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Abstract : Embedded systems are becoming 
increasingly complex and more distributed.  Cost 
and quality requirements necessitate reuse of the 
functional software components for multiple 
deployment architectures. An important step is the 
allocation of software components to hardware. 
During this process the differences between the 
hardware and application software architectures 
must be reconciled. In this paper we discuss an 
architecture driven approach involving model-based 
techniques to resolve these differences and integrate 
hardware and software components. The system 
architecture serves as the underpinning based on 
which distributed real-time components can be 
generated. Generation of various embedded system 
architectures using the same functional architecture 
is discussed. The approach leverages the following 
technologies – IME (Integrated Modeling 
Environment), the SAE AADL (Architecture Analysis 
and Design Language), and Ocarina. The approach 
is illustrated using the electronic throttle control 
system as a case study. 

Keywords : AADL, Architecture Driven, Distributed 
Embedded Software 

1. INTRODUCTION 

Embedded systems in ground vehicles are becoming 
increasingly complex in the functionality they 
support. Safety and security are very critical. 
Innovative approaches are needed to develop such 
systems efficiently without compromising on quality. 
A growing trend in development of complex 
embedded systems is the use of model-based 
development (MBD) techniques. Essentially MBD 
involves modeling the behavior of the embedded 
systems to enable simulation of the embedded 
system performance for various stimuli under various 
operating conditions. MBD supported by CAE tools 
facilitates the design of advanced control 
functionality by enabling early V&V before the 
mechanical and electronic hardware become 
available. The current state of MBD technologies is 
evolved enough to allow embedded software to be 
automatically generated from the functional models. 
Such tools and processes facilitate code generation 

for a single ECU. In practice however, as the number 
of processors and complexity of algorithms keep 
growing, there are two critical needs that emerge: 
 
(i) The development framework needs to support 
modular development of embedded software 
promoting re-usability. Further, we need to support 
multiple variants in the implementation of re-usable 
components. This leads to the idea of an 
“architecture” becoming the underpinning description 
of a system, with variant management built around 
this architecture – Architecture Driven Development 
(ADD). These issues have already been addressed 
in previous work, e.g. [1]. 
 
(ii) The second need is related to the fact that the 
functional model of an application often has a very 
different architecture from the architecture of the 
application embedded software. The functional 
architecture of the system corresponds to the 
optimum architecture required for control system 
development, and is concerned with the functional 
performance of the physical system being controlled. 
On the other hand, the embedded systems 
architecture required for any application is 
concerned with the number of processors, the 
different tasks and threads and their scheduling, etc. 
We need an approach that explicitly attempts to 
resolve such differences.  
 
The focus of this paper is to discuss the second 
need above. In particular, this paper discusses an 
approach to extending the current technologies to 
allow generation of distributed embedded software 
from functional models, seamlessly reconciling the 
differences between functional architectures and 
embedded systems architecture.   
 
In addition to the above consideration, a single 
functional architecture could often support multiple 
embedded systems architectures. For example, 
there could be technological advancements in the 
hardware used in the system, requiring new 
hardware architectures even though the functional 
architecture does not change.  
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It is also common to reuse software components 
between different vehicles where the functional 
architecture might change but the hardware 
architecture remains the same.  
 
The approach discussed in this paper also 
addresses such additional practical issues that are of 
relevance during the development of complex and 
large embedded systems.  
 
Section 2 discusses the architecture driven 
development approach for generation of distributed 
software. Two major activities are described in this 
section – (a) development of functional models 
consistent with a system architecture and (b) 
generation of distributed embedded software. 
Workflows to perform these activities are discussed. 
Section 3 discusses enabling tools and technologies 
that are leveraged in this process. Three major 
technologies are leveraged in our work – the SAE 
AADL (Architecture Analysis and Design Language), 
IME (Integrated Modeling Environment) and Ocarina 
(AADL toolsuite with code generation facilities). 
Section 4 describes a case study using the 
electronic throttle control application. Finally in 
section 5 we summarize our findings. 
 

2. ARCHITECTURE DRIVEN APPROACH 

The system architecture can be used as the 
underpinning using which functional models as well 
as embedded system models and software can be 
generated. The approach primarily consists of two 
major activities. First the system architecture needs 
to be defined and functional models (Executable 
Specifications) be developed that are consistent with 
the system architecture. Second the functional 
models should be integrated with the hardware 
architecture and embedded software generated from 
the complete system model. 
 
2.1 Generation of Functional Models 
The Generation of Functional Models can be 
captured through four key steps in our proposed 
approach: 
 
(i) Functional Architecture Definition: One of the first 
steps is to develop the system architecture. The 
architecture is the topology of the system and 
describes the structural hierarchy of the subsystems 
and their interfaces and connections. Several 
stakeholders are involved in this step – control 
engineers, software engineers and managers. 
Usually this step is performed by the OEM based on 
product goals and requirements. This architecture 
can then be used to communicate the requirements 
to the suppliers of the individual components in the 

system, who could be a division of the OEM or an 
outside supplier.  
 
(ii) Organize and Mine Component Functional 
Models Repository: A step that happens in tandem 
with the architecture is the development of 
component models. To enable maximum reuse, 
modular component models are developed over time 
by the organization and collected in a repository that 
is accessible to all authorized developers. The larger 
the repository of such models the quicker the 
development of functional applications. However, it 
is important to have the repository well organized 
and searchable. In particular, being able to search 
the repository based on architectural metadata of the 
component models (such as their interfaces, 
hierarchy, etc) will dramatically improve the 
efficiency of application development. 
 
(iii) Associate Component Models to Architecture: 
Since we want the application models to be 
consistent with the system architecture, we need to 
identify component models that fit into the corporate 
hierarchy. As part of such an association, the ability 
to search the model repository for architectural 
metadata should be leveraged to verify architectural 
consistency. Both structural and interface 
consistency must be performed. Additionally 
constraints specified in the architecture can be 
combined with metadata inserted into the component 
models to enable guided searches of the model 
repository.  
 
(iv) Generate Simulatable Application Models: The 
final task is the generation of simulatable application 
models that can be used for confirming the 
functionality of the control system. As an example, 
from the system architecture we can compose 
models in a simulation domain such as Simulink [2].  
Some of the steps in the generation of functional 
models are shown in Figure 1. 
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Figure 1: Process Steps to Generating 
(executable) Application Models from Functional 
Architecture 

 

2.2 Generation of Distributed Embedded Software 

The generation of Distributed Embedded Software 
can be captured in these next steps: 
 
(i)  Embedded Systems Architecture Definition: The 
embedded system architecture is concerned with the 
processors in the system, the information 
communicated between them, the processes and 
threads within each of the processor, and the 
scheduling of those processes and threads. AADL is 
a powerful mechanism for describing and 
communicating such an architecture [3]. Thus the 
embedded systems architecture is developed by the 
stakeholders consisting of the program managers, 
and the embedded software and hardware 
engineering team. 
 
(ii) Reconciliation of Functional Architecture with 
Embedded Systems Architecture: It is important to 
recognize that the architecture used to generate 
functional models is often quite different from the 
embedded system (hardware) architecture. What is 
common between the functional architecture and the 
embedded systems architecture is the set of 
component functional models associated with either 
architecture. Thus, in order to reconcile the 
functional architecture with the embedded systems 
architecture, a key step is to define the bindings 
between the component functional models in the 
functional architecture and the nodes of the 
embedded systems architecture. 
When such a binding is done, it is important to 
ensure that the functional connectivity between the 
software components as specified in the functional 
architecture is not broken, while simultaneously the 
communication requirements of the embedded 
systems architecture is satisfied.  

(iii) Generation of Distributed Embedded Software: 
The final step in this process is to generate the 
distributed embedded software based on the 
embedded systems architecture and the associated 
component models.  

 

Figure 2: Process Steps in generating 
(Distributed) Embedded Software for Deployment 

 
This workflow is shown in Figure 2 above. If an 
automated process exists to generate the distributed 
embedded software from the architecture, then this 
provides a powerful methodology to generate 
different deployment variants of the distributed 
embedded system, all starting from the same 
functional architecture. The different deployments 
could pose different constraints, and these 
constraints could be accommodated easily by the 
appropriate binding between the embedded 
architecture and functional architecture. (see Figure 
3 below) 
 

 

Figure 3: A single Functional Architecture can 
support Multiple Deployment Architectures 

 
An example of multiple deployments for a given 
functional architecture could be as below: (i) A low-
cost solution dictates that the entire application is 
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deployed within a single processor, accepting the 
associated schedulability issues, and consequent 
performance pull-back. (ii) A medium-cost solution 
that allows for smart actuators and/or smart sensors 
to run some of the functionality in local processors, 
enabling faster internal feedback, and consequent 
improved system performance; the bulk of the 
functionality still runs in a central processor. (iii) A 
high-cost system that calls for separate processors 
to provide monitoring, safety and redundancy 
functionalities. By using the advocated approach, 
each of the deployment could be initiated 
conveniently from a common functional architecture.  

 

3. ENABLING TECHNOLOGIES 

In the previous section we discussed how the 
system architecture drives the various activities 
involved in the embedded software generation 
process. Several enabling technologies are needed 
to efficiently realize the processes: 
 
Architecture Description Methodology: In order to 
perform reconciliation between the functional and 
hardware architectures a first requirement is that we 
need to be able to have standardized descriptions of 
both the architectures. Such an Architecture 
Description Language (ADL) needs to allow 
specification of several different components 
(functional, software, electronics, sensors and 
actuators) as well as the communication between 
them. Along with the architectural view that lists the 
topology of the system, non-functional properties of 
relevance (priority, time slot for CAN buses, memory 
capacity, etc.) need to be specified at the different 
nodes of the architecture. There is also a need for a 
well defined mechanism to bind the functional 
components to the embedded system components 
while still retaining both their properties. 
We chose the SAE AADL as the backbone modeling 
notation because it has sufficient richness in 
definition to be a good language for architecture 
driven development of embedded systems. Further 
the AADL is a tool neutral language and so facilitates 
exchange of architecture descriptions between 
different tools. 
 
Architecture Driven Modeling: We need an 
environment where (i) Architectures are 
comprehended and (ii) Architecture transformations 
(from functional architecture to embedded system 
architecture) can be achieved. Such an environment 
should allow for linking and management of the 
relationships between architectures and functional 
models that are developed in state of the art 
modeling tools such as Simulink. Such an 
environment should also provide support for 

migration of the functional models to embedded 
system models. 
In this paper we use the commercial tool IME 
(Integrated Modeling Environment) to evaluate and 
demonstrate the approach. 
 
Architecture Driven Embedded Software Creation: 
We need technologies that will synthesize the 
embedded software corresponding to the functional 
models, and the distributed real-time software 
components.  
For generation of the embedded software 
corresponding to the functional models, many of the 
native modeling tools themselves provide this 
capability. In this paper we use Simulink as the 
modeling tool. 
For generating the real time executive for distributed 
processor system, in this paper, we use Ocarina to 
evaluate and demonstrate the approach. Ocarina 
toolsuite provides support for code generation from 
AADL models for the real time executables, with 
appropriate integration of the software auto-
generated from functional models. 
These technologies – AADL, IME and Ocarina 
facilitate the designer to go from high-level modeling 
down to code seamlessly, and are described in detail 
in the following sections. 
 
3.1. AADL 
The Architecture Analysis and Design Language 
(AADL) was adopted as an SAE (Society of 
Automotive Engineers) standard in the year 2004. 
The AADL is a tool neutral language that can be 
used to describe the run-time architecture of the 
embedded system. Model-based analysis for 
schedulability, safety, security, etc. can be 
performed using these descriptions [4]. It naturally 
provides the ability to describe the architecture of 
both hardware and software components and data 
along with their variations with regards to 
implementations. AADL components are described 
as component types and component 
implementations.  
Component type defines the interface of the 
component. Component implementation inherits the 
properties of the component type and describes the 
sub-components and connections. There can be 
different component implementations for a single 
component type definition leading to variant 
implementations for the same component. In our 
work the following AADL components are used. 

• System  – These components can be used 
to describe the system architecture. They 
can be used to represent any software or 
hardware component or a combination of 
both. 

• Process  - Process components are an 
abstraction of software responsible for 
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scheduling and for executing threads. They 
execute in their own memory in a processor. 

• Thread  – Thread components are an 
abstraction of software responsible for 
scheduling and executing sub-programs. 
Thread execution periods and execution 
times can be set as properties. 

• Sub-programs  – Subprograms represent 
elementary pieces of code that process 
inputs to produce outputs. In the AADL only 
the interfaces are described. The 
implementations must be provided by the 
host language. In our work the functional 
models developed in Simulink provide the 
implementation.  

• Processors  – These components are 
abstractions of hardware and software that 
schedule and execute processes. Each 
processor will have its own clock which is 
the base time for all the components running 
on the processor. 

• Buses  – Bus components are used to 
exchange data between hardware 
components. 

[5] provides a complete description of the AADL. 
The functional architecture can be initially described 
using the AADL System components. Ports and 
connections define the component interfaces and 
communication. Once functional models are 
associated with the System components the 
architecture can be migrated to the behavioral 
modeling domain. The System components can later 
be translated to embedded components consisting of 
Processor, Process, Thread and Subprogram 
components. 
 
3.2. Integrated Modeling Environment (IME) 
IME is a model management and architecture 
creation and analysis tool [6]. As described in 
Section 2 the system architecture drives the creation 
of functional models and generating distributed 
software. A visualization environment must be 
provided for the system architecture. Such an 
environment should be able to exchange 
architecture descriptions with other tools. 
Component behavior models developed over time 
are archived in a model repository for reuse. In order 
to find the consistent models their architectural 
information must be extracted and stored.   
Intelligent queries to search for certified models 
coupled with consistency checks facilitate selection 
of models. Once the selections are complete the 
architecture needs to be migrated to the behavioral 
modeling domain. As discussed in section 2.2 the 
functional models must be integrated seamlessly 
with the hardware architecture descriptions. During 
this step the environment must facilitate engineers to 
define the bindings between functional and 
embedded components.  The bindings define the 

allocation of functional components to the AADL 
Processes which must be bound to AADL 
Processors. The AADL Processor components 
represent the different ECUs. Once the bindings are 
defined the embedded system architecture must be 
generated. From this architecture AADL descriptions 
need to be exported. IME is a tool that can support 
all the activities described above. The resulting 
AADL models can then be used in code generation.  
 
3.3. Ocarina  
Ocarina [7] is a toolsuite developed by the AADL 
group at Telecom ParisTech. It aims at providing 
AADL model manipulation, syntactic/semantic 
analysis, model analysis capabilities (using external 
tools like Cheddar [8]) or embedded (e.g. generation 
of Petri Net models, analysis of models using the 
REAL constraint language).  Besides, Ocarina 
proposes code generation from AADL models to 
either C or Ada using the PolyORB-HI family of 
AADL runtimes. Code for the runtime, and the code 
generated follow carefully restrictions for the High-
Integrity domains as mandated by the space, 
avionics or automotive domains.  
Targeted RTOS range from bare boards Ada 
runtime, real-time executive like RTEMS or RT-
Linux, domain-specific OS like POK for avionics 
systems [9] or native platforms for rapid prototyping. 
Ocarina supports both AADLv1.0 and AADLv2. 
Contrary to many MDE tools, Ocarina relies on its 
own internal meta-model engine, closer to a compiler 
AST. This allows for a wide range of internal 
optimizations, allowing to process large models 
quickly and efficiently. 
Ocarina is available under the GPL license and runs 
on most operating systems (Windows, Mac OS X, 
Linux). Releases, examples of application-level 
models, case studies as well as documentation are 
available on our AADL portal [10]. Ocarina has been 
successfully tested in the European project IST-
ASSERT [11], led by the European Space Agency, 
and the French R&D project Flex-eWare [12], led by 
Thales.  Their partners, as part of advanced 
technology transfer projects, are currently testing 
Ocarina further, on industry-size case studies. 
One notable feature of Ocarina is the ability to 
include seamlessly any functional notations as 
implementation of blocks such as subprograms or 
threads. Instead of writing C code, the designer may 
insert a SCADE or Simulink functional blocks. Then, 
the Ocarina code generator will generate all the 
required glue code to integrate C code generated 
from Simulink Real-Time workshop or SCADE’s kcg 
C code into AADL runtime code. This suppresses a 
tedious and error prone integration work, and allows 
the user to focus only on the behavior of its system 
instead of bothering with low-level implementation 
details. This feature allows for a natural bridge 
between a high level architecture based tool like IME 
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and simulation on real hardware, in a distributed 
setup, using Ocarina generated code. We illustrate 
this in the next section. 
 

4. CASE STUDY 

In this section we describe the application of the 
architecture driven approach to the Electronic 
Throttle Control (ETC) system. ETC replaces a 
mechanical system consisting of a linkage between 
the accelerator pedal to the throttle plate. In the 
mechanical system the vehicle operator directly 
regulates the engine airflow by adjusting the position 
of the throttle plate via the accelerator pedal. At idle 
speed conditions, the airflow bypasses the throttle 
plate and is regulated with an Idle Air Control (IAC) 
valve. In the ETC system the throttle plate is 
actuated electronically. The desired throttle plate 
position (setpoint) is determined based on the pedal 
position as well as other inputs and operating 
conditions. A primary benefit of ETC is it enables 
system designers to incorporate throttle control into 
other vehicle functions, such as cruise control and 
vehicle stability control. ETC is considered a safety 
critical system. As a result a considerable portion of 
ETC functionality is in place for redundancy and 
safety monitoring.  
Figure 4 shows the functional architecture of one 
ETC system as visualized within IME. The main 
components in the architecture are the core 
controller, actuator, sensors and the plant. The core 
controller consists of three important functions – 
safety monitor, manager and servo control. 

 

Figure 4: ETC Closed Loop System 

 
In this case study we will consider three deployment 
scenarios for the embedded software.  
 
Scenario1 – Single ECU: We consider the case in 
which a supplier is assigned the responsibility of 
developing the actuator system. The supplier 
develops a first version of the actuator based on the 
specifications from the OEM. The product 

development cycle requires virtual integration of the 
entire system much in advance of the availability of 
actual physical hardware. Therefore the supplier 
develops the actuator driver models and the plant 
models and delivers the closed loop actuator system 
model to the OEM. The OEM integrates the actuator 
models into the bigger ETC system models. The 
next step for the OEM is to deploy all the controller 
components on a single target ECU in order to 
eventually generate the control software. 
 
Scenario2 – Single ECU + Smart Actuator: As an 
alternative to the scenario 1 above, the supplier 
offers a technologically advanced actuator in which 
the driver software is tightly integrated with the 
physical actuator. In turn, the OEM can offer superior 
functionality on some of its product lines, without 
disturbing the basic hardware architecture. However, 
in this case, the actuator driver software executes on 
a dedicated ECU. When the supplier delivers the 
actuator driver and plant models to the OEM for 
integration into the ETC system model, the OEM 
should ensure that code generation does not include 
the drivers with the main ECU.  
 
Scenario3 – Two ECUs + Smart Actuator: The OEM 
wants to reuse the same physical system and 
controls architecture for an advanced defense 
application, where safety criticality and redundancy 
are highly prioritized. In order to accommodate this 
modification the OEM wants to deploy the safety 
monitor component on a separate target ECU; the 
core functionality runs on the main ECU; the drivers 
run on the processor with the actuator.  
 
In all the above scenarios the functional architecture 
remains the same but the deployment architecture is 
different. We now discuss the workflow and tool 
chain to support the deployment in the above 
scenarios. 
Figure 5 depicts the steps involved in the generation 
of functional models from the system architecture. 
The system architecture can be developed using 
AADL authoring tools such as OSATE (Open Source 
AADL Tool Environment) [5] and imported into IME. 
The model repository can be mined and consistent 
functional models can be selected and associated 
with the system architecture. The functional Simulink 
models of the system can then be generated for 
further analysis. 
 
The next step is to deploy the functional models on 
the target. Since the functional architecture is 
different from the target architecture and also the  
target architecture is different in the three scenarios 
considerable re-architecting of the functional 
architecture must be done. The workflow for 
allocating the functional software components to the 
target is shown in figure 6. 
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Figure 5: Generation of functional models consisten t with system architecture. 

 

Figure 6: Generation of embedded system architectur es from functional architectures 
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The functional system architecture can be annotated 
with the binding information. The binding information 
is different in the three deployment scenarios. The 
binding information must include the processor, 
process and thread in which each component must 
execute. Then the embedded architectures are 
generated from the functional architecture. Figures 
7, 8 and 9 illustrate the embedded architectures for 
scenarios 1, 2 and 3 respectively. Figure 9 shows 
the detailed hierarchy of the embedded system. The 
embedded system consists of two ECUs – ECU1 
and ECU2. A single process executes in ECU1 
which manages a single thread. This thread 
executes the monitor component. The connections 
to the plant are not shown in the figure. In all the 
three target architectures the communication 
between the software components is maintained as 
specified in the functional architecture.  
 

 

Figure 7: Illustrates scenario 1 - Controller and 
actuator drivers are executed in a single ECU 

 

 

Figure 8: Illustrates scenario 2 – Actuator driver 
executes on a dedicated ECU 

 

 

Figure 9: Illustrates scenario 3 – Monitor 
component executes in a dedicated ECU. Other 
controller components execute in a second ECU. 

 
The next step is the generation of embedded 
software. In scenarios 1 and 2 the controller 
components were deployed on a single ECU. So the 
re-architected embedded architectures can be 
migrated back to the Simulink domain which 
supports code generation for a single ECU.  In 
scenario 3 the controller components are distributed 
among two ECUs. In order to generate distributed 
software using a single model the architecture is 
exported as an AADL model. The Ocarina toolsuite 
can parse the AADL model and extract the execution 
characteristics of the embedded system. 
Executables can be generated for each process. 
Within each process the required threads are 
created which in turn call the subprograms that 
represent the interfaces of the functional 
components. Simultaneously code can be generated 
from the functional models for each component. The 
functional components are called from within the 
subprograms. The execution architecture and the 
communication among the embedded and functional 
components are shown in figure 10. Figure 11 
illustrates the structure of the monitor subprogram 
and the call to the monitor functional component. 
The integrated software can be executed on a real-
time system.  
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Figure 10: Communication between the monitor 
and manager components executing in separate 
ECUs. 

 
 

 

Figure 11: Structure of a subprogram 

5. CONCLUSIONS 

In this work we discussed the approaches and 
specific technologies that enable the generation of 
distributed embedded software from functional 
models. An architecture driven approach facilitates 
the reconciliation of the functional and embedded 
architectures and their integration. The specific tools 
and technologies also support modular development 
and reuse of software components. These improve 
the efficiency of the engineering activities. Further 
studies needs to be performed with regards to 
deploying the embedded software on the target 
hardware and real-time testing of the system. 
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