PIP30/FAM192A is a novel regulator of the nuclear proteasome activator PA28γ
Beata Jonik-Nowak, Thomas Menneteau, Didier Fesquet, Véronique Baldin, Catherine Bonne-Andrea, Francisca Méchali, Bertrand Fabre, P. Boisguerin, Sylvain de Rossi, Corinne Henriquet, et al.

To cite this version:

HAL Id: hal-02267210
https://hal.archives-ouvertes.fr/hal-02267210
Submitted on 12 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
PIP30/FAM192A is a novel regulator of the nuclear proteasome activator PA28γ

Beata Jonik-Nowaka1, Thomas Mennetteau1, Didier Fesquet1, Véronique Baldin4, Catherine Bonne-Andrea3, Francisca Méchali2, Bertrand Fabre3, Prisca Boisguerin2, Sylvain de Rossi2, Corinne Henriquet2, Martine Pugnière4, Manuelle Ducoux-Petit5, Odile Burlet-Schiltz2, Angus I. Lamonde4, Philippe Fort4, Séverine Boulon2, Marie-Pierre Bousquet6, and Olivier Couxa2,1

Manuelle Ducoux-Petit2, Odile Burlet-Schiltz2, Angus I. Lamonde4, Philippe Fort4, Séverine Boulon2, Marie-Pierre Bousquet6, and Olivier Couxa2,1

The 20S proteasome is a multimeric “barrel-like” protease that bears multiple peptidase (i.e., trypsin-like, caspase-like, and chymotrypsin-like) activities inside its internal catalytic chamber (1). It plays a major role in the regulated degradation of intracellular proteins and requires for its functioning, in most cases, the binding of regulatory complexes to one or both of its ends (1). Among these regulators, the well-characterized 19S regulatory complex has been shown to associate with the 20S core to form the 20S proteasome that specifically recognizes and degrades polyubiquitylated proteins (2, 3). Another type of 20S proteasome regulators is the PA28 (also called 11S or REG) family of complexes, which comprises in higher eukaryotes three related proteins (PA28α, -β, and -γ) that associate in two distinct complexes (4). PA28α and PA28β form a cytoplasmatic heterohexamet, PA28αβ (5, 6), which participates in the immune response by favoring the generation of MHC class I antigens (7, 8). In contrast, PA28γ is essentially nuclear and forms a homohexamet (9, 10). PA28 complexes mediate primarily ubiquitin-independent proteolysis when bound to the 20S proteasome. However, they are also found in hybrid proteasomes (i.e., 20S proteasome bound to a PA28 heptamer on one end and a 19S complex on the other end) (11) and are thus likely to also participate in ATP-dependent degradation of ubiquitylated proteins. Although PA28γ has been little studied, it is involved in various essential cellular pathways, including cell proliferation, through the degradation of the cell cycle inhibitors p19ARF, p16INK4a, and p19INK1 (12–14). PA28γ also participates in the Mdm2-dependent degradation of the tumor suppressor p53 (15). Furthermore, PA28γ+− mice display growth retardation (16) and PA28γ is overexpressed in several types of cancer (17–19). In addition to its involvement in the control of cell proliferation, PA28γ is implicated in the regulation of chromosomal stability (20) and plays important roles in nuclear dynamics by modulating the number and size of various nuclear bodies, including Cajal bodies (21), nuclear speckles (22), and promyelocytic leukemia protein bodies (23). It is also involved in the cellular stress response, as it is recruited to double-strand break sites upon DNA damage (24) and is required for the UVC-induced dispersion of CBs (21).

Despite its important cellular functions, the mechanisms of action of PA28γ, like those of the related PA28αβ complex, remain elusive. It is known that, like the 19S complex, PA28 complexes open the gated pore of the 20S proteasome’s α-ring upon binding, thus allowing easier substrate entrance into the catalytic chamber (25). Artificial peptide substrates commonly used to measure proteasome activities are believed to passively

The 20S proteasome is a key actor of the control of protein levels and integrity in cells. To perform its multiple functions, it works with a series of regulators, among which is a nuclear complex called PA28γ. In particular, PA28γ participates in the regulation of cell proliferation and nuclear dynamics. We describe here the characterization of a protein, PIP30/FAM192A, which binds tightly to PA28γ and favors its interaction with the 20S proteasome while inhibiting its association with colin, a central component of nuclear Cajal bodies. Thus, PIP30/FAM192A critically controls the interactome and, consequently, the functions of PA28γ, and appears to be a previously unidentified player in the fine regulation of intracellular proteostasis in the cell nucleus.

Significance

1B.J.-N., T.M., and D.F. contributed equally to this work.
2To whom correspondence may be addressed. Email: severine.boulon@crbm.cnrs.fr, Marie-Pierre.Bousquet@ipsib.fr, or olivier.couxa@crbm.cnrs.fr.
3This article contains supporting information online at www.pnas.orglookup/supplemental/10.1073/pnas.1722299115/-/DCSupplemental.
4www.pnas.org/cgi/doi/10.1073/pnas.1722299115 PNAS PLUS

www.pnas.org/cgi/doi/10.1073/pnas.1722299115 PNAS PLUS

E6477-E6486

Published online June 22, 2018.
diffuse through the 20S pores, and therefore PA28γ stimulation of their degradation can be explained by 20S-pore opening only. However, how PA28 complexes recruit protein substrates and deliver them to the proteasome is not understood, as these complexes are a priori inert molecules that, unlike the 19S complex, do not possess any ATPase activity that could provide energy and movement to unfold the substrates and inject them into the 20S proteasome (2, 3). A likely possibility is thus that PA28 complexes function in proteasome-dependent proteolysis in association with other proteins that remain to be defined.

In this study, we describe a partner of PA28 complex, the evolutionary conserved PIP30/FAM192A protein. We show that PIP30 binds with high specificity to PA28γ and enhances its association with the 20S proteasome in cells. Importantly, PIP30 binding affects PA28γ specificity toward peptide substrates in vitro as well as its interactions with cellular proteins, such as the CB marker coilin. Therefore, PIP30 is a major regulator of PA28γ functions and consequently of the nuclear functions of the proteasome.

Experimental Procedures

Phylogenetic Analyses. Genomes were explored by using Annotation and BLAST search tools available in the Geneious 9.1.7 software package (www.
geneious.com). Amino acid sequences were aligned (MAFFT v7.017) and a phylogenetic tree was deduced by maximum-lielihood analysis (PhyML).

Antibodies. Antibodies and related agents used in this study are described in SI Appendix, Material and Methods.

Production of 20S Proteasome and Recombinant Proteins. Native 20S proteasome was purified from extracts of HeLa cells (Ipracell) using classic chromatographic procedures (26). Unless indicated, recombinant PIP30 was produced in Escherichia coli BL21 DE3 CodonPlus as a 6His-tagged protein and purified by affinity purification followed by proteolytic removal of the tag, anion-exchange chromatography, and gel filtration (SI Appendix, Fig. S10B). At the last step, the protein was eluted slightly earlier than the BSA (67 kDa) marker (i.e., at an apparent molecular weight larger than twice what was expected). Human recombinant PA28γ was produced and purified from E. coli, as previously described (27). Human PA28γ was expressed in E. coli BL21 DE3 CodonPlus. After expression, the PA28γ complex was purified by chromatography as PA28γip, with some minor modifications of the procedure. Both PA28μip and PA28β complexes efficiently activated the peptidase activities of the 20S proteasome. Recombinant GST and GST-PIP30-H201 fusion proteins were produced in bacteria and efficiently purified using glutathione Sepharose beads.

Pull-Down and Immunoprecipitation. For immunoprecipitation (IP) of GFP-fusion proteins, U2OS cells were transfected with the indicated constructs. Twenty-four hours after transfection, cells were homogenized in lysis buffer [25 mM Hepes pH 7.8, 100 mM KCl, 1 mM EDTA, 1% Igepal CA-630, 0.1% Triton X-100, 1 mM DTT, 1 mM ATP, 10% glycerol (vol/vol)], then supplemented with 1 μl of native sample buffer (xylene cyanol FF in reaction buffer supplemented with 50% glycerol) and applied to 5% polyacrylamide gel prepared in Tris-Glycine electrophoresis buffer (25 mM Tris·HCl pH 8.0, 192 mM NaCl, 1 mM DTT). Native electrophoresis was performed for 4-5 h (100 V, 4 °C). After denaturation in 10X TG-SDS buffer, proteins were transferred on PVDF membrane and immunoblotted.

Surface Plasmon Resonance Analysis. Experiments were performed on Biacore 3000 apparatus (GE Healthcare) at 25 °C using a flow rate of 50 μl/min in HBS-EP buffer (GE Healthcare). To compare the binding of PA28γ and PA28β to 6His-PIP30 recombinant protein, 6His-PIP30 (4500RU) was captured on anti-His-Tag covalently immobilized on a CMS sensor chip using a flow rate of 30 μl/min. A control flowcell was obtained with the same chemical procedure without AP28γ. Next, 60 μl of PA28γ and PA28β (50 μg/ml) were injected on HisIP30 and control flowcells followed by a dissociation step of 400 s.

In Vitro CK2 Phosphorylation Assay. GST and GST-PIP30-H201 proteins were incubated with recombinant CK2 according to the manufacturer’s instructions. For radioactive kinase assays, 32P labeled ATP (1 μCi in the presence of 100 μM cold ATP) was included. Reactions were stopped either by adding 5 mM EDTA or Laemmli sample buffer.

Proteasome Peptidase Assays. Peptidase activities of 20S proteasome were measured using black flat-bottom 96-well plates (Nunc), in a final volume of 50 μl, in reaction buffer [20 mM Tris·HCl pH 7.5, 50 mM NaCl, 1 mM DTT, 10% glycerol (vol/vol)] supplemented with 100 μM peptide substrates. When indicated, purified recombinant PA28 and/or PA28β were added. Kinetic analyses showed that the assays are linear at least for 30 min. Peptide degradation was measured by the fluorescence emitted by the AMC group released by cleavage of the substrate (excitation 380 nm, emission 440 nm) using a FLx800 microplate fluorescence reader (Bio-Tek Instruments).

Immunofluorescence Microscopy and Proximity Ligation Assays. Cells were fixed in 3.7% paraformaldehyde/PBS for 10 min at room temperature, washed with PBS and permeabilized in PBS containing 1% Triton X-100 for 15 min at room temperature. Coverslips were then blocked in blocking solution (1% FCS, 0.01% Tween-20PBS) for 20-30 min and incubated with primary antibodies, diluted in blocking buffer, for 1 h at room temperature or 37 °C in a humidified atmosphere. After three washes in PBS, coverslips were incubated with Alexa Fluor 488 and/or fluorescein isothiocyanate conjugated secondary antibodies diluted in blocking solution for 1 h at room temperature. Coverslips were washed with PBS, incubated with 0.1 μg/ml DAPI solution in PBS for 5 min at room temperature, washed twice in PBS, and finally once in H2O. Coverslips were mounted on glass slides using Prolong Gold antifade reagent (Thermo Fisher Scientific).

For proximity ligation assays (PLA), cells on coverslips were fixed and permeabilized as described in ref. 22. Coverslips were then blocked in a
solution provided by the Duolink kit. Cells were then incubated with mentioned antibodies as described above. Duolink In Situ PLA Probe Rabbit MINUS and Anti-Mouse PLUS and Duolink In Situ Detection Reagents (Sigma-Aldrich) were used, according to the manufacturer’s instructions.

Image Acquisition and Analysis. The z-stacks and images were acquired with a 63×1.4 NA or 40× oil-immersion objective lenses using widefield microscopes, DM6000 (Leica Microsystems) or Axioimager Z1 or Z2 (Carl Zeiss), equipped with cooSNAP HQ2 cameras (Photometrics). Images were acquired as TIF files using MetaMorph imaging software (Molecular Devices). For CB and PLA dot quantative analysis, z-stacks were acquired every 0.3–0.4 μm (z-step) with a range of 10–15 μm to image the whole nuclei. The number of PLA foci was analyzed with ImageJ. The size, the intensity, and the number of CBs were measured with ImageJ (1.49p), using a specific “macro” that has been created to automatically quantify these different parameters. The script allows creating a mask of DAPI image to isolate the nucleus of each cell and create a maximum-intensity projection of the 25 z-stacks. The mask is used in the maximum-intensity projection to count the number of CB or PLA dots of each nucleus via an appropriate thresholding. The “Analyze Particles” tool of ImageJ was used to calculate the size and the mean gray value of each CB.

Results

FAM192A Is a Partner of both Free and 20S Proteasome-bound PA28γ That Regulates the Interaction Between PA28β and 20S Proteasome.

To identify new interactors of PA28γ, we used a high-throughput approach combining endogenous PA28γ IP and SILAC-based quantitative proteomics (28) (SI Appendix, Fig. S1A, Left). In this experiment, 68 human protein groups containing at least two unique peptides were quantified and visualized by plotting log2[heavy/light (H/L) ratio] versus log2(H intensity) (Fig. L4 and Dataset S1). PA28γ itself was found with a H/L SILAC ratio close to 15. Among the PA28γ interactors was FAM192A, a poorly annotated nuclear protein of unknown cellular function, whose expression is induced during skeletal muscle atrophy (33). FAM192A was also identified with a high SILAC ratio in a GFP-PA28β pull-down that we performed in parallel (Dataset S2). Conversely, PA28γ was the most abundant and almost unique partner pulled down with GFP-FAM192A (Fig. 1B and SI Appendix, Fig. S1A, Right and Dataset S3). Reciprocal IPs on endogenous proteins showed that at least 70% of each protein coprecipitates with the other (SI Appendix, Fig. S1B). Like PA28γ, FAM192A is nuclear (SI Appendix, Fig. S10A) and interaction between the two proteins occurs within the nucleus (SI Appendix, Fig. S1C).

Using recombinant FAM192A and PA28γ proteins produced in E. coli, we found that the interaction between FAM192A and PA28γ is direct, as shown for example by native gel electrophoresis (Fig. 1C) or surface plasmon resonance (SPR) (SI Appendix, Fig. S1D). SPR showed no interaction between FAM192A and the closely related PA28β complex (SI Appendix, Fig. S1D), demonstrating the high specificity of PA28γ/FAM192A interaction in vitro.

Through parallel approaches, we investigated putative nuclear proteasome interacting proteins by quantitative analysis of proteasome complexes immunopurified from nuclei of U937 cells using the MCP21 antibody (targeting the α2 subunit of 20S proteasome), as described previously (31). As expected, all 20S proteasome and 19S regulatory complex subunits, as well as known proteasome interactors, such as PA28γ, PA200, and USP14, were found in this category [abundance ratios (IP 20S/IF control) above 2 and P value below 0.05 (n = 3)] (SI Appendix, Fig. S24 and Dataset S4). Interestingly, the protein FAM192A showed an enrichment factor of 6.4 and a P value <5 × 10−4 and thus clearly qualifies as a proteasome interacting protein.

Further quantitative analysis of proteasome-associated proteins in HeLa cells showed that FAM192A is recruited on proteasomes in a PA28γ-dependent manner (Fig. 1D), because it is absent in proteasome immunoprecipitates after PA28γ knockdown. The enrichment in anti-FAM192A immunoprecipitates of all subunits of the 19S regulatory complex (PSMCx and PSMDx) (SI Appendix, Fig. S2B) demonstrated that FAM192A is also recruited on hybrid proteasomes, most likely via its interaction with PA28γ.

Interestingly, these results also showed that co-IP of PA28γ with 20S proteasome was halved (P = 0.02) in siRNA FAM192A-depleted cells (Fig. 1D). This result was confirmed by reverse anti-PA28γ co-IP experiments using wild-type and FAM192A−/− U2OS cell extracts, showing that indeed FAM192A depletion elicits a twofold decrease in PA28γ/γ4 interaction (Fig. 1E). Thus, FAM192A promotes the association of PA28γ with the 20S proteasome.

Altogether, our experiments establish that FAM192A is a major direct interactor of PA28γ, recruited to proteasome complexes via PA28γ and favoring the association of PA28γ with the 20S proteasome. FAM192A is also called NIP30 (NEFA-interacting protein 30 kD), which might refer to a NIP (4-hydroxy-5-ido-3-nitrophenyl acetate) labeled 30-kD protein that interacts with phosphatidylinositol biphosphate (34). Based on the above experiments, and since FAM192A has no clear assigned cellular function, we propose to rename it PIP30, for PA28γ interacting protein 30 kDa. This name will be used thereafter in this report.

PA28γ/IP30 Interaction Is Stabilized by CK2 Phosphorylation of IP30 C Terminus. Evolutionary analyses show that the PIP30 sequence is characterized by the presence of three conserved domains: an N-terminal signature domain (pfam10187, also called NIP30 domain, ~100 amino acids) and two smaller motifs (SI Appendix, Fig. S3A). The pfam10187 domain is found in metazoa as well as in all major eukaryotic supergroups. This allows tracing back the major eukaryotic evolution (SI Appendix, Fig. S3B), as it is the case for PA28γ (4). The conserved C-terminal motifs of PIP30 proteins are enriched in phosphorylatable residues, including a completely conserved tyrosine and several serine residues (SI Appendix, Fig. S3A).

Using various truncation mutants, we determined that the last 54 amino acids of PIP30 (amino acids 201–254; i.e., the H201 mutant) are necessary and sufficient for interaction with endogenous PA28γ and that amino acids 223–230 are critical for the association (Fig. 2A and SI Appendix, Fig. S4A and B). This C-terminal region includes the highly conserved serine-rich and acidic sequence highlighted in SI Appendix, Fig. S3A and contains two SDSE motifs (SI Appendix, Fig. S4C) that both match the canonical consensus site (S/T-X-X/E/D/pS/pT) for casein kinase II (CK2) (35, 36). Indeed, we found that this region can be phosphorylated by CK2 in vitro (Fig. 2B). Phosphorylation is dependent on the integrity of the CK2 consensus sites, as it was reduced when the serine residues S222 and S228 were replaced by alanine (mutant SS-AA), and abolished or strongly impaired when the acidic residues within the two CK2 consensus motifs were converted into basic lysine residues (mutations D229E231-KK and D229E231-KK, respectively) (Fig. 2B).

In cells, in the context of the full-length GFP-PIP30 protein (Fig. 2C and SI Appendix, Fig. S4D), like in vitro with the C-terminal part of PIP30 (SI Appendix, Fig. S4E), these mutations altered the binding to PA28γ. In a manner parallel to their effects on CK2 phosphorylation in vitro, the acidic mutants abolished or strongly impaired the binding to PA28γ, while the SS-AA mutant reduced it (Fig. 2C and SI Appendix, Fig. S4F). The weaker binding of the SS-AA mutant strongly suggests that phosphorylation is stabilizing PA28γ/IP30 interaction. Indeed, when using purified proteins, PA28γ showed more affinity for CK2-phosphorylated than for nonphosphorylated PIP30 (Fig. 2D).

To verify that CK2 is the endogenous kinase phosphorylating PIP30, we treated cells with the selective CK2 inhibitor CX-4945 (37). This treatment revealed a second, faster-migrating band (Fig. 2F), suggesting that in cells PIP30 is primarily in a CK2-phosphorylated form. This conclusion is strengthened by thorough
analysis of the phosphorylated semitryptic PIP30 peptides found in our mass spectrometry analyses of anti-PIP30 immunoprecipitates (SI Appendix, Fig. S5). While only a minor fraction of endogenous PIP30 was nonphosphorylated in wild-type cells upon CK2 inhibition for 24 h, it was mainly non- or hypophosphorylated in PA28γ⁻/⁻ cells after the same treatment (Fig. 2F). This finding suggests that, although PIP30 does not require PA28γ for being phosphorylated, the binding to PA28γ protects it from being dephosphorylated. This was confirmed by the fact that λ-phosphatase can dephosphorylate a fraction of immunoprecipitated endogenous PIP30, but not the endogenous PIP30 coimmunoprecipitated with PA28γ (SI Appendix, Fig. S4F). Finally, after CX-4945 treatment, only the phosphorylated PIP30 was retrieved upon PA28γ IP (Fig. 2F), showing that the phosphorylation of PIP30 by CK2 in cells stabilizes its interaction with PA28γ. Taken together, our results show that the C-terminal end of PIP30 protein is critical for its binding to PA28γ and that its phosphorylation by CK2 stabilizes this interaction.

PIP30 Controls Substrate Diffusion to the Catalytic Chamber of the Proteasome. We next assessed whether PIP30 could interfere with the peptidase activities of the proteasome in vitro.

Using recombinant PIP30 in combination with PA28γ and the 20S proteasome, we found that PIP30 differentially altered...
degradation of a panel of standard proteasome peptide substrates (38) by the PA28\(^\gamma\)–activated proteasome (Fig. 3A). For example, while the activation of Suc-LLVY-amc (LLVY) and Ac-nLPnLD-amc (nLPnLD) degradation was partially inhibited, degradation of Boc-LRR-amc (LRR) was essentially insensitive to the presence of PIP30 (Fig. 3A and SI Appendix, Fig. S6A). The lack of effect of PIP30 on LRR degradation shows that its negative effects on other peptides is not due to alteration of the stability of the 20S proteasome/PA28\(^\gamma\) complex, since the proteasome remains fully activated in this case. Importantly, PIP30 had no effect when PA28\(^\gamma\) was used to activate the 20S proteasome or after mutations that prevent its binding to PA28\(^\gamma\) (SI Appendix, Fig. S6B). This establishes that the effects of PIP30 on proteasome activities, described in this report, are not direct but require its interaction with PA28\(^\gamma\), even though it remains formally possible that PIP30 could nevertheless also affect proteasome functions through undetected labile or transient interactions independent from PA28\(^\gamma\). The differential effects of PIP30 were not correlated with specific proteasome peptidase activities (Fig. 3A), suggesting that the effects of PIP30 are not a result of alteration of the proteasome active sites. To confirm this hypothesis, we used the proteasome activity probe Bodipy TMR-Ahx3L3VS (a generous gift of Huib Ovaa, Leiden University, Leiden, The Netherlands), which labels efficiently the \(\beta_2\) (trypsin-like activity) and \(\beta_5\) (chymotrypsin-like activity) subunits of the proteasome (39, 40). We found that the ratio between \(\beta_2\) and \(\beta_5\) labeling was not altered by PIP30 (Fig. 3B), showing that the relative activity of both sites is not changed. Therefore, the differential degradation of LRR (\(\beta_2\) substrate) and LLVY (\(\beta_5\) substrate) elicited by PIP30 is most likely due to a differential
diffusion rate into the catalytic chamber of the proteasome. This strongly suggests that PIP30 regulates peptide entrance or transit through the channel opened by PA28γ upon binding to the 20S proteasome.

We next assessed whether PIP30 phosphorylation affects its effect on peptide degradation. Comparing nonphosphorylated and CK2-phosphorylated PIP30 (SI Appendix, Fig. S10D), we found that phosphorylation of PIP30 enhanced its inhibitory effects (Fig. 3C). For the most affected peptides, phosphorylated PIP30 was able to abrogate the activating effect of PA28γ on their hydrolysis. However, it had a limited effect on other peptides and remained without effect on the basic LRR substrate (Fig. 3C).

Overall, these data show that PIP30 is able to alter the 20S proteasome-activating properties of PA28γ in vitro. In this process, it seems to act as a phosphorylation-modulated filter that differentially impairs the entrance or the transit of peptide substrates through the PA28γ channel.

PIP30 Alters PA28γ Functions in CB Dynamics. We have previously shown that PA28γ overexpression leads to the disruption of CBs (21), which are evolutionary conserved coilin-dependent and coilin-rich subnuclear compartments. CBs are involved in the maturation of small nuclear ribonucleoproteins (snRNPs) and small nuclear RNPs, as well as in the processing of histone pre-mRNAs (41, 42). We thus tested whether PIP30 has also a role in CB dynamics. First, we compared CB number in wild-type, PA28γ−/−, and PIP30−/− U2OS cells. We found that while 80% of wild-type and PA28γ−/− U2OS cells display CBs, only 40% of PIP30−/− cells are CB+(Fig. 4 A and B). Furthermore, in cells displaying CBs, the absence of PIP30 leads to a decrease in the average number of CBs per nucleus (Fig. 4C). The effect of PIP30 depletion was rescued by expression of GFP-PIP30 (Fig. 4D). Furthermore, the PIP30 mutants impaired for their binding to PA28γ (i.e., GFP-PIP30Δ199, D223E225-KK, and D229E231-KK) did not significantly rescue the phenotype, compared with GFP alone (Fig. 4D). Together, these results show that PIP30, like PA28γ (21), controls the steady-state number of CBs and that this depends on its binding to PA28γ. However, PIP30 and PA28γ do not have the same effects in this process. An important question was to assess whether the effect of PIP30 depletion is dependent upon the presence in cells of PA28γ. We thus compared the effect of PIP30 knockdown in wild-type and PA28γ−/− cells (Fig. 4E). The results show that in both cell lines depletion of PIP30 entails a decrease in the number of cells with CBs. However, the effect of PIP30 depletion seems less drastic in PA28γ−/− compared with wild-type cells. Together, these results suggest two components in the functions of PIP30 in CB dynamics: one critical that is PA28γ-dependent, and another that is PA28γ-independent.

In the absence of PIP30 (i.e., in siRNA PIP30-depleted or PIP30 knockout cells, but not in control cells) we observed an accumulation of PA28γ in all residual CBs, either identified by coilin (Fig. 5A) or WRAP53 (another CB marker) staining (SI Appendix, Fig. S7A). Furthermore, reexpression of GFP-PIP30 in PIP30-depleted cells abrogated the accumulation of PA28γ in CBs (SI Appendix, Fig. S7B). These observations demonstrate that PIP30 inhibits PA28γ subnuclear localization in CBs.

![Image of proteasome assay](image-url)

Fig. 3. PIP30 differentially affects peptide diffusion toward the catalytic chamber of the proteasome. (A) Inhibition by PIP30 of PA28γ-activated 20S proteasome is peptide substrate-specific. Proteasome activity was assayed in the presence of the indicated peptides and proteins and normalized by setting the presence in cells of PA28γ to 100% the value obtained in the presence of 20S proteasome and PA28γ. The assays were performed for 20 min at 37 °C in a 50-μL reaction mixture containing the indicated combinations of 20S proteasome (0.5 μg), PA28γ (1 μg), and PIP30 (4 μg). The respective final concentrations of the 20S proteasome and PA28γ are set up such as the peptidase activities are not fully activated (i.e., PA28γ is limiting in the assay). At the final concentration used for PIP30, the inhibitory effect is maximal (SI Appendix, Fig. S5A). Error bars represent deviation from the mean of technical duplicates. The figure is representative of more than three distinct experiments. Peptides used are substrates of the following peptidase activities of the 20S proteasome: Suc-LLVY-amc, Z-GGL-amc: chymotrypsin-like activity; Ac-nPnLD-amc: caspase-like activity; Boc-LRR-amc, Boc-LSTR-amc: trypsin-like activity. (B) The activity of the chymotrypsin-like and trypsin-like catalytic sites of the 20S proteasome is not modified by PIP30: 20S proteasome (2 μg) was mixed in reaction buffer (Tris HCl 20 mM pH 7.5, DTT 1 mM, glycerol 10%) in a final volume of 18 μL, with either no protein or with PA28γ (6 μg) preincubated for 5 min at room temperature with or without PIP30 (0.3 μg). After incubation 5 min at room temperature, 2 μL of the probe Bodipy TMR-Ahx3L3VS (1 μM in reaction buffer) were added to each sample and the mixtures were further incubated 15 min at 37 °C. After denaturation with Laemmli buffer and electrophoresis, the labeled proteasome subunits were visualized (Left) using a Typhoon FLA 7000 (GE Healthcare). The labeling of subunits β2 and β5 was quantified and plotted after normalization by the value of their labeling in 20S proteasome alone (Right). In the experimental conditions used, the labeling of both subunits is roughly proportional to their activity. The figure is representative of three distinct experiments. (C) Comparison of the effects of PIP30 and its CK2-phosphorylated form (PIP30-PH) on the peptidase activities of the PA28γ/20S proteasome complex. The experiments were performed as in A, except that only 2 μg of PIP30 and PIP30-PH were used per assay. Error bars represent deviation from the mean of technical duplicates. The figure is representative of three distinct experiments. L-L, caspase-like; C-L, chymotrypsin-like; T-L, trypsin-like.
Because PA28γ is known to bind to the key CB component coilin (21) (Dataset S2), we analyzed whether PIP30 could affect this process. We observed that PIP30 depletion led to an increased interaction of PA28γ with coilin, as seen by co-IP experiments (Fig. 5B). In line with this observation, in the absence of PIP30, an increased number of dots could be seen by PLA using anti-PA28γ and coilin antibodies, supporting the notion that PIP30 inhibits PA28γ/colin interaction (SI Appendix, Fig. S8).

Altogether, these experiments show that PIP30 effect on CBs is mediated through its ability to bind PA28γ and to counteract PA28γ association with coilin, confirming that PIP30 indeed functions as an endogenous regulator of PA28γ.

Discussion
Despite the fact that PA28 complexes have long been known, little is understood regarding their roles as proteasome regulators, besides their ability to open upon binding the gated channel of the 20S proteasome. However, because specific protein substrates have been described for PA28γ, it is possible that these regulators are not just passively opening the gate of the 20S proteasome but somehow contribute to substrate selection and possibly unfolding and injection into the 20S core. If true, then it is likely that they work in synergy with other proteins, because by themselves they seem a priori unable to actively promote proteasomal
Quantified and normalized to the amount of immunoprecipitated coilin. The interaction is specific for PA28γ because we found no interaction between PIP30 and PA28δγ in vitro. This suggests that the interaction may involve the homolog-specific insert, which is the most divergent domain between PA28 paralogs (46). Importantly, we show that the PA28γ-binding region of PIP30 is located in its C-terminal end and that CK2 phosphorylation of a short stretch (36), and in agreement with our proteomics analyses (SI Appendix, Fig. S5) and with the report that S219, S221, S222, and S224 of PIP30 are phosphorylated in vivo (Global Protein Machine, Accession: ENSP00000335808 [47]). The role of these multiple phosphorylation events is not clear. CK2 is indeed a ubiquitous and pleiotropic kinase (48), and even if its activity has been shown to be positively regulated by the Wnt/β-catenin pathway (49) it is considered to be constitutively active in cells. Our results also suggest an extremely slow turnover of the phosphate groups for the majority of PIP30 bound to PA28γ, probably because steric hindrance makes them inaccessible to phosphatases once the complex is formed. It thus seems unlikely that CK2 phosphorylation of PIP30 is used in cells to dynamically control PIP30/PA28γ interaction.

Comparison of PIP30 and PA28γ distributions within the eukaryotic phylogenetic tree (SI Appendix, Fig. S3B) shows that their presence or absence is not correlated. For example, in all Ascomycota, including Saccharomyces cerevisiae, PA28γ is present while PA28γ has been lost. This indicates that the two proteins may function independently of each other. However, in human cells, more than 70% of PA28γ and PIP30/FAM192A are associated in the same complex (SI Appendix, Fig. S1B), suggesting that they cooperate in most of their functions. We compare these findings with our data to show that PIP30 regulates the function of PA28γ as a proteasome regulator, since its in validation halves the intracellular level of the PA28γ/20S proteasome complex (Fig. 1 D and E). However, because the 20S proteasome/PA28γ complex only represents ≤5% of the total 20S proteasome (29), it is difficult to predict the biological impact of this effect. Based on our in vitro analyses showing that PIP30 inhibits the degradation of some peptides by reconstituted 20S proteasome/PA28γ complexes but is permissive for others (Fig. 3), it is tempting to speculate that PIP30 acts as a molecular sieve that hinders entrance of some protein substrates into the PA28γ channel while being neutral for others. The likely binding of PIP30 to the PA28γ-specific insert that forms a loop located close to the pore of the complex (25, 50) is compatible with such a role. Confirmation and further dissection of this hypothesis requires comparison of proteasome- and PA28γ-dependent substrates whose degradation is differentially regulated by PIP30. Unfortunately, among the several described PA28γ substrates that we tested, only p21 degradation proved to be PA28γ-dependent in our conditions, and the cellular stability of this protein turned out to be insensitive to PIP30 presence or absence.

Interestingly, the notion that PA28 complexes could act as a molecular sieve has already been put forward for PA28δγ based on detailed studies showing that it selectively filters peptide degradation of specific protein substrates. We thus performed various proteomics experiments to characterize proteins associated with PA28γ.

Among the interaction partners of endogenous PA28γ, we found several proteins involved in the regulation of RNA processing (Dataset S1), suggesting an important role of PA28γ in this function. Although PA28γ interacts with the 20S proteasome, we identified only the α6 subunit (PSMA1) in our conditions used. However, we found most 20S proteasome as well as 19S complex subunits with high H/L ratios when PA28γ pull-downs were performed with extracts of proteasome inhibitor-treated cells (Dataset S5), confirming both that (i) PA28γ/20S proteasome interaction is labile (31) and is stabilized upon proteasome inhibition (11, 43), and (ii) PA28γ, as this has been described for PA28δγ, can also be recruited in hybrid forms of the proteasome in which the 20S proteasome is bound to the 19S complex on one side and PA28γ on the other side.

Importantly, we identified a prominent partner of PA28γ, PIP30/FAM192A. Interaction between PIP30 and PA28γ has already been listed in large-scale proteomics experiment data in Drosophila and human (44, 45). However, our results validate its biological relevance. We demonstrated that this interaction is direct and occurs in cells with 20S proteasome-free and -bound PA28γ. The interaction is specific for PA28γ because we found no interaction between PIP30 and PA28δγ in vitro. This suggests that the interaction may involve the homolog-specific insert, which is the most divergent domain between PA28 paralogs (46). Importantly, we show that the PA28γ-binding region of PIP30 is located in its C-terminal end and that CK2 phosphorylation of a short stretch (36), and in agreement with our proteomics analyses (SI Appendix, Fig. S5) and with the report that S219, S221, S222, and S224 of PIP30 are phosphorylated in vivo (Global Protein Machine, Accession: ENSP00000335808 [47]). The role of these multiple phosphorylation events is not clear. CK2 is indeed a ubiquitous and pleiotropic kinase (48), and even if its activity has been shown to be positively regulated by the Wnt/β-catenin pathway (49) it is considered to be constitutively active in cells. Our results also suggest an extremely slow turnover of the phosphate groups for the majority of PIP30 bound to PA28γ, probably because steric hindrance makes them inaccessible to phosphatases once the complex is formed. It thus seems unlikely that CK2 phosphorylation of PIP30 is used in cells to dynamically control PIP30/PA28γ interaction.
products coming out of the proteasome (8, 51). This raises the possibility that PIP30 could, together with PA28γ, play a selective role not only on substrate entrance but also peptide release by the proteasome.

Taken together, our data are compatible with the interesting hypothesis that binding of PIP30 to PA28γ could induce a global conformational change of the latter that would both favor its binding to the 20S proteasome and alter its substrate selectivity through alteration of the structure of the interaction between PA28γ and PIP30. Structure/functions analyses aiming at precisely mapping the consequences on PA28γ of PIP30 binding as well as detailed characterization of peptides produced by the proteasome in the presence of PA28γ and PA28γ/PIP30 complexes will help to answer these questions.

A second illustration of the role of PIP30 as a PA28γ regulator is the demonstration that both proteins intimately cooperate in the regulation of CB integrity. Indeed, PIP30 depletion leads to a strong decrease in the number of CBs and to an increased interaction between coilin and PA28γ (Fig. S8 and SI Appendix, Fig. S8 A and B). This mimics the phenotype induced by PA28γ overexpression (21) (Dataset S2). PIP30 depletion also elicits the accumulation of PA28γ in residual CBs, while PA28γ is usually not detectable in these structures. To our knowledge, PA28γ has only been reported in CBs of motor neurons from patients with type I spinal muscular atrophy (52). In these pathologic neurons, the assembly of CBs is impaired, due to the lack of the survival motor neuron protein, an essential CB component (53–55). Because CBs are dynamic structures undergoing constant remodeling (56), the accumulation of PA28γ in residual CBs observed in both PIP30−/− cells and spinal muscular atrophy motor neurons could reflect the fact that these residual CBs are stalled at transient intermediate stages of assembly/disassembly in which PA28γ is involved. Alternatively, the absence of PIP30 may result in the formation of defective CB structures that are not normally present in wild-type cells. Interestingly, the proteasome is not recruited into CBs, together with PA28γ, in the absence of PIP30 (SI Appendix, Fig. S9A), and proteasome inhibition—which greatly enhances the binding of PA28γ to the 20S core (11)—inhibits the accumulation of PA28γ into CBs (SI Appendix, Fig. S9B). These observations raise the possibility that the functions of PA28γ and PIP30 in CBs could be proteasome-independent.

Taking these data together, the effects of PIP30 deletion on CB integrity suggest that increasing the levels of PAA28γ/coilin complexes negatively regulates the number of CBs and that PIP30 inhibits the association between PA28γ and coilin. This may indicate the idea that PA28γ expression leads to CB destabilization by overwhelming PIP30 inhibition, and therefore that the equilibrium between free PA28γ and PIP30-bound PA28γ is an important parameter in this process. In this regard, it is interesting to note that CB fragmentation upon UV-C treatment is associated with the concomitant increase in PIP30 and its recruitment to CB (21). If PIP30 levels are limiting in cells, the resulting excess of PIP30-free PA28γ might be sufficient to interact with coilin and induce CB fragmentation.

However, as it is difficult to imagine that PA28γ functions in CBs could be taken in charge only by neosynthesized PA28γ that would have escaped definitive PIP30 inhibition, it seems more likely that the binding of PIP30 to PA28γ can be negatively regulated to favor their dissociation when needed. As mentioned above, our data do not support the idea that such regulation could be mediated only by modulation of CK2 activity or by dephosphorylation of CK2 sites on PIP30. Therefore, we speculate that other regulatory mechanisms, that are yet to be discovered, are likely to occur through conformational changes incompatible with further binding. In principle, such conformational changes could be mediated by posttranslational modifications of either PA28γ or PIP30, or by binding of additional partners or chaperones able to alter upon binding the structure of the complex. Additional work is required to clarify this issue.

Taken together, the results presented here show that PIP30 is an important partner of PA28γ that regulates its interactome and therefore its functions, for example, by stabilizing its interaction with the 20S proteasome and inhibiting its interaction with coilin. Although most of the data presented in this report show an inhibitory role of PIP30 toward PA28γ functions, the fact that PIP30 does not influence the PA28γ-dependent degradation of the protein p21 shows that PIP30 is not a general inhibitor of PA28γ. In any case, because most PA28γ is bound to PIP30 in standard cell culture conditions, it is clear that PIP30 must now be taken into account when studying PA28γ. Although much remains to be understood regarding PIP30 biological functions, our results represent a significant breakthrough because they provide clues on the regulation of PIP30/20S proteasome complex, as well as angles of attack to dissect PA28γ functions and mechanisms of action.

ACKNOWLEDGMENTS. The authors thanks Huib Ova (University of Leiden) for proteasome activity probes; Dr. Anne Blangy (Centre de Recherche en Biologie Cellulaire de Montpellier) for critical reading; the rotation students who participated to this work, including Pierre Bercier, Laure Dutrieux, Maryne Franceschi, Jean-Yves Fraysinhes, Anaïs Lugagne, Valentin Pineau, and Haïla Tlal£, and the imaging facility MRI, member of the national infrastructure France-Bioimaging supported by the French National Research Agency (ANR-10-INBS-04, “Investments for the future”). This work was supported by the CNRS, and by funding from the People Programme (Marie Curie Actions) of the EU Seventh Framework Programme FFP REA agreement 290257, “UPStream” (to O.C.); the comité du Gard de la Ligue Nationale contre le Cancer, Contract 158484 (to O.C.); the Association pour la Recherche sur le Cancer ARC PJA 20141201831 and SFdE 2011120884 (to S.B.); the Wellcome Trust, Grants 0.07945/5/S/11/2 and 108058/Z/15/Z (to A.I.L.); and the French Ministry of Research (Investissements d'Avenir Program, Proteomics French Infrastructure, ANR-10-INBS-08) and the Fonds National de Développement Régional, Toulouse Métropole, Région Occitanie (fellowsips to T.M. and B.F.) to O.B.-S. Support to E.I.-P. was provided by the Marie Curie International Training Network “UPStream.” S.B. was initially supported by European Molecular Biology Organization and Human Frontier Science Program Long Term fellowships. This article is based upon work from European Cooperation in Science and Technology (COST) Action (PROTEOSTASIS BM1307), supported by COST.

Downloaded at UNIVERSITE MONTPELLIER 11 on March 12, 2020

www.pnas.org/cgi/doi/10.1073/pnas.1722299115

Jonik-Nowak et al.