J. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.414, issue.6861, pp.359-367, 2001.

J. Lee, A. Urban, X. Li, D. Su, G. Hautier et al., Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries, Science, vol.343, issue.6170, pp.519-522, 2014.

N. Yabuuchi, M. Takeuchi, M. Nakayama, H. Shiiba, M. Ogawa et al., High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure, Proceedings of the National Academy of Sciences, vol.112, issue.25, pp.7650-7655, 2015.

N. Yabuuchi, M. Nakayama, M. Takeuchi, S. Komaba, Y. Hashimoto et al., Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries, Nature Communications, vol.7, issue.1, p.13814, 2016.

J. Lee, D. Seo, M. Balasubramanian, N. Twu, X. Li et al., A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li?Ni?Ti?Mo oxides, Energy & Environmental Science, vol.8, issue.11, pp.3255-3265, 2015.

N. Yabuuchi and T. Ohzuku, Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries, Journal of Power Sources, vol.119-121, pp.171-174, 2003.

S. Kumakura, S. Komaba, K. Kubota, . Li4mewo6, and . Me=ni, Li4MeWO6 (Me=Ni, Mn, Co) As Positive Electrode Materials for Li-Ion Batteries, ECS Meeting Abstracts, issue.6, pp.481-481, 2015.

N. Yabuuchi, Y. Tahara, S. Komaba, S. Kitada, and Y. Kajiya, ChemInform Abstract: Synthesis and Electrochemical Properties of Li4MoO5-NiO Binary System as Positive Electrode Materials for Rechargeable Lithium Batteries., ChemInform, vol.47, issue.15, pp.no-no, 2016.

J. Colin, C. Bourbon, and Q. Jacquet, Li-Substituted Layered Spinel Cathode Material for Sodium Ion Batteries

W. Zhao, K. Yamaguchi, T. Sato, and N. Yabuuchi, Li4/3Ni1/3Mo1/3O2? LiNi1/2Mn1/2O2Binary System as High Capacity Positive Electrode Materials for Rechargeable Lithium Batteries, Journal of The Electrochemical Society, vol.165, issue.7, pp.A1357-A1362, 2018.

A. Urban, A. Abdellahi, S. Dacek, N. Artrith, and G. Ceder, Electronic-Structure Origin of Cation Disorder in Transition-Metal Oxides, Physical Review Letters, vol.119, issue.17, p.176402, 2017.

M. Morcrette, Y. Chabre, G. Vaughan, G. Amatucci, J. Leriche et al., In situ X-ray diffraction techniques as a powerful tool to study battery electrode materials, Electrochimica Acta, vol.47, issue.19, pp.3137-3149, 2002.

J. Rodríguez-carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B: Condensed Matter, vol.192, issue.1-2, pp.55-69, 1993.

V. Briois, C. La-fontaine, S. Belin, L. Barthe, T. Moreno et al., ROCK: the new Quick-EXAFS beamline at SOLEIL, Journal of Physics: Conference Series, vol.712, p.012149, 2016.

B. Ravel and M. Newville, ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT, Journal of Synchrotron Radiation, vol.12, issue.4, pp.537-541, 2005.

D. L. Massart, COMETT 2 project on chemometrics and qualimetrics, Chemometrics and Intelligent Laboratory Systems, vol.10, issue.1-2, pp.1-2, 1991.

A. Juan, J. Jaumot, and R. Tauler, Solving the Mixture Analysis Problem, Anal. Methods, vol.6, issue.14, pp.4964-4976, 2014.

M. He, In Situ Gas Analysis of Li-Ion NixCoyMnz Cathode Interface Reactivity, ECS Meeting Abstracts, 2016.

G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, vol.6, issue.1, pp.15-50, 1996.

G. Kresse and J. Hafner, Ab initiomolecular dynamics for liquid metals, Physical Review B, vol.47, issue.1, pp.558-561, 1993.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, pp.3865-3868, 1996.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Physical Review B, vol.57, issue.3, pp.1505-1509, 1998.

G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvère et al., Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes, Nature Communications, vol.8, issue.1, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01677634

W. E. Gent, K. Lim, Y. Liang, Q. Li, T. Barnes et al., Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides, Nature Communications, vol.8, issue.1, p.2091, 2017.

K. Luo, M. R. Roberts, R. Hao, N. Guerrini, D. M. Pickup et al., Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen, Nature Chemistry, vol.8, issue.7, pp.684-691, 2016.

L. De'-medici, Hund?s coupling and its key role in tuning multiorbital correlations, Physical Review B, vol.83, issue.20, p.83, 2011.

J. Lee, J. K. Papp, R. J. Clément, S. Sallis, D. Kwon et al., Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials, Nature Communications, vol.8, issue.1, p.981, 2017.

M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau et al., Li4NiTeO6 as a positive electrode for Li-ion batteries, Chemical Communications, vol.49, issue.97, p.11376, 2013.

X. Ma, K. Kang, G. Ceder, and Y. S. Meng, Synthesis and electrochemical properties of layered LiNi2/3Sb1/3O2, Journal of Power Sources, vol.173, issue.1, pp.550-555, 2007.

M. Freire, N. V. Kosova, C. Jordy, D. Chateigner, O. I. Lebedev et al., A new active Li?Mn?O compound for high energy density Li-ion batteries, Nature Materials, vol.15, issue.2, pp.173-177, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02184779