
HAL Id: hal-02267635
https://hal.science/hal-02267635

Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Based Code Generation for Distributed
Embedded Systems

Gopal Raghav, Swaminathan Gopalswamy, Karthikeyan Radhakrishnan,
Jerome Hugues, Julien Delange

To cite this version:
Gopal Raghav, Swaminathan Gopalswamy, Karthikeyan Radhakrishnan, Jerome Hugues, Julien De-
lange. Model Based Code Generation for Distributed Embedded Systems. ERTS2 2010, Embedded
Real Time Software & Systems, May 2010, Toulouse, France. �hal-02267635�

https://hal.science/hal-02267635
https://hal.archives-ouvertes.fr

 Page 1/9

Model Based Code Generation for Distributed Embedde d Systems

Gopal Raghav1, Swaminathan Gopalswamy1, Karthikeyan Radhakrishnan1,
Jérôme Hugues2, Julien Delange3

1: Emmeskay Inc, 47119 Five Mile Road Plymouth, MI, U.S.A.
2: Toulouse University/ISAE at 10 avenue Edouard Belin - BP 54032, 31055 Toulouse CEDEX 4, France

3: TELECOM ParisTech, 46 rue Barrault, 75634 Paris, France

Abstract : Embedded systems are becoming
increasingly complex and more distributed. Cost
and quality requirements necessitate reuse of the
functional software components for multiple
deployment architectures. An important step is the
allocation of software components to hardware.
During this process the differences between the
hardware and application software architectures
must be reconciled. In this paper we discuss an
architecture driven approach involving model-based
techniques to resolve these differences and integrate
hardware and software components. The system
architecture serves as the underpinning based on
which distributed real-time components can be
generated. Generation of various embedded system
architectures using the same functional architecture
is discussed. The approach leverages the following
technologies – IME (Integrated Modeling
Environment), the SAE AADL (Architecture Analysis
and Design Language), and Ocarina. The approach
is illustrated using the electronic throttle control
system as a case study.

Keywords : AADL, Architecture Driven, Distributed
Embedded Software

1. INTRODUCTION

Embedded systems in ground vehicles are becoming
increasingly complex in the functionality they
support. Safety and security are very critical.
Innovative approaches are needed to develop such
systems efficiently without compromising on quality.
A growing trend in development of complex
embedded systems is the use of model-based
development (MBD) techniques. Essentially MBD
involves modeling the behavior of the embedded
systems to enable simulation of the embedded
system performance for various stimuli under various
operating conditions. MBD supported by CAE tools
facilitates the design of advanced control
functionality by enabling early V&V before the
mechanical and electronic hardware become
available. The current state of MBD technologies is
evolved enough to allow embedded software to be
automatically generated from the functional models.
Such tools and processes facilitate code generation

for a single ECU. In practice however, as the number
of processors and complexity of algorithms keep
growing, there are two critical needs that emerge:

(i) The development framework needs to support
modular development of embedded software
promoting re-usability. Further, we need to support
multiple variants in the implementation of re-usable
components. This leads to the idea of an
“architecture” becoming the underpinning description
of a system, with variant management built around
this architecture – Architecture Driven Development
(ADD). These issues have already been addressed
in previous work, e.g. [1].

(ii) The second need is related to the fact that the
functional model of an application often has a very
different architecture from the architecture of the
application embedded software. The functional
architecture of the system corresponds to the
optimum architecture required for control system
development, and is concerned with the functional
performance of the physical system being controlled.
On the other hand, the embedded systems
architecture required for any application is
concerned with the number of processors, the
different tasks and threads and their scheduling, etc.
We need an approach that explicitly attempts to
resolve such differences.

The focus of this paper is to discuss the second
need above. In particular, this paper discusses an
approach to extending the current technologies to
allow generation of distributed embedded software
from functional models, seamlessly reconciling the
differences between functional architectures and
embedded systems architecture.

In addition to the above consideration, a single
functional architecture could often support multiple
embedded systems architectures. For example,
there could be technological advancements in the
hardware used in the system, requiring new
hardware architectures even though the functional
architecture does not change.

 Page 2/9

It is also common to reuse software components
between different vehicles where the functional
architecture might change but the hardware
architecture remains the same.

The approach discussed in this paper also
addresses such additional practical issues that are of
relevance during the development of complex and
large embedded systems.

Section 2 discusses the architecture driven
development approach for generation of distributed
software. Two major activities are described in this
section – (a) development of functional models
consistent with a system architecture and (b)
generation of distributed embedded software.
Workflows to perform these activities are discussed.
Section 3 discusses enabling tools and technologies
that are leveraged in this process. Three major
technologies are leveraged in our work – the SAE
AADL (Architecture Analysis and Design Language),
IME (Integrated Modeling Environment) and Ocarina
(AADL toolsuite with code generation facilities).
Section 4 describes a case study using the
electronic throttle control application. Finally in
section 5 we summarize our findings.

2. ARCHITECTURE DRIVEN APPROACH

The system architecture can be used as the
underpinning using which functional models as well
as embedded system models and software can be
generated. The approach primarily consists of two
major activities. First the system architecture needs
to be defined and functional models (Executable
Specifications) be developed that are consistent with
the system architecture. Second the functional
models should be integrated with the hardware
architecture and embedded software generated from
the complete system model.

2.1 Generation of Functional Models
The Generation of Functional Models can be
captured through four key steps in our proposed
approach:

(i) Functional Architecture Definition: One of the first
steps is to develop the system architecture. The
architecture is the topology of the system and
describes the structural hierarchy of the subsystems
and their interfaces and connections. Several
stakeholders are involved in this step – control
engineers, software engineers and managers.
Usually this step is performed by the OEM based on
product goals and requirements. This architecture
can then be used to communicate the requirements
to the suppliers of the individual components in the

system, who could be a division of the OEM or an
outside supplier.

(ii) Organize and Mine Component Functional
Models Repository: A step that happens in tandem
with the architecture is the development of
component models. To enable maximum reuse,
modular component models are developed over time
by the organization and collected in a repository that
is accessible to all authorized developers. The larger
the repository of such models the quicker the
development of functional applications. However, it
is important to have the repository well organized
and searchable. In particular, being able to search
the repository based on architectural metadata of the
component models (such as their interfaces,
hierarchy, etc) will dramatically improve the
efficiency of application development.

(iii) Associate Component Models to Architecture:
Since we want the application models to be
consistent with the system architecture, we need to
identify component models that fit into the corporate
hierarchy. As part of such an association, the ability
to search the model repository for architectural
metadata should be leveraged to verify architectural
consistency. Both structural and interface
consistency must be performed. Additionally
constraints specified in the architecture can be
combined with metadata inserted into the component
models to enable guided searches of the model
repository.

(iv) Generate Simulatable Application Models: The
final task is the generation of simulatable application
models that can be used for confirming the
functionality of the control system. As an example,
from the system architecture we can compose
models in a simulation domain such as Simulink [2].
Some of the steps in the generation of functional
models are shown in Figure 1.

 Page 3/9

Figure 1: Process Steps to Generating
(executable) Application Models from Functional
Architecture

2.2 Generation of Distributed Embedded Software

The generation of Distributed Embedded Software
can be captured in these next steps:

(i) Embedded Systems Architecture Definition: The
embedded system architecture is concerned with the
processors in the system, the information
communicated between them, the processes and
threads within each of the processor, and the
scheduling of those processes and threads. AADL is
a powerful mechanism for describing and
communicating such an architecture [3]. Thus the
embedded systems architecture is developed by the
stakeholders consisting of the program managers,
and the embedded software and hardware
engineering team.

(ii) Reconciliation of Functional Architecture with
Embedded Systems Architecture: It is important to
recognize that the architecture used to generate
functional models is often quite different from the
embedded system (hardware) architecture. What is
common between the functional architecture and the
embedded systems architecture is the set of
component functional models associated with either
architecture. Thus, in order to reconcile the
functional architecture with the embedded systems
architecture, a key step is to define the bindings
between the component functional models in the
functional architecture and the nodes of the
embedded systems architecture.
When such a binding is done, it is important to
ensure that the functional connectivity between the
software components as specified in the functional
architecture is not broken, while simultaneously the
communication requirements of the embedded
systems architecture is satisfied.

(iii) Generation of Distributed Embedded Software:
The final step in this process is to generate the
distributed embedded software based on the
embedded systems architecture and the associated
component models.

Figure 2: Process Steps in generating
(Distributed) Embedded Software for Deployment

This workflow is shown in Figure 2 above. If an
automated process exists to generate the distributed
embedded software from the architecture, then this
provides a powerful methodology to generate
different deployment variants of the distributed
embedded system, all starting from the same
functional architecture. The different deployments
could pose different constraints, and these
constraints could be accommodated easily by the
appropriate binding between the embedded
architecture and functional architecture. (see Figure
3 below)

Figure 3: A single Functional Architecture can
support Multiple Deployment Architectures

An example of multiple deployments for a given
functional architecture could be as below: (i) A low-
cost solution dictates that the entire application is

 Page 4/9

deployed within a single processor, accepting the
associated schedulability issues, and consequent
performance pull-back. (ii) A medium-cost solution
that allows for smart actuators and/or smart sensors
to run some of the functionality in local processors,
enabling faster internal feedback, and consequent
improved system performance; the bulk of the
functionality still runs in a central processor. (iii) A
high-cost system that calls for separate processors
to provide monitoring, safety and redundancy
functionalities. By using the advocated approach,
each of the deployment could be initiated
conveniently from a common functional architecture.

3. ENABLING TECHNOLOGIES

In the previous section we discussed how the
system architecture drives the various activities
involved in the embedded software generation
process. Several enabling technologies are needed
to efficiently realize the processes:

Architecture Description Methodology: In order to
perform reconciliation between the functional and
hardware architectures a first requirement is that we
need to be able to have standardized descriptions of
both the architectures. Such an Architecture
Description Language (ADL) needs to allow
specification of several different components
(functional, software, electronics, sensors and
actuators) as well as the communication between
them. Along with the architectural view that lists the
topology of the system, non-functional properties of
relevance (priority, time slot for CAN buses, memory
capacity, etc.) need to be specified at the different
nodes of the architecture. There is also a need for a
well defined mechanism to bind the functional
components to the embedded system components
while still retaining both their properties.
We chose the SAE AADL as the backbone modeling
notation because it has sufficient richness in
definition to be a good language for architecture
driven development of embedded systems. Further
the AADL is a tool neutral language and so facilitates
exchange of architecture descriptions between
different tools.

Architecture Driven Modeling: We need an
environment where (i) Architectures are
comprehended and (ii) Architecture transformations
(from functional architecture to embedded system
architecture) can be achieved. Such an environment
should allow for linking and management of the
relationships between architectures and functional
models that are developed in state of the art
modeling tools such as Simulink. Such an
environment should also provide support for

migration of the functional models to embedded
system models.
In this paper we use the commercial tool IME
(Integrated Modeling Environment) to evaluate and
demonstrate the approach.

Architecture Driven Embedded Software Creation:
We need technologies that will synthesize the
embedded software corresponding to the functional
models, and the distributed real-time software
components.
For generation of the embedded software
corresponding to the functional models, many of the
native modeling tools themselves provide this
capability. In this paper we use Simulink as the
modeling tool.
For generating the real time executive for distributed
processor system, in this paper, we use Ocarina to
evaluate and demonstrate the approach. Ocarina
toolsuite provides support for code generation from
AADL models for the real time executables, with
appropriate integration of the software auto-
generated from functional models.
These technologies – AADL, IME and Ocarina
facilitate the designer to go from high-level modeling
down to code seamlessly, and are described in detail
in the following sections.

3.1. AADL
The Architecture Analysis and Design Language
(AADL) was adopted as an SAE (Society of
Automotive Engineers) standard in the year 2004.
The AADL is a tool neutral language that can be
used to describe the run-time architecture of the
embedded system. Model-based analysis for
schedulability, safety, security, etc. can be
performed using these descriptions [4]. It naturally
provides the ability to describe the architecture of
both hardware and software components and data
along with their variations with regards to
implementations. AADL components are described
as component types and component
implementations.
Component type defines the interface of the
component. Component implementation inherits the
properties of the component type and describes the
sub-components and connections. There can be
different component implementations for a single
component type definition leading to variant
implementations for the same component. In our
work the following AADL components are used.

• System – These components can be used
to describe the system architecture. They
can be used to represent any software or
hardware component or a combination of
both.

• Process - Process components are an
abstraction of software responsible for

 Page 5/9

scheduling and for executing threads. They
execute in their own memory in a processor.

• Thread – Thread components are an
abstraction of software responsible for
scheduling and executing sub-programs.
Thread execution periods and execution
times can be set as properties.

• Sub-programs – Subprograms represent
elementary pieces of code that process
inputs to produce outputs. In the AADL only
the interfaces are described. The
implementations must be provided by the
host language. In our work the functional
models developed in Simulink provide the
implementation.

• Processors – These components are
abstractions of hardware and software that
schedule and execute processes. Each
processor will have its own clock which is
the base time for all the components running
on the processor.

• Buses – Bus components are used to
exchange data between hardware
components.

[5] provides a complete description of the AADL.
The functional architecture can be initially described
using the AADL System components. Ports and
connections define the component interfaces and
communication. Once functional models are
associated with the System components the
architecture can be migrated to the behavioral
modeling domain. The System components can later
be translated to embedded components consisting of
Processor, Process, Thread and Subprogram
components.

3.2. Integrated Modeling Environment (IME)
IME is a model management and architecture
creation and analysis tool [6]. As described in
Section 2 the system architecture drives the creation
of functional models and generating distributed
software. A visualization environment must be
provided for the system architecture. Such an
environment should be able to exchange
architecture descriptions with other tools.
Component behavior models developed over time
are archived in a model repository for reuse. In order
to find the consistent models their architectural
information must be extracted and stored.
Intelligent queries to search for certified models
coupled with consistency checks facilitate selection
of models. Once the selections are complete the
architecture needs to be migrated to the behavioral
modeling domain. As discussed in section 2.2 the
functional models must be integrated seamlessly
with the hardware architecture descriptions. During
this step the environment must facilitate engineers to
define the bindings between functional and
embedded components. The bindings define the

allocation of functional components to the AADL
Processes which must be bound to AADL
Processors. The AADL Processor components
represent the different ECUs. Once the bindings are
defined the embedded system architecture must be
generated. From this architecture AADL descriptions
need to be exported. IME is a tool that can support
all the activities described above. The resulting
AADL models can then be used in code generation.

3.3. Ocarina
Ocarina [7] is a toolsuite developed by the AADL
group at Telecom ParisTech. It aims at providing
AADL model manipulation, syntactic/semantic
analysis, model analysis capabilities (using external
tools like Cheddar [8]) or embedded (e.g. generation
of Petri Net models, analysis of models using the
REAL constraint language). Besides, Ocarina
proposes code generation from AADL models to
either C or Ada using the PolyORB-HI family of
AADL runtimes. Code for the runtime, and the code
generated follow carefully restrictions for the High-
Integrity domains as mandated by the space,
avionics or automotive domains.
Targeted RTOS range from bare boards Ada
runtime, real-time executive like RTEMS or RT-
Linux, domain-specific OS like POK for avionics
systems [9] or native platforms for rapid prototyping.
Ocarina supports both AADLv1.0 and AADLv2.
Contrary to many MDE tools, Ocarina relies on its
own internal meta-model engine, closer to a compiler
AST. This allows for a wide range of internal
optimizations, allowing to process large models
quickly and efficiently.
Ocarina is available under the GPL license and runs
on most operating systems (Windows, Mac OS X,
Linux). Releases, examples of application-level
models, case studies as well as documentation are
available on our AADL portal [10]. Ocarina has been
successfully tested in the European project IST-
ASSERT [11], led by the European Space Agency,
and the French R&D project Flex-eWare [12], led by
Thales. Their partners, as part of advanced
technology transfer projects, are currently testing
Ocarina further, on industry-size case studies.
One notable feature of Ocarina is the ability to
include seamlessly any functional notations as
implementation of blocks such as subprograms or
threads. Instead of writing C code, the designer may
insert a SCADE or Simulink functional blocks. Then,
the Ocarina code generator will generate all the
required glue code to integrate C code generated
from Simulink Real-Time workshop or SCADE’s kcg
C code into AADL runtime code. This suppresses a
tedious and error prone integration work, and allows
the user to focus only on the behavior of its system
instead of bothering with low-level implementation
details. This feature allows for a natural bridge
between a high level architecture based tool like IME

 Page 6/9

and simulation on real hardware, in a distributed
setup, using Ocarina generated code. We illustrate
this in the next section.

4. CASE STUDY

In this section we describe the application of the
architecture driven approach to the Electronic
Throttle Control (ETC) system. ETC replaces a
mechanical system consisting of a linkage between
the accelerator pedal to the throttle plate. In the
mechanical system the vehicle operator directly
regulates the engine airflow by adjusting the position
of the throttle plate via the accelerator pedal. At idle
speed conditions, the airflow bypasses the throttle
plate and is regulated with an Idle Air Control (IAC)
valve. In the ETC system the throttle plate is
actuated electronically. The desired throttle plate
position (setpoint) is determined based on the pedal
position as well as other inputs and operating
conditions. A primary benefit of ETC is it enables
system designers to incorporate throttle control into
other vehicle functions, such as cruise control and
vehicle stability control. ETC is considered a safety
critical system. As a result a considerable portion of
ETC functionality is in place for redundancy and
safety monitoring.
Figure 4 shows the functional architecture of one
ETC system as visualized within IME. The main
components in the architecture are the core
controller, actuator, sensors and the plant. The core
controller consists of three important functions –
safety monitor, manager and servo control.

Figure 4: ETC Closed Loop System

In this case study we will consider three deployment
scenarios for the embedded software.

Scenario1 – Single ECU: We consider the case in
which a supplier is assigned the responsibility of
developing the actuator system. The supplier
develops a first version of the actuator based on the
specifications from the OEM. The product

development cycle requires virtual integration of the
entire system much in advance of the availability of
actual physical hardware. Therefore the supplier
develops the actuator driver models and the plant
models and delivers the closed loop actuator system
model to the OEM. The OEM integrates the actuator
models into the bigger ETC system models. The
next step for the OEM is to deploy all the controller
components on a single target ECU in order to
eventually generate the control software.

Scenario2 – Single ECU + Smart Actuator: As an
alternative to the scenario 1 above, the supplier
offers a technologically advanced actuator in which
the driver software is tightly integrated with the
physical actuator. In turn, the OEM can offer superior
functionality on some of its product lines, without
disturbing the basic hardware architecture. However,
in this case, the actuator driver software executes on
a dedicated ECU. When the supplier delivers the
actuator driver and plant models to the OEM for
integration into the ETC system model, the OEM
should ensure that code generation does not include
the drivers with the main ECU.

Scenario3 – Two ECUs + Smart Actuator: The OEM
wants to reuse the same physical system and
controls architecture for an advanced defense
application, where safety criticality and redundancy
are highly prioritized. In order to accommodate this
modification the OEM wants to deploy the safety
monitor component on a separate target ECU; the
core functionality runs on the main ECU; the drivers
run on the processor with the actuator.

In all the above scenarios the functional architecture
remains the same but the deployment architecture is
different. We now discuss the workflow and tool
chain to support the deployment in the above
scenarios.
Figure 5 depicts the steps involved in the generation
of functional models from the system architecture.
The system architecture can be developed using
AADL authoring tools such as OSATE (Open Source
AADL Tool Environment) [5] and imported into IME.
The model repository can be mined and consistent
functional models can be selected and associated
with the system architecture. The functional Simulink
models of the system can then be generated for
further analysis.

The next step is to deploy the functional models on
the target. Since the functional architecture is
different from the target architecture and also the
target architecture is different in the three scenarios
considerable re-architecting of the functional
architecture must be done. The workflow for
allocating the functional software components to the
target is shown in figure 6.

 Page 7/9

Figure 5: Generation of functional models consisten t with system architecture.

Figure 6: Generation of embedded system architectur es from functional architectures

 Page 8/9

The functional system architecture can be annotated
with the binding information. The binding information
is different in the three deployment scenarios. The
binding information must include the processor,
process and thread in which each component must
execute. Then the embedded architectures are
generated from the functional architecture. Figures
7, 8 and 9 illustrate the embedded architectures for
scenarios 1, 2 and 3 respectively. Figure 9 shows
the detailed hierarchy of the embedded system. The
embedded system consists of two ECUs – ECU1
and ECU2. A single process executes in ECU1
which manages a single thread. This thread
executes the monitor component. The connections
to the plant are not shown in the figure. In all the
three target architectures the communication
between the software components is maintained as
specified in the functional architecture.

Figure 7: Illustrates scenario 1 - Controller and
actuator drivers are executed in a single ECU

Figure 8: Illustrates scenario 2 – Actuator driver
executes on a dedicated ECU

Figure 9: Illustrates scenario 3 – Monitor
component executes in a dedicated ECU. Other
controller components execute in a second ECU.

The next step is the generation of embedded
software. In scenarios 1 and 2 the controller
components were deployed on a single ECU. So the
re-architected embedded architectures can be
migrated back to the Simulink domain which
supports code generation for a single ECU. In
scenario 3 the controller components are distributed
among two ECUs. In order to generate distributed
software using a single model the architecture is
exported as an AADL model. The Ocarina toolsuite
can parse the AADL model and extract the execution
characteristics of the embedded system.
Executables can be generated for each process.
Within each process the required threads are
created which in turn call the subprograms that
represent the interfaces of the functional
components. Simultaneously code can be generated
from the functional models for each component. The
functional components are called from within the
subprograms. The execution architecture and the
communication among the embedded and functional
components are shown in figure 10. Figure 11
illustrates the structure of the monitor subprogram
and the call to the monitor functional component.
The integrated software can be executed on a real-
time system.

 Page 9/9

Figure 10: Communication between the monitor
and manager components executing in separate
ECUs.

Figure 11: Structure of a subprogram

5. CONCLUSIONS

In this work we discussed the approaches and
specific technologies that enable the generation of
distributed embedded software from functional
models. An architecture driven approach facilitates
the reconciliation of the functional and embedded
architectures and their integration. The specific tools
and technologies also support modular development
and reuse of software components. These improve
the efficiency of the engineering activities. Further
studies needs to be performed with regards to
deploying the embedded software on the target
hardware and real-time testing of the system.

6. REFERENCES

[1] S. Gopalswamy, et.al., “Practical Considerations
for the Implementation of Model Based Control
System Development Processes”, Proceedings of
the Conference on Control Applications, 2004.

[2] Simulink is a registered trademark of The
Mathworks, www.mathworks.com.

[3] SAE. Architecture Analysis & Design Language
v2.0 (AS5506), September 2008.

[4] B. Lewis, P. Feiler, Multi-Dimensional Model
Based Engineering for Performance Critical
Computer Systems using the AADL, ERTS 2006,
Toulouse, France.

[5] The SAE AADL, www.aadl.info.

[6] IME, http://www.emmeskay.com/tools/ime.

[7] "OCARINA: An Environment for AADL Models
Analysis and Automatic Code Generation for
High Integrity Applications" Gilles Lasnier, Bechir
Zalila, Laurent Pautet, and Jérôme Hugues.
Reliable Software Technologies'09 - Ada Europe.
Brest, France. June 2009 pp. 237-250

[8] Cheddar, http://beru.univ-
brest.fr/~singhoff/cheddar

[9] J. Delange, L. Pautet and F. Kordon. Code
Generation Strategies for Partitioned Systems. In
29th IEEE Real-Time Systems Symposium
(RTSS'08) Work In Progress, IEEE Computer
Society, December 2008.

[10] http://aadl.telecom-paristech.fr .

[11] http://www.assert-project.net

[12] http://www.flex-eware.org

