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Abstract: While SysML (System Modeling 
Language) is a leading topic for System Engineering 
(SE) in all domains, there is no pragmatic 
implementation of SE for automotive embedded 
systems and products. In this paper, a proposal is 
developed to meet the needs of Valeo product lines. 

Keywords: Model Driven Engineering, System 
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1. Overview 

As an introduction to the proposed SysML method, 
Part 2 is intended to emphasize major challenges 
related to system engineering in automotive and 
expectations from a model based approach. 
Methodological background and SysML positioning 
regarding research are developed in Part 3. Part 4 
illustrates a SysML implementation of the model-
driven SE process, experimented at Valeo’s on pilot 
projects. Part 5 describes how SysML must be 
supported by an integrated set of tools. Remaining 
open issues are finally addressed in Part 6, to go 
further on the subject. 

2. Motivations 

2.1. Automotive challenges 
While intrinsic systems complexity is often 
highlighted, the increasing complexity of 
organizations responsible for system development 
shall also be emphasized. The quest for the holly 
grail of R&D competitiveness and the globalization of 
the automotive industry have revealed a need for 
efficient use of worldwide competence centers and 
thus collaboration of teams located throughout the 
world. Thus, many (not saying all) automotive 
developments use multidisciplinary and distributed 
concurrent engineering.  
To mitigate risks, automotive actors are deploying 
processes (CMMI, HIS-SPICE...) requiring more and 
more formalization and effort in document writing. 
Furthermore increasing complexity and safety 
expectations (upcoming ISO26262) are also in favor 
of that. Such trend has huge impacts on automotive 
actors who historically worked out a fine-grained 
trade off between cost, quality, performance and 
development cycles. Automotive lean processes 
have now to cope with higher formalization needs 
and still whilst ensuring flexibility and R&D efficiency. 
What is ultimately at stake is to improve 

formalization, avoiding administrative documentation 
drawbacks and degradation of expected gains. 
At the same time, this context is also a unique 
opportunity while automotive industry is facing a 
major market breakthrough with a move towards 
electrical and hybrid vehicles. New products are 
expected and innovation is taking over usual carry 
over. From this point of view, system approach and 
higher formalization are key levers to secure 
investments and work out innovative systems and 
products. 

2.2. Drawbacks of document centric approach 
Implementation of requirement driven processes with 
document centric data management has been 
achieved in domains requiring high traceability of 
safety related designs. Taking benefit of their 
feedback, the following drawbacks have been 
identified: 
• to achieve a minimum formal level with text, 

consistent effort is spent in writing valid 
requirements that are testable, clear, consistent .. 

• engineering models such as state machines or 
architectures are difficult and expensive to 
transform into textual requirements 

• consistency and configuration of these artifacts 
are hard to manage efficiently. This often leads to 
disconnect engineering artifacts and project 
documents 

All these issues are impacting R&D efficiency and 
ability to achieve quick iterations, whereas adopting 
a model centric approach allows: 
• to re-focus engineers on added value tasks by 

increasing actual time spent on design  
• to ensure a seamless and costless traceability / 

consistency between different design elements 
(functional/organic architectures …) 

• to provide graphical means which ease 
information sharing among different discipline 
teams  

2.3. Benefits of model based approach 
On top of that, major system engineering 
improvements are also expected. Sufficient effort 
shall be dedicated to problem statement and new 
means to work out and formalize stakeholders’ 
needs are required. As different architectures and 
products are competing, support for design 
exploration and decision making is required.  
The short coming ISO26262 regulation reinforcing 
functional safety activities is in favor of a tight 
coupling between system and safety processes. 
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Interfacing functional and dysfunctional descriptions 
is a prerequisite to achieve “Safety in the loop” 
(SaIL). 
More generally, model based approach will provide a 
seamless and efficient way to rework designs in 
iterative innovation developments.  

3. Methodological background 

3.1. System engineering mindset 
A common issue is to define what a system is, and 
when to use system engineering. Actually, the critical 
point is how you consider the “object” under design, 
not what the “object” actually is. Adopting a system 
approach, involves considering various aspects in a 
parallel and consistent way. These different focuses 
are commonly called points of view (viewpoints). 
These points of views may apply to system as well 
as components, parts … 
Methods and thoughts mentioned here are not only 
targeting pure systems in Valeo but are also 
applicable to components/products, to ensure 
managed transition to the different implementation 
disciplines. 

3.2. Point of views 
Among research projects focusing on complex 
system modeling, SAGACE ([1], [2]) demonstrates 
that 9 “orthogonal” viewpoints allow a complete and 
optimized formalization of all system concerns. 
From this theoretical basis, selection of viewpoints 
has been achieved taking into account current risks 
related to each concern on Valeo systems and 
products. For migration path reasons and to cope 
with system engineers’ learning curve, a first step 
focus is dedicated to the 6 (among 9) following 
viewpoints: 
• External actors needs (static) 
• Interactions scenarios/mission profiles 
• Provided services to external actors  
• Internal operations 
• Physical resources and related breakdown 
• Internal operations mapping onto resources 
Most viewpoints related to system fairness regarding 
adaptation to context, actors, resources or services 
changes have been discarded. 

3.3. EAST-ADL2 as automotive ontology 
In order to make sure that models are meaningful, 
concepts used (functions, ECU, actuators…) and 
links shall be formally defined to provide an 
automotive ontology. During the last past 10 years, 
successive European automotive projects have 
contributed to work out EAST-ADL2 (Automotive 
Description Language, [3]) which defines an 
architecture framework and provides a metamodel of 
automotive specific artifacts.  
Here also, a subset has been defined regarding 
Valeo specific needs as an automotive supplier: 

• FunctionalDesignArchitecture, FunctionModeling 
HardwareDesignArchitecture, Behavior,Requirement 
• ErrorBehavior, SafetyRequirement, SafetyCase 

to support the upcoming ISO26262 
The related artifacts are inspiring the on-going 
definition of the Valeo SysML modeling to ensure a 
later model to model transformation (M2M) with 
EAST-ADL models. The following artifacts have 
been discarded for the first step: Functional Analysis 
Architecture, Feature Modeling, Environment 
Modeling, Variability, Support, Verification Validation. 
3.4. SysML opportunity 
Nevertheless, there is currently no modeling 
industrial tool available on the market using this 
automotive Domain Specific Language (DSL). 
Being method agnostic and providing a very general 
boxology with “low” semantics, SysML therefore may 
be used to describe selected SAGACE system 
viewpoints and EAST-ADL2 artifacts. This allows for 
instance to use the same SysML block definition 
diagram (BDD) to describe either a functional or a 
physical breakdown. Thus SysML appears to be a 
unique opportunity to implement “EAST ADL2 
friendly models” and take benefit from the defined 
architecture framework.  
SysML method added value consists in: 
• Selecting a diagram subset (among 9 available) 

which allows viewpoints and artifacts 
implementation in a convenient way for system 
engineers (learning curve optimization) 

• Providing defined semantics to ensure diagrams 
meaning 

• Providing an obvious diagram sequence which 
ensures modeling efficiency regarding company 
processes 

• Taking into account interfaced processes and 
tools constraints such as Reqtify from Geensoft 
for requirement traceability or Simulink from The 
Mathworks for continuous modeling 

The current method is therefore targeting the 
optimum trade off for Valeo deployment and is built 
from existing state of the art. It does not claim for 
any theoretical novelty while having merged relevant 
best practices from existing approaches listed in the 
bibliography ([4], [5], [6], [7], [8]), such as EIRIS 
method. This implementation is also taking 
maximum benefits from available features of the 
selected SysML tool for Valeo pilot projects, namely 
Artisan Studio from Atego.  
Furthermore, for the first step, no particular 
emphasis was put on execution and simulation of the 
SysML model. 
3.5. Valeo SysML example 
Diagrams selected to illustrate the approach are 
extracted from a tutorial example used as training on 
pilot projects. For confidentiality and readability 
reasons it has been preferred to using diagrams 
directly extracted from pilot projects. 
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The method described below is under validation on 
pilot projects and is obviously subject to changes 
and improvements, to take into account field return. 

4. Model-driven System Engineering process 

The overall System Engineering process begins with 
the project context, considering the system to be 
developed as a black box, studying the environment, 
and then successively going deeper into the details. 
More precisely the System Engineering process is 
divided into four major phases: 
• Stakeholder needs definition 

• Requirements analysis 

• Logical architecture design 

• Physical architecture design 
In the following, the process and the sequence of 
activities will be described in a pure sequential way. 
However, in practice different steps could be 
performed simultaneously with iterative and mutual 
refinements. Moreover, even though not detailed in 
this paper, each phase systematically ends with a 
traceability analysis to check the completeness of 
activities performed and artifacts developed. 
Finally, the kind of diagrams used at each step will 
be given by acronyms in brackets at title level: Block 
Definition Diagrams (BDD), Internal Block Diagrams 
(IBD), Use Case diagrams (UC), Sequence 
Diagrams (SD), STate Machine diagrams (STM), 
ACTivity Diagrams (ACT), REQuirements diagrams 
(REQ). 

4.1. Stakeholder needs definition 

Probably the most important step in a system 
development process is collecting initial needs to 
secure the goals that the system under development 
is to pursue.  
The key steps of this phase are: 
• Identify all the stakeholder needs 
• Define the boundaries of the system and external 

actors involved 
• Identify the user level operating modes 
• Identify and describe the operational use cases 
• Link the stakeholder requirements to the 

operational use cases 
At this stage, all analyses are performed from the 
system external user point of view, the system being 
considered as a black box. The output of this phase 
is the Stakeholder Needs Document (SND) that 
makes a synthesis of all activities performed. 

4.1.1. Stakeholder needs identification (REQ) 
All individuals and organizations that may have an 
interest in the system are the potential source of 
requirements and therefore should be identified prior 
to all other activities. The key point is that 
stakeholder needs should describe the services 

expected by the system user, and not how the 
system will fulfill these needs. 
The sources of stakeholder needs will be managed 
outside of the SysML model, within requirements 
documents or specific databases. It is particularly 
important to capture mission-level performance 
requirements and measures of effectiveness that will 
be used later to select the best candidate solutions. 
The next step is to import stakeholder needs (with all 
their relevant fields) into mirroring SysML 
requirement objects (with same identifiers). A 
gateway mechanism such as Reqtify is required to 
perform a mono-directional synchronization (from 
external data to SysML) in case of change of source 
data. Because the standard SysML requirement 
format is quite limited, the extension mechanism of 
stereotypes is used to add new specific attributes to 
keep track of extra information contents. The first 
application of stereotyping attributes is to 
differentiate requirements imported from external 
requirement repositories from those created directly 
inside the SysML model. Moreover, other 
stereotyped tags should be declared to store specific 
information or resulting from the elicitation activities. 

4.1.2. System context modeling (BDD) 
The system context model represents the direct 
environment of the system and gives initial 
information about the system boundaries and the 
communication flowing between the system and 
external systems and users that the system interacts 
with. 
The first step is to identify the different stages of the 
system lifecycle, from manufacturing to recycling.  
For each stage of the system lifecycle, one SysML 
block definition diagram is declared to model the 
operational context.  The system itself appears in the 
center of the diagram as a single black box SysML 
block. 
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Figure 1: Operational context diagram 

The next step consists in representing all currently 
known interaction partners, using SysML actor 
objects. An actor is not necessarily a concrete 



 

 Page 4/10 

individual or system, but a role played by an outside 
element in interaction.  
Then, interactions between actors and the system 
are represented as SysML association relationships.  
The purpose is to identify basic information helpful to 
determine the services requested from the system 
embedded in its environment (the use cases), and 
not to give technical details of these services. 
Even though, the context diagrams may seem 
obvious, in practice, searching for actors can lead to 
very fruitful discussions between the different 
stakeholders. 

4.1.3. User modes identification (STM) 
A mode characterizes a situation in the system life 
for which a specific expected behavior can be 
defined. It represents a state invariant of the system 
from the external user point of view, e.g. regarding 
the service given to the user and not how this 
service is performed by the system. 
The goal is to derive a unique state machine 
aggregating all the modes and main transitions 
identified in the interactions with external users. 
Therefore, establishing the user mode state machine 
is an iterative process tightly coupled and interleaved 
with operational use case identification described in 
the next chapter. 
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Figure 2: User modes state diagram 

4.1.4. Operational use cases identification (UC, 
SD) 

Use cases represent the services expected from the 
system, which means that they will be key elements 
to the requirement analysis stage. Indeed, use cases 
will help to refine stakeholder expectations and 
therefore identify system requirements in greater 
details.  
Uses cases will be identified starting from the 
context model, asking what the actors want of the 
system, especially with regard to their roles and to 

incoming information flows. More precisely, a use 
case always refers to at least one actor; it is started 
by an external trigger; and it ends with a user result. 
Moreover, as many use case diagrams as stages of 
the system lifecycle will be described. 
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Figure 3: Use case diagram (user level) 

In fact, a use case can be seen as a group of 
scenarios performed by the same main actor, with 
the same starting point and leading to the same 
ending point. These scenarios describe sequences 
of actions, beginning with the same pre-condition 
(trigger) and ending with the same post-condition 
(result); the pre-condition and the post-condition 
corresponding to modes in the user mode state 
machine mentioned in the previous chapter The 
purpose is to describe the sequence of steps 
involved in the different alternative scenarios, either 
leading to the expected result or to failure. This is 
done using SysML sequence diagrams. 
It is particularly important to notice that, at this stage, 
scenarios will only be described at user interaction 
level. The sequence diagram established here is 
primarily aimed at identifying the system interfaces. 
It will be further refined at requirement analysis stage 
to identify functions performed by the system. 

4.1.5. Traceability to stakeholder needs (REQ) 
We remember that stakeholder (or initial) 
requirements refer to statements that define the 
expectations of the systems in terms of mission 
objectives, environment, constraints and measures 
of effectiveness/suitability, from the system user 
point of view. In order to make sure that all 
stakeholder needs are covered by the operational 
use cases, respective traceability links have to be 
established between SysML use case objects and 
requirements. 
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Figure 4: Requirement traceability diagram 

4.2. Requirement analysis 

The objective of the requirement analysis phase is to 
analyze the inputs previously collected, to move from 
a problem statement to an abstract solution. 
The key steps of this phase are: 
• Describe the interfaces of the system with 

external actors precisely 
• Identify the system level operating states 
• Develop and refine the system use cases 
• Develop and refine the system requirements into 

external function and interface descriptions 
• Link system functions and interfaces to the 

system requirements 
At this stage all analyses are performed from system 
designer point of view, the system still being 
considered as a black box. The output of this phase 
is the System Requirement Document (SyRD), 
which summarizes all activities performed. 

4.2.1. System interfaces description (IBD) 
The objective of the system interface description 
phase is to give more details on the interaction flows 
between the actors and the system (always seen as 
a black box). The system physical external interfaces 
are described using internal block diagrams.  

ibd External Physical Interfaces  [Hybrid Vehicle Platform]
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Figure 5: External interfaces description 

To specify the kind of admissible data flow, a type 
indication shall be associated with each port, using 
SysML item types or flow specifications. 
Several internal block diagrams are defined to 
describe the different contexts of use. Moreover, it is 

also possible to define several internal block 
diagrams for the same context of use, each diagram 
corresponding to a specific kind of interface (e.g.: 
mechanical, electrical, data processing buses…) to 
ease information sharing with involved disciplines. 

4.2.2. System states identification (STM) 
The objective of this step is to derive a unique state 
machine, resulting from the aggregation of all the 
states and main transitions identified in the system 
scenarios it participates in. This state machine will 
be the central element of the system model to which 
complementary artifacts will be later attached to, with 
the final target in mind being its validation by 
simulation. 
The system state machine is not necessarily a 
refinement of the user mode state machine, as 
possibly new sub-states or suppressed states and 
even a completely different structure may be 
defined. Practically, establishing the system state 
machine is an iterative process tightly coupled and 
interleaved with system scenarios refinement 
described in the next chapter. 

4.2.3. System scenario refinement (SD) 
The objective of this stage is to refine user level 
scenarios in order to identify services to be provided 
by the system. Therefore, this activity is similar to a 
classical external functional analysis. 
The sequence diagrams previously established to 
describe actors/system interactions are 
complemented by functions to be performed by the 
system (always seen as a black box). As shown on 
the figure below, these functions are denoted as 
loop interactions on the system lifeline and modeled 
as SysML operations attached to the system block. 
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also par

system control traction

also par

powertrain delivers positive 
torque to wheels

:Hybrid Vehicle PlatformDriver Road Contact

driver pushes accelerator pedal
evPushAcceleratorevPushAccelerator

par

system increases vehicle speed

also par

also par

end par

system increases vehicle speed Fct_AccelerateVehicleFct_AccelerateVehicle

also par

system control tractionsystem control traction
Fct_ControlTractionFct_ControlTractionalso par

powertrain delivers positive 
torque to wheels
powertrain delivers positive 
torque to wheels

evPowertrainPositiveTorqueevPowertrainPositiveTorque

end par

system increases vehicle speed Fct_AccelerateVehicleFct_AccelerateVehicle

also par

system control tractionsystem control traction
Fct_ControlTractionFct_ControlTraction

system control traction
Fct_ControlTractionFct_ControlTractionalso par

powertrain delivers positive 
torque to wheels
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torque to wheels

evPowertrainPositiveTorqueevPowertrainPositiveTorque
powertrain delivers positive 
torque to wheels

evPowertrainPositiveTorqueevPowertrainPositiveTorque

 

Figure 6: Scenario description (system level)  

The refinement of user scenarios into system 
scenarios will possibly lead to new interaction events 
and even to a new structure of use cases.  

4.2.4. System requirement capture 
The process under validation in the pilot projects is 
to avoid a redundant writing of system requirements 
as textual requirements in an external requirement 
management repository, and to choose the SysML 
model artifacts as the reference for system and 
component requirements specification.  
Indeed, interface requirements are modeled by ports 
and related type definitions, while functional 
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requirements are represented by operations, both 
being owned by the system block. 

bdd External Functions And Interfaces [Hybrid Vehicle Platform]
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Figure 7: System requirements as block properties  

4.3. Logical architecture design 

The objective of the logical architecture design 
phase is to describe how the system will be internally 
structured to realize the expected features, but 
without any consideration of their upcoming physical 
implementation. 
The key steps of this phase are: 
• Identify the set of internal functions to be 

provided by the system 
• Describe how these internal functions are 

activated depending on the system state 
• Group these functions into coherent logical 

blocks 
• Develop and refine the logical interfaces between 

the logical blocks 
• Link internal functions and interfaces to the 

logical blocks 
• Take into consideration any existing and relevant 

architecture 
At this stage all analyses are performed from system 
internal point of view, the system being considered 
as a white box. 
The modeling elements developed in this phase are 
included in the System Design Document (SyDD), 
which makes a synthesis of all logical and physical 
design solutions and their mapping. 

4.3.1. Internal functions identification (ACT) 
The objective of this step is to provide details on the 
internal behavior of system block operations. 
Therefore, the kind of task performed is similar to a 
classical internal functional analysis. 
The activity diagrams use data flow and control flow 
representations in a hierarchical decomposition to 
work out internal activities that should be performed. 
The lowest level activities (namely leaves activities) 
of this hierarchy represent internal functions. 
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Figure 8: Lowest level activity diagram describing 
system internal functions  

The key point is that the upper level activity 
diagrams describing the internal behavior are 
triggered by the system state machine, which will be 
an interesting and mandatory property for later 
execution of the system model. 

4.3.2. Logical blocks definition 
The objective of this step is to factorize and group 
system internal functions (leaves activities) into sub-
sets to support the analysis of alternatives during 
physical architectural analysis. These subsets, called 
logical blocks, are abstractions of the components 
that will be implemented by the system; they perform 
the system functionality without imposing 
implementation constraints.  The selection of each 
logical block is based on qualitative or quantitative 
criteria such as modularity or reuse of existing 
components.  
The logical blocks are declared as SysML blocks 
with allocation relationships to the leaves activities 
performed. Moreover, operations are declared at 
block level to perform the activities which have been 
allocated to. 

4.3.3. Logical architecture definition (BDD) 
The logical architecture describes the compositional 
relationships between the upper level system block 
and constitutive logical blocks. It serves as an 
intermediate level of abstraction between the system 
requirements and the physical architecture. This 
intermediate level can reduce the impact of both 
requirements and technology changes on the 
physical design. 
This description is performed using a block definition 
diagram. 
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Figure 9: Logical architecture  

4.3.4. Logical internal interfaces description 
(IBD) 

The objective of the internal logical interface 
description step is to give more details on the 
interaction flows between the internal logical blocks. 
The system logical internal interfaces are described 
using internal block diagrams. To specify the kind of 
admissible data flow, a type indication shall be 
associated with each port, using SysML item types 
or flow specifications. 

4.4. Physical architecture design 

The focus of the physical architecture design phase 
is on the development of a physical architecture (e.g. 
a set of components or component parts) capable of 
performing the internal functions required by the 
logical architecture. 
The key steps of this phase are: 
• Define relevant measures of effectiveness to 

identify candidate physical architectures to be 
investigated 

• Investigate the most promising candidate 
solutions, and for each one: 
o Define a physical architecture capable of 

performing the required functions 
o Allocate the logical functions to physical 

components 
o Develop and refine the components physical 

interfaces and interactions 
o Develop and refine the components 

requirements 
o Evaluate the measures of effectiveness  

• Select the best physical architecture solution 
based on measure of effectiveness criteria 

The modeling elements developed in this phase are 
included in the System Design Document (SyDD), 
which makes a synthesis of all logical and physical 
design solutions. 
The output of this phase is a also a set of 
Component Needs Documents (CND), which 

correspond to specifications for the components or 
disciplines modules to be implemented. 

4.4.1. Physical blocks definition 
The focus of the physical architecture design phase 
is on the allocation of logical operations to the 
components of a physical architectural structure. 
This structure may result from a previous trade study 
or a given (legacy) architecture. 
The partitioning criteria used for allocation should 
reduce the impact of requirements and technology 
changes and more effectively address key issues 
such as performance, reliability, efficient re-use of 
COTS, maintainability, security and cost. 
At the lowest level of the architectural 
decomposition, the functional allocation shall 
address the realization, e.g. which operation shall be 
implemented by which physical component 
developed by a single specific discipline (e.g. 
hardware, software, mechanics…). 
The physical blocks are declared in the same way as 
logical blocks, using SysML blocks and linked with 
allocation relationships to the logical blocks they 
implement. Moreover, operations are implemented at 
block level to perform the activities which have 
allocated to. 

4.4.2. Physical architecture definition (BDD) 
The physical architecture describes the 
compositional relationships between the upper level 
(physical) system block and its constitutive physical 
blocks. This description is performed using a block 
definition diagram in the same way as for the logical 
architecture. 

4.4.3. Physical internal interfaces description 
(IBD) 

The objective of the internal physical interface 
description step is to provide more details on the 
interaction flows between the internal physical 
blocks, using internal block diagrams. 
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Figure 10: Physical internal interfaces description 
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To avoid information overload on the same diagram, 
several internal block diagrams will be described, 
each diagram corresponding to a specific kind of 
interface (ex: mechanical, electrical, data processing 
buses,…).  

4.4.4. Component interactions definition (SD) 
The focus of black-box sequence diagrams 
described at system level was on the identification of 
the required sequences of system functions 
(operations). Because some physical components 
may require significant refinement to address 
discipline-specific concerns and fully specify the 
related requirements, it may be necessary to 
establish white-box sequence diagrams focused on 
the collaboration between the different components. 
The derivation of white-box sequence diagrams is 
performed by refining the system level related 
sequence diagrams and splitting the black-box 
system lifeline into as many lifelines as constitutive 
physical components. 
Moreover, a physical component may include a state 
machine as part of its specification, if it has 
significant state-based behavior. 

4.4.5. Best physical architecture choice 
Since there may be several competing hardware 
and/or software physical architectures that meet a 
given set of functional and performance 
requirements (e.g. the same logical architecture), 
several physical architecture alternatives may be 
investigated. The optimum physical design concept 
is selected based upon a set of measures of 
effectiveness (MoEs), that are weighted according to 
relative importance. 
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Figure 11: Physical candidate alternatives 
comparison 

The estimations of MoEs result from specific 
engineering analyses performed with appropriate 
tools such as modeling and simulation environments 
and with different analysis objectives (performance, 
robustness, safety, cost…). The results from 
engineering analyses are therefore not elaborated 
using the SysML tool but incorporated back into the 
system model as value properties attached to the 
upper level system block describing the 
corresponding physical alternative. 

4.4.6. Component Requirements Specification 
The physical architecture model results in the 
specification of the components to be implemented 
by each specific discipline (e.g. hardware, software, 
mechanics…). The component specifications are 
typically captured as blocks with the appropriate 
black-box specification features attached as 
operations, ports or properties. The black-box 
component specification also includes functional 
requirements derived from scenarios analysis, and 
performance properties whose values (measures of 
effectiveness) have been determined through 
engineering analysis and trade studies. 
The Component Needs Document (CND) describing 
the component requirements from the system 
designer point of view, is therefore automatically 
generated from the SysML model, through an 
extraction of all artifacts attached to the physical 
block under consideration. 

5. Towards a systems development integrated 
environment 

This chapter describes how the SysML system 
model must be supported by the development 
environment to provide an integrated framework for 
system development. A system development 
environment refers to the tools and repositories used 
for system engineering. 
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Figure 12: Tools for an integrated systems 
development environment 

5.1. Requirement management and traceability 

The requirement traceability management activity is 
invoked throughout the whole system engineering 
process, to establish traceability between the 
stakeholder requirements, the system model 
artifacts, and the system and components 
specifications. The stakeholder requirements are 
typically captured in text specifications external to 
the SysML modeling environment. The SysML 
modeling tool provides a mechanism to import text 
requirements by creating mirroring requirements 
directly into the SysML model and to maintain 
synchronization between the source requirements 
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and the corresponding SysML requirement objects. 
The analyses performed by the system modeling tool 
can result in proposing updates to the requirements 
baseline, but the textual requirements are formally 
updated and controlled in the requirement 
management tool. 
Traceability reports are generated and used to 
analyze how the system design meets the system 
requirements and to perform impact analysis in case 
of changes. In fact, two kinds of analyses are 
performed: 
• Internal traceability analysis, between the SysML 

model artifacts, directly generated using the 
SysML tool,  

• External traceability analysis, between the text 
requirements repository and the SysML model 
boundary, performed, using a standard 
requirement traceability tool such as Reqtify. 

5.2. Configuration management 

Configuration management tools ensure that models 
and other development artifacts are maintained in a 
controlled fashion and that baselines are well 
identified. 
The SysML tool is used with internal configuration 
management and change control features activated 
to provide a small granularity on configuration items 
manipulated. However, for major milestones, the 
packages contents of the SysML database are 
baselined and put under the standard configuration 
management tool. Therefore, packages are used to 
partition the model and constitute the unit of external 
configuration control. 

5.3. System simulation 

The SysML system model information can be used 
as a basis for building an executable system model 
to analyze the dynamics of the system. To support 
this, the static system modeling environment must 
be complemented by an execution environment. This 
execution environment could be either directly 
supported by the SysML tool or performed by an 
external simulation tool. 
The approach selected for pilot projects is to transfer 
only components architecture description information 
to discipline specific tools in charge of refining an 
implementation dynamic model. For instance, 
internal blocks diagrams describing the software 
architecture of a control law are translated into 
Simulink dataflow models, with a direct mapping of 
blocks, flows and ports. The internal behavior of the 
component will be thereafter detailed and simulated 
in the Simulink modeling and execution environment. 

5.4. Document generation 

Document generation tools are used to prepare and 
manage formal documentation of the system design, 
in a format that is easily comprehensible by a broad 
range of stakeholders. These documents are an 

effective way to organize, validate and communicate 
system design information. Thanks to the feature of 
the SysML tool, automatic document generation can 
be run on demand to collect and format data from 
the SysML model, without any special effort. The 
only thing to do is to pre-define the expected 
document format (e.g. SyDD, CND…) by defining a 
specific template, which can be re-used on different 
projects, to generate documents related to project 
specific milestones. 

5.5. Data exchange mechanisms 

The interface between the system modeling tool and 
the discipline-related ones (e.g. hardware, software, 
mechanics…) is a critical issue. Indeed, the system 
modeling tool provides the component specifications 
for the different disciplines and it is crucial to avoid 
loss of information and reworking of data exchanged. 
Among the possible alternatives, approaches 
independent from the tools are preferred to those 
using tool-dependent interaction exchange protocol 
(for instance APIs). From this point of view, a file-
based exchange mechanism based on neutral 
format or standard interchange format is a good 
answer.  
Preferred relevant interchange standards are: 
• RIF/ReqIF (Requirement Interchange Format) to 

exchange requirements between requirement 
management or traceability tools 

• XMI (XML Metadata Interchange format) to 
exchange system models artifacts between 
SysML tools (with possible extension to other 
modeling and simulation tools) 

• ISO AP-233 (Application Protocol 233) to transmit 
system engineering descriptions to domains or 
disciplines 

Since the current level of maturity of these standards 
seems insufficient, confidence is put on short term 
improvements.  

6. Lessons learned and perspectives 

6.1. Boosting required cultural changes 

As SysML method is implementing SE processes, it 
enables reinforcement of currently weak practices. 
For instance, deep understanding of the problem, 
before focusing on solution, is not currently natural 
and may be improved. The commonly used method 
to achieve external functional analysis APTE 
(APplication des Techniques d' Entreprise), may be 
improved as well. Moving to a use case driven 
approach taking into account interaction needs is a 
key improvement that SysML method naturally 
introduces but which may hurt current habits. 

New ability to perform quick iterations between 
levels and viewpoints may worry project managers, 
used to progress indicators related to sequential 
process. 
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Therefore, training engineers is a key point, but 
achieving a mindset breakthrough definitely requires 
functional and project managers to be committed. 

6.2. SysML adoption by engineers 
While a DSL tool strictly focuses on users’ needs, 
SysML tools provide confusing features and GUI 
which are unneeded. Whereas a wide range of users 
from system, hardware, software, mechanics 
disciplines are targeted, ergonomics and user 
friendliness is an issue for non software disciplines. 
SysML tool customization is therefore a key factor of 
success. SysML profiles or simply GUI simplification 
are definitely mandatory. 
Different categories of users have been identified: 
• Experts, defining SE methodology and SysML 

implementation. They are in  charge of method 
and tool customization and evolution 

• System leaders, having detailed understanding of 
implemented process. They are in charge of 
tailoring system modeling on a given project 

• Contributors, having skills to model diagrams 
related to specific system engineering tasks 

• Readers with reduced SysML knowledge, 
validating and verifying system description in the 
model   

For efficiency reasons, each user category should 
model using a relevant specialized GUI depending 
on its skill level and task to be performed. At the 
moment, standard SysML tools are used by experts 
and pilot users,   in order to tune SysML method and 
underlying data model. Based on field return, tool 
customizations will be specified and implemented in 
order to ensure wide adoption and user efficiency. 
6.3. SysML modeling as central enabling brick 

6.3.1. ISO26262 compliance 
Upcoming ISO26262 regulation will require a higher 
level of formalization and traceability. At the interface 
between system and safety development teams, 
sharing of a common reference architecture is a key 
enabler. This helps avoiding system / safety 
concepts inconsistencies during design iterations. 
Furthermore, what is expected is to share a common 
sound basis for both functional and dysfunctional 
studies and related simulations. While safety related 
effort will increase, automated safety analysis would 
help reduce costs impact. 
This topic is covered by an internal project extension 
named “SaIL” (Safety In the Loop). 

6.3.2. Coupling to behavior simulation tools 
A key topic is the strategy for system model 
verification and validation and particularly model 
simulation. For the time being, SysML does not 
seem to be able to propose major breakthrough 
improvements regarding simulation; this topic will 
require deeper study. The current adopted strategy 
is a close collaboration with tools such as Simulink 
or Statemate to be able to execute the system model 

(or part of it) in the simulation environment. Still, 
there are open questions regarding the artifacts to 
be transferred and whether this is the most efficient 
approach.  

6.3.3. Coupling to AUTOSAR authoring tools 
As commonly admitted and formalized in EAST 
ADL2, wherever system and software architectures 
are different, a tight coupling shall be ensured in 
between. The M2M (Model to Model) related 
transformation need to be addressed. For such 
topics, improvements of standard interchange format 
(XMI, AP-233 …) are expected solutions. 

7. Conclusion 

SysML offers a promising solution to implement 
automotive ontology and extend current modeling 
scope. A practical approach and first results are 
given in the area of embedded automotive Systems 
and products. However, further iterations and 
improvements will be necessary to work out a final 
efficient and seamless process. This paper does not 
claim any theoretical novelty. Neither does it claim to 
be on the leading edge of SysML modeling 
compared to other domains. 
However, it should enable sharing and collaboration 
with other industry experts, in charge of SysML 
implementation trade offs and facing similar issues 
regarding ergonomics and interfacing with simulation 
and safety analysis tools. It should help leverage 
synergies of cross-domain expertise and needs. 
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