open questions regarding the artifacts to
be transferred and whether this is the most efficient
approach.

6.3.3. Coupling to AUTOSAR authoring tools
As commonly admitted and formalized in EAST
ADL2, wherever system and software architectures
are different, a tight coupling shall be ensured in
between. The M2M (Model to Model) related
transformation need to be addressed. For such
topics, improvements of standard interchange format
(XMI, AP-233 …) are expected solutions.

7. Conclusion

SysML offers a promising solution to implement
automotive ontology and extend current modeling
scope. A practical approach and first results are
given in the area of embedded automotive Systems
and products. However, further iterations and
improvements will be necessary to work out a final
efficient and seamless process. This paper does not
claim any theoretical novelty. Neither does it claim to
be on the leading edge of SysML modeling
compared to other domains.
However, it should enable sharing and collaboration
with other industry experts, in charge of SysML
implementation trade offs and facing similar issues
regarding ergonomics and interfacing with simulation
and safety analysis tools. It should help leverage
synergies of cross-domain expertise and needs.

8. References

[1] C.Feliot : "Modélisation de systèmes complexes:
intégration et formalisation de modèles", Thèse de
l'Université de Lille I, 1997.

[2] J-M. Penalva: "La modélisation par les systèmes
en situations complexes", Thèse de l'Université de
Parix XI–Orsay, 1997.

[3] EAST-ADL2 Language and Profile
http://www.atesst.org

[4] Françoise Caron: "Exigences et ingénierie
système : Mise en œuvre avec SysML", EIRIS
Conseil, 2008.

[5] Sanford Friedenthal, Alan Moore, Rick Steiner: "A
Practical Guide to SysML - The Systems Modeling
Language", Morgan Kaufmann OMG Press, 2008.

[6] Tim Weilkiens: "Systems Engineering with
SysML/UML – Modeling, Analysis, Design”, Morgan
Kaufmann OMG Press, 2007.

[7] Hans-Peter Hoffmann: "Rational Harmony for
Systems Engineering – Deskbook release 3.0",
IBM Software Group, 2008.

[8] Pascal Roques: "SysML par l’exemple", Eyrolles,
2009.

