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Abstract 
Results from mass spectrometry based quantitative proteomics analysis correspond to a subset of 
proteins which are considered differentially abundant relative to a control. Their selection is delicate 
and often requires some statistical expertise in addition to a refined knowledge of the experimental 
data. To facilitate the selection process, we have considered differential analysis as a five-step process, 
and here we present the practical aspects of the different steps. Prostar software is used throughout 
this article for illustration, but the general methodology is applicable with many other tools. By 
applying the approach detailed here, researchers who may be less familiar with statistical 
considerations can be more confident in the results they present. 

--- 
 

1. Introduction 
The combination of liquid chromatography with mass spectrometry has made it possible to identify 
and quantify large numbers of biomolecules at high-throughput and without requiring labeling. 
However, despite continuous improvements, this pipeline remains imperfect. Notably, the speed of 
analysis, which allows for more extensive coverage, comes at the price of lower-quality data, affected 
by both batch effects [1] and missing values [2], [3], [4]. In this context, determining with a given 
statistical significance level which biomolecules are differentially abundant (DA) between several 
biological conditions remains challenging. To help omics researchers with this task, numerous software 
tools have been developed, including our own contribution, Prostar [5]. Prostar was originally 
developed to deal with peptide and protein data, but the methodology it relies on is essentially the 
same as that used for various classes of metabolites [6], [7].  
 
Whatever the software tool, we have noticed that, the preprocessing steps are generally quite 
straightforward. Most tools provide intuitive interfaces for any user to successfully (1) filter out 
irrelevant or low-quality analytes; (2) normalize the ion intensities to account for batch effects; and (3) 
impute missing values thanks to off-the-shelf algorithms. Although a deeper understanding of the 
underlying mathematics is always helpful when tuning the algorithms, an analyst with a refined 
knowledge of their data can generally preprocess them in a nearly optimal way. In contrast, the final 
differential analysis requires some statistical expertise when seeking to identify subsets of proteins 
that can be confidently deemed DA in at least one biological condition relative to the others. 
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With this in mind, this article details five steps which are essential to the differential analysis. We 
identified these steps some time ago, and therefore included the appropriate visualization interfaces 
and routines in Prostar to make them as easy and intuitive to apply as possible. For this reason, Prostar 
will be used throughout this article for illustration purposes, but these steps have a methodological 
backbone that should apply for any differential analysis, whatever the software tool -- and to some 
extent, whatever the type of biomolecule studied, be it proteomics, peptidomics, metabolomics or 
lipidomics; even thought this article is focused on proteomics. The five steps (and their associated 
questions) are the following: 

1. At early stages of the differential analysis, it is customary to discard proteins presenting an 
excessively low fold-change. How should the corresponding cutoff value be tuned? 

2. The data are classically a mixture of observed values (direct mass spectrometry 
measurements) and recovered values (run alignments, imputations, etc.), which should not 
be trusted equally. However, discarding recovered values is not always possible when making 
multiple simultaneous comparisons. How can the impact of condition-related differences in 
recovered intensity values be controlled on the final differential analysis? 

3. To calculate a reliable False Discovery Rate (FDR) requires well-calibrated p-values. How can 
the calibration correctness be easily assessed? 

4. The FDR computation is highly sensitive to the overall proportion of non-DA proteins. How 
can this sensitivity be exploited to improve the calibration?  

5. Similarly, the quality of the FDR computation depends on the total number of proteins 
measured (whether DA or not). How can this dependence be exploited to improve the FDR 
quality control? 

 

2. Tuning the log-fold-change 
The logarithmized fold-change of protein 𝑥 from condition 𝐴 to condition 𝐵, formally defined as 
 

log2 (
𝑚𝑒𝑎𝑛𝑖∈𝐴(𝑥𝑖)

𝑚𝑒𝑎𝑛𝑖∈𝐵(𝑥𝑖)
) = log2(𝑚𝑒𝑎𝑛𝑖∈𝐴 𝑥𝑖) − log2(𝑚𝑒𝑎𝑛𝑖∈𝐵 𝑥𝑖) 

 
(where 𝑥𝑖  denotes the intensity of protein 𝑥 in sample 𝑖), is classically approximated (See Supplemental 
Material, Sec. 5, where this approximation is discussed) by the following quantity: 
 

logFC𝐴 𝐵⁄ (𝑥) = 𝑚𝑒𝑎𝑛𝑖∈𝐴(log2 𝑥𝑖) − 𝑚𝑒𝑎𝑛𝑖∈𝐵(log2 𝑥𝑖). 

 
At the beginning of any differential analysis, proteins for which the logFC is below a certain threshold 
are generally filtered out. There are two motivations for this filtering: First, such proteins are often 
difficult to exploit in post-proteomics biological investigations, so that researchers prefer to focus on 
proteins for which intensities change to a greater extent. Second, knowing the cumulated sources of 
variations (biological, technical, analytical) and the relatively low number of observed intensity values 
(either because of a small number of samples, or because of a high proportion of missing values), one 
fears inaccurate estimated fold-changes. Notably, proteins with similar concentrations between the 
compared conditions can lead to non-zero logFC (see Supplemental Material, Sec. 1). In this context, 
applying a more stringent logFC threshold appears to be a good way to reduce false discoveries (i.e., 
non-DA proteins that are falsely selected as DA).  

 
Thus, there are both practical and theoretical motivations for logFC filtering. As statistical software 
developers, we are not qualified to discuss the rationale behind any biological or analytical reasoning 
and we assume researchers can use their prior knowledge on the experiment to adequately tune the 
logFC cutoff. However, we can present our case against the statistical one. First, in absence of any rule 
to optimize the logFC cutoff, one may face uncontrolled boundary effects (i.e. filtering proteins which 



are significantly DA, while keeping proteins with slightly higher logFC, yet endowed with a variance 
which makes them non-significant), not to speak about the approximation underlying the logFC (see 
above). Second, several statistically-relevant solutions exist to cope with the aforementioned sources 
of variations and their subsequent volatile estimates: the first is, obviously, to increase the number of 
replications in view to get a better statistical power, although we are aware that this is not always 
possible in practice. The second is to rely on more sophisticated imputation methods, which generally 
do not shrink the variance as much as simple ones (such as mean or fixed-value imputations [4]). The 
third is to rely on improved variance estimates, such as proposed in Limma [8], SAM [9] or Cyber-T 
[10]. All these methods should be preferred to logFC thresholding, so that we can formulate our first 
recommendation: 
 
Recommendation 1: One should not consider the use or the tuning of the logFC cutoff as statistically-
motivated. On the contrary, whether it is used or not - and where appropriate - its precise tuning must 
be motivated by non-statistical arguments relating only to the practitioner’s background knowledge of 
the biological experiment or the post-analytic validations. 
 
In differential analysis, statistical tools are mostly used as safeguards against false discoveries. As a 
result, positioning the logFC threshold outside the scope of such statistical guidelines indirectly 
provides a supplementary tool to perform unintentional “p-value hacking” [11], [12]. “p-value hacking” 
is what we call any attempt to collect, prepare or preprocess the data, so that an expected result 
appears more statistically significant than it really is. This hacking may be unintentional - an ill-informed 
practitioner adjusting the processing options to get the best from their data may be unaware that 
these adjustments might lead to inconsistencies or claims with no statistical support. In the case of 
logFC filtering, unintentional p-value hacking may result from either an overfitted logFC threshold (i.e., 
the tuned value), or an inappropriate combination between the logFC filtering step and other steps in 
the differential analysis. We will focus on the latter first. 
 
We are aware of three ways to combine logFC filtering with the other steps in differential analysis. The 
classical approach is to define an (adjusted) p-value filtering step [13] producing a volcano plot 
representation where joint “vertical” and “horizontal” cutoffs can be independently applied. An 
alternative approach, popularized by PatternLab [14] and Perseus [15], is to rely on hyperbolic curved 
thresholds on the volcano plot. The final approach is to include the logFC in the hypothesis tested, as 
proposed in the TREAT option in Limma [16].  
 
In our view, the “curved threshold” option corresponds to a misuse of the SAM test it is based on [9], 
making it particularly likely to result in unintentional p-value hacking [17], regardless of the type of 
data treated [18]. For this reason, it is not implemented in Prostar, and explains why, more generally, 
we do not recommend it. In contrast, the TREAT approach is statistically supported. Instead of a 
classical test, for which the null hypothesis for each protein 𝑥 reads: 

𝐇𝟎(𝑥): |logFC(𝑥)| = 0,  
another hypothesis incorporating the logFC threshold 𝑇 (with 𝑇 > 0), is simply tested. This hypothesis 
reads: 

𝐇𝟎′(𝑥): |logFC(𝑥)| < 𝑇,  
However, this approach has a practical drawback: It requires the user to change their interpretation of 
the test results (the p-values and the meaning of DA). As an illustration, consider an example where 
the logFC threshold is set to 𝑇 = 2. Then, a protein with logFC=2.001 and a relatively small variance 
will have a large p-value when 𝐇𝟎′ is tested; as a result, it will most likely be considered non-DA. In 
contrast, if only proteins for which logFC  ≥ 𝑇 are tested under 𝐇𝟎, the p-value for this protein will be 
much smaller and it will be clearly considered to be DA. We found that this second situation, where 
the logFC cutoff is considered as a safety margin rather than a strict modification of the hypothesis 
tested clearly reflects the main use of differential abundance analysis in mass spectrometry-based 
omics studies. Moreover, when using 𝐇𝟎, the p-values are not shifted to an extent which depends on 



𝑇 (as they are with 𝐇𝟎′), and consequently the same (adjusted) p-value thresholds can be applied 
whatever the dataset. This transversality makes some standardization possible in the quality control 
procedures applied. Combining all these reasons, we make the following recommendation: 
 
Recommendation 2: Among the various ways in which logFC filtering can be combined with subsequent 
steps in the differential analysis, the most appropriate one clearly depends on the practitioner’s level 
of expertise: 
- The most rigorous way is to include the logFC threshold in the statistical test, however, result 

interpretation will require advanced statistical skills, and this approach is not necessarily 
compatible with the daily work of an analytical platform where standardized quality control 
procedures are easier to implement. 

- For non-experts in statistics, it is generally easier to rely on a combination of vertical and horizontal 
thresholds on the volcano plot, as it helps to prevent the risk of erroneous interpretations. 

- Finally, curved thresholds were not originally designed to account for logFC; as a result, using them 
for this purpose dramatically increases the risk of p-value hacking. 

 
As Prostar was developed for users that are not necessarily experts in statistics, we chose to implement 
the combination of vertical and horizontal thresholds only. However, depending on the situation and 
the level of expertise, any other approach can be justified.  
 
We will now focus on the precise tuning of the logFC threshold value. As already indicated, overfitting 
the threshold to the data available may result in unintentional p-value hacking. Luckily, applying a 
threshold of 0 (i.e., no logFC filtering) is always acceptable. Thus, the only risk is to tune it to too high 
a value as it would help isolating some proteins that are known to be biologically relevant. To avoid 
doing so, we recommend the following fitting procedure: 
 
Recommendation 3(a): The logFC threshold can be appropriately tuned by observing the volcano plot 
and asking whether the filtered-out protein with the largest absolute logFC would still be filtered out if 
its p-value were much smaller. If the answer is “yes”, the logFC is tuned to an appropriate value. If the 
answer is “no”, the logFC threshold has been tuned to an excessively high value and some “p-value 
hacking” has probably occurred, albeit unintentionally. 
 
Recommendation 3a is illustrated in Fig. 1. When observing the volcano plot with the objective of 
tuning the logFC cutoff, it is essential to: (1) Identify the last filtered-out protein for a given threshold; 
i.e., the protein with the largest absolute logFC. (2) Imagine that this point is shifted vertically to mimic 
an excellent p-value. (3) Consider whether, at this theoretical p-value it would still be acceptable to 
filter it out. 
 



 
Figure 1: Illustration of the thought experiment that is useful when attempting to tune the logFC without interfering with the 

p-value distribution, and thus, to safely avoid p-value hacking. 

 
Finally, Recommendation 3(a) helps the practitioner to ignore the p-value information available on the 
volcano plot, and to focus only on the logFC distribution. To help implement this approach, in the latest 
Prostar releases the logFC can be tuned without recourse to the volcano plot, even though it initially 
appears counter-intuitive. In addition, this method respects the next recommendation.  
 
Recommendation 3(b): For datasets with N>2 conditions, where several pairwise comparisons are to 
be performed, all the pairwise differential analyses should be conducted using the same logFC 
threshold. 
 
When comparing A vs. B, A vs. C, and B vs. C, three logFC thresholds must be defined. If one of them 
differs from the two others, it probably means that it has been overfitted to filter in/out some specific 
proteins. The reasoning behind this recommendation is that analytic experiments which result in 
interpretation intrinsically require different fold-change references should be rather scarce. 
Practically, a large number of superimposed volcano plots can be difficult to visualize and compare: 
For example, with five conditions, 10 comparisons must be made, as a result the thought experiment 
from Fig. 1 to tune a single logFC threshold across all 10 volcano plots simultaneously becomes 
intractable. In contrast, as many logFC distributions can be superimposed without problems (see 
Supplemental Material, Sec. 1). Finally, we make the following recommendation: 
 
Recommendation 3: Getting used to tuning the logFC threshold on logFC distributions rather than on 
a volcano plot is a good practice, as it helps respect both Recommendations 3(a) and 3(b). 
 

3. Dealing with recovered intensity values 
In this article, “recovered” refers to all the intensity values that cannot be fully trusted as they were 
obtained through recovery processes. For instance, any intensity value which was missing before an 
imputation step; or which was retrieved from map alignment rather than direct mass spectrometry 
evidence.  
 
When comparing two different biological conditions, all proteins containing an overly large proportion 
of recovered values are customarily filtered out at an early stage, as the evidence for them is too weak 
to allow them to be confidently considered DA. However, when there are more than two conditions, 
such early filtering can lead to the loss of biologically-relevant proteins.  
 



Table 1: Hypothetical example of a protein with 12 intensity values spread across three conditions where six values are 
recovered (noted R). 

Condition A Condition B Condition C 

24.3 26.2 25.7 24.9 R 23.0 R R R R R 13.4 

 
In the example presented in Table 1, there are three conditions with four replicates each, and the 
intensity values are shown for a given protein. This protein will be tested in three different pairwise 
comparisons:  
- In A vs. C, the protein is expected to be DA, at least on the basis of the non-recovered intensities. 

It is most likely that in condition C, intensity recovery was necessary because the protein 
abundance was below the lower sensitivity limit for the instrument. Thus, if the recovered intensity 
values concur with this hypothesis, the differential analysis should lead to a very small p-value. 

- In A vs. B, several scenarios are possible, each more or less plausible, depending on the various 
recovered values. Notably, if the recovered values are quite high, the protein will be deemed non-
DA, so that there is little risk of falsely claiming DA. Conversely, if the recovered values are really 
lower than the only value directly observed, the protein will be considered DA. This outcome is 
risky as the claim would only be based on a single non-recovered value, which, in addition, does 
not perfectly concur with the recovered ones.  

- In B vs. C, only one directly observed value is available per condition, and both are of different 
magnitudes. There has been a glaring lack of reproducibility of measured values in both conditions, 
so that the difference in intensity between the two conditions does not seem reliable. Thus, a claim 
that the protein is DA lacks support, it is therefore best to classify it as non-DA, by default, without 
considering the recovered values. 

Based on these comparisons, it is clear that in A vs. C, the protein must not be filtered out before 
differential analysis. Conversely, in B vs. C, it is wiser to discard it. Finally, in A vs. B, it will depend on 
the recovered values. 
 
To apply different filtering thresholds for each pairwise comparison requires only two conditions to be 
loaded into the software tool, the entire analysis to be performed on this comparison, and the process 
repeated for other pairwise comparisons. This approach is time-consuming and makes it impossible to 
have global normalizations across all the conditions, which are sometimes necessary. We therefore 
formulate the following recommendation: 
 
Recommendation 4: If possible, it is better to load the replicates of all the biological conditions 
together, to run a single combined preprocessing. 
 
A consequence of Recommendation 4 is that a unique filtering pattern must be chosen for all the 
pairwise comparisons. Thus, in the example above, either the protein is retained in the three 
comparisons, or it is discarded from all three. With this in mind, we advise: 
 
Recommendation 5: When loading more than two conditions, very loose filters should be applied which 
retain any protein which could be of interest in one of the comparisons. 
 
The rationale behind Recommendation 5 is that if the protein is filtered out, it is lost for good, whereas 
if the filtering is too loose, it is still possible to correct it a posteriori: To do so, the tool simply has to 
propose a second round of filtering for each pairwise differential analysis. This processing can be 
implemented in many ways. In Prostar, it corresponds to the “push p-value” option which allows 
modification of any p-value that is low enough to cause a protein for which the evidence is too weak 
to be returned as DA. In real terms, these proteins are identified by applying a series of filters, but 
instead of being discarded, the corresponding p-value is replaced by 1 for the pairwise comparison of 
interest. Thus, these proteins are still present in the dataset, but no longer interfere with the rest of 
the differential analysis. To summarize, we formulate a last recommendation: 



 
Recommendation 6: Any preliminary loose global filtering can be completed by a more stringent filter 
operating at a pairwise comparison level. This second round of filtering can be implemented in various 
ways. It is referred to as “push p-values” in Prostar, where it replaces unreliable p-values by the value 
1.  
 

4. Verifying p-value calibration 
Based on the recommendations made above, a certain number of proteins will have been discarded 
due to an excessively low logFC, or to an overly large proportion of less reliable recovered values 
among the conditions compared. The remaining proteins will be associated with a p-value reflecting 
the reliability of results from a differential abundance test (e.g., t-test family, Limma, etc.). From this 
point on, we are interested in selecting the first N proteins with the smallest p-values which will be 
considered DA. Generally, no prejudice is applied to values of N, and as a result it is not directly tuned. 
Similarly, N is not defined as the number of proteins that pass a manually tuned p-value threshold, for 
it would not account for the necessary multiple test correction. The selection process is therefore 
classically based on a FDR threshold. 
 
As explained in [13], in a differential analysis, an FDR corresponds to a value estimating the False 
Discovery Proportion (FDP), which is the proportion of proteins that are non-DA but which were 
erroneously selected as DA. Defining the number of selected proteins based on an FDR is a good way 
to control the quality of the final proteomics analysis step. However, as with any statistical estimate, 
the computed FDR can be more or less close to the true value, i.e., the FDP. Thus, if the FDR is to be 
reliable, it is necessary to check that the statistical assumptions on which its computation is based are 
fulfilled. With this in mind, the most important assumption is that the p-values for non-DA proteins 
distribute uniformly, whereas those for the DA proteins should be as small as possible (see [13] for 
details). If the total number of proteins tested is large enough, this can be easily illustrated on a 
histogram, as proposed in [19], and presented in Fig. 2. A p-value histogram can be straightforward to 
interpret. However, when the dataset is too small, the binning may hinder the decision on whether 
the histogram fits the expectations or not. In these cases, a calibration plot [20] can be used. A 
calibration plot is a decade-old alternative to the histogram which is not as intuitive to interpret, but 
which does not depend on a number of bins. Fig. 2 shows how the information on the calibration plot 
relates to that on the histogram. 
 



 
Figure 2: On the left, a histogram of simulated p-values, where a perfectly uniform distribution is observed for non-DA proteins 
(in red), and small p-values are found for DA proteins (in green). Unfortunately, in practice, histograms are rarely so easy to 
interpret (see [9] for examples). On the right, a schematic representation of how a histogram was transformed into a 
calibration plot. As the calibration plot relies on cumulative distributions rather than binning, it displays smoother patterns 
which smooth out stochastic variations. 

We recently adapted calibration plots to the proteomics context [21], to help their interpretation and 
inclusion in bioinformatics pipelines. As illustrated in Fig. 3, we have added three quality control criteria 
that are helpful in this context: 
- The first one is referred to as “Non-DA protein proportion”. This percentage corresponds to the 𝜋0 

value that is indicated in Fig. 2. It is displayed in the same shade of blue as the straight line on the 
graph (in Fig. 3). As this 𝜋0 value is also a user-defined parameter, it will be fully described in the 
next section. 

- The second one is “DA protein concentration”, displayed in green. It corresponds to a measure of 
how the green triangle (in the upper right corner of Fig. 2) has a narrow basis. Concretely it 
indicates the extent to which the DA proteins have their p-values concentrated in a near zero 
interval. A concentration value close to 100% indicates that there is a clear break between the 
distribution of non-DA proteins (represented in red in Fig. 2) and that of the DA proteins (in green). 
Practically, concentrations lower than 85-90% should be considered with caution, as in such cases, 
the overall distribution deviates too much from that needed to compute a reliable FDR. In these 
conditions, although an FDR value will be produced by the algorithm, there will be no guarantee 
that the value obtained is realistically close the true FDP value. 

- The last criterion is termed “Uniformity underestimation”, it tends to qualify the extent to which 
non-DA proteins have a distribution which deviates from uniform. Once again, a certain level of 
uniformity is necessary to produce a reliable FDR value. This criterion is shown in red in Fig. 3 as 
the areas under the cumulative distribution (in black) which cross the straight blue line. Thus, any 
area colored in red above the blue line indicates regions where the uniformity is questionable. Due 
to random effects, small deviations, such as those illustrated in Fig. 3 are acceptable. However, 
very large deviations will produce spurious FDR computations. Note that to compute this criterion, 
one only accounts for the parts of the curve which is above the straight line depicting uniformity. 
The reason is deviations from below do not question the reliability on the FDR (in fact, increasing 
the gap from below between the curve and the straight line only makes the FDR more 
conservative). On the contrary, overshooting the line makes the FDR unreliable as possibly smaller 
than the FDP More details can be found in [21]. 



   
 

 
Figure 3: Calibration plot such as provided by CP4P (borrowed from [21]), presenting three quality control criteria 

 
If the “green” and “red” criteria are satisfied, a calibration plot such as the one shown in Fig. 3 is 
obtained. Several other calibration plots can be found in the Supplemental Material, to illustrate as 
many cases as possible, ranging from excellent to catastrophic calibrations. Figures depicting 
calibration problems are accompanied by explanations that can help to understand data producing 
similar plots. To make things easier, the continuum of calibration quality can be clustered into three 
groups:  

1. Well-calibrated (Supplemental Material, Sec. 2): Although quite rare when dealing with 
real data, these situations are the most comfortable. The experimental data are likely to 
be of excellent quality, the FDR will be accurately estimated and generally, any biological 
claim will be clearly supported by the data. 

2. Ill-calibrated (Supplemental Material, Sec. 3): This situation arises most frequently. In 
general, the plot does not depict well-calibrated p-values due to one or several of the 
following: (1) underestimation of uniformity (in red); (2) overly-low DA protein 
concentration (in green); (3) discontinuities in the cumulative distribution function (steps). 
However, the magnitude of the problem is small enough to be dealt with. 

3. Miscalibrated (Supplemental Material, Sec. 4): the data distribution presents one or 
several of the above-mentioned problems at a magnitude that is beyond what can be 
corrected.  

 
In this context, we formulate the following recommendations: 
 
Recommendation 7: First, determine whether the p-values are well-calibrated, ill-calibrated, or 
miscalibrated: If well-calibration, no specific action is required. If ill-calibrated, apply Recommendation 
8. If miscalibrated, apply Recommendation 9. 
 
Recommendation 8: An FDR can still be computed in the presence of ill-calibrated p-values. However, 
the risk it underestimates the FDP increases due to ill-calibration. As such underestimation may lead to 
unsupported claims, “larger margins” are necessary: one has to increase the FDR (such FDR is said 
“conservative”). The tricks presented in the next sections to recover correct calibration have such effect.  
As a result, the data owner may be tempted to minimize the calibration correction, so as to obtain a 
smaller FDR; this temptation should be avoided. 



 
Recommendation 9: For miscalibrated p-values, the data owner is faced with a real problem: on the 
one hand, it remains possible to blindly compute an FDR (even if it should not be trusted) and to proceed 
with the analysis, at the risk of providing unsupported conclusions. On the other hand, scientific rigor 
would suggest that the data cannot be exploited, an outcome which is not always acceptable for a 
variety of reasons (no other samples available, experimental cost, etc.). However, a compromise is 
possible, to reconcile the project constraints and statistical validity: in fact, numerous miscalibrations 
are not related to the raw data themselves, but to the various bioinformatic post-analysis steps 
(ranging from peptide identification to the first step of the differential analysis). Thus, we advise the 
data owner to review the whole data processing pipeline, taking the opportunity to increase its 
robustness. If carefully conducted, a clear reduction of the miscalibration can be expected, hopefully 
sufficient for the data to be considered only as ill-calibrated. 
 

5. Estimating the proportion of non-DA proteins 
In the histogram in Fig. 2, 𝜋0 corresponds the heights of the red uniform distribution. It represents the 
average proportion of non-DA proteins, whether selected or not (i.e., it is different from the FDP and 
the FDR). This proportion is essential in the computation of the FDR: it need not be precisely known, 
but it must not be underestimated, as otherwise it would produce a spurious (anti-conservative) FDR. 
In contrast, its overestimation only leads to FDR overestimation (which amounts to making cautious 
or conservative claims). In the original Benjamini-Hochberg procedure [22], 𝜋0 was tuned to the 
maximum value (i.e. 1) which amounts to the most cautious posture.  

Naturally, everyone wants to get the most from their data, and it is therefore justified to limit the FDR 
overestimation. To do so, 𝜋0 must be tuned to a value that is strictly smaller than 1, while nevertheless 
avoiding underestimation. In fact, this practice is already widely used in biostatistics, notably when 
controlling the FDR at peptide-identification-level by using target-decoy competition (see for instance 
[23], [24]). However, for unknown reasons, it has not been applied in quantitative mass spectrometry 
analysis, even though numerous 𝜋0 estimators have been proposed in the statistical literature (see 
[21] for a proteomics-oriented overview).  

 

Figure 4: A calibration plot for which all the 𝜋0 estimates are rather different, which was to be expected, for a cumulative 
distribution function that appears ill-calibrated. 

Classically these estimators are based on a variety of methodologies, producing several estimates for 
the same dataset. Fig. 4 shows a calibration plot with various 𝜋0 estimates. Intuitively, when choosing 
the estimator providing the greatest 𝜋0 value, i.e., that producing the steepest line, two risks are 
reduced: that of a non-uniform distribution (as increasing the slope reduces the red-shaded area on 



the calibration plot) and that of lack of concentration (as increasing the slope makes the base of the 
green triangle thinner). 
 
Recommendation 10: Increasing 𝜋0 is a simple way to improve calibration. Notably, it can efficiently 
recover calibration from ill-calibrated data as a result of either (1) uniformity underestimation, or (2) 
insufficient DA concentration. 

At this point, we provide a warning: estimating 𝜋0 requires a full p-value distribution, which is not 
available anymore after logFC filtering. Thus, combining both processing steps requires some 
precautions (as implemented in CP4P [21], see Supplemental Material, Sec. 1, for details).  

For some data, all the 𝜋0 estimators provide rather similar estimates, so that in practice, choosing one 
or another estimate will make little difference, and as a result the possibility of improving the 
calibration is limited. However, this is inherently not a problem as convergent estimates tend to be a 
sign of good calibration: 

Recommendation 11: When comparing various 𝜋0 estimates, the extent to which they concur or not is 
an additional indicator of the quality of the calibration.  

In spite of this trend, there remain datasets for which it is difficult to obtain good calibration. For these 
last cases, the following recommendation can be applied: 

Recommendation 12: In case of doubt regarding ill-calibration, the default rule is to rely on Benjamini-
Hochberg estimate, i.e. 𝜋0=1. This corresponds to the most conservative case. If application of this value 
is not sufficient to reach correct calibration, the data are definitively miscalibrated. 

It should be noted that, to improve readability, the line corresponding to 𝜋0=1 is not presented on the 
calibration plot. Indeed, this line never changes and should follow the diagonal of the plot, so that 
using the Benjamini-Hochberg procedure does not require it to be explicitly displayed. 

6. Optimizing of the numbers of DA and non-DA proteins 
Previously, we hinted that calibration plots depicting a cumulative distribution function with steps 
should raise concerns (see Supplemental Material, Sec. 3). One reason for this is that, obviously, this 
shape impedes plot interpretation, in the same way that binning interferes with histogram reading. On 
histograms, binning remains visible unless enough data are available. However, calibration plots are 
less sensitive to data size, as a result, stepped cumulative distribution functions are a sign of a rather 
small number of tested proteins. In itself, a very small number of tested proteins is an issue for several 
reasons. 
 
The most obvious one is that an FDR corresponds to a percentage. Thus, to remain meaningful, the 
dataset should be large enough for the chosen percentage to have a physical counterpart. For instance, 
if 30 proteins are selected as DA, while applying an FDR of 1%, an interpretation problem arises: less 
than 0.333 falsely attributed DA proteins are expected and the FDP cannot be guaranteed to be 
different from 0%. With such results, the FDR control provides little support. However, this is not 
necessarily a problem: just because the FDR is meaningless does not mean the proteomics experiment 
is also meaningless. The point is mainly that such a small FDR threshold cannot be used as a quality 
control metric for small datasets. Classically, the FDR must be controlled on datasets that are too big 
to allow individual inspection of each DA protein. In these cases, an overall quality control such as FDR 
is mainly used as an acceptable surrogate for individual quality control on each putative DA protein. 
Thus, if the dataset is too small to compute an FDR safely, it makes sense to resort to other metrics, 
such as the Bonferroni family-wise error rate (FWER, [25]), which is more appropriate for small sets of 
proteins; or the Posterior Error Probability (PEP, [26]), which provides a metric specific to each selected 
protein. 
 



Recommendation 13: If the number of DA proteins is too small to make the chosen percentage 
meaningful, then it makes sense to increase the threshold. Alternatively, the FDR can be replaced by 
other metrics such as Bonferroni FWER or PEP. These metrics are not provided in the current Prostar 
release, however, they can be computed a posteriori with any tool, using the list of p-values as input. 
 
The appearance of steps in the cumulative distribution function is not only a reflection of the number 
of DA proteins selected: DA proteins are found in the upper right corner of the plot and cannot explain 
steps appearing elsewhere on the plot. The latter appear when the number of non-DA proteins is too 
small. In fact, if too few non-DA proteins are present, then the same issue as the binning of the red 
histogram (on Fig. 2) emerges. This can lead to inaccurate estimate of 𝜋0, which would then impact 
the FDR quality. Therefore, confidently estimating an FDR requires a sufficiently large number of non-
DA proteins. This sounds counter-intuitive in the first place, but one has to keep in mind that the non-
DA proteins should not necessarily look like DA proteins (and be selected by mistake): they are 
necessary to help identify the pattern-change (between DA and non-DA proteins), as illustrated by 
point 2 in Fig. 2.  
 
The easiest way to retain sufficient numbers of non-DA proteins in the differential analysis is to avoid 
discarding them at earlier steps. To do so, previous recommendations, regarding stringent logFC cutoff, 
as well as loose filters (balanced by using a processing akin to “push p-value”) can be applied: 
 
Recommendation 14: Steps in the left-hand side of calibration plots can be reduced or removed by 
using looser cutoff values in preliminary filtering steps (on logFC or on recovered values). 
 
Once the calibration plot depicts sufficiently well-calibrated p-values, a set of DA proteins can be 
selected for display on a volcano plot. At this point, some instability may still be observed in the FDR 
computation. Notably, a slight change in the horizontal threshold can lead to considerable variations 
in the FDR values. This variability should be interpreted similarly to a binning effect: The volume of 
data is insufficient to produce smooth variations of the FDR as a function of the p-value threshold. To 
balance this, the logFC threshold can be adjusted to looser cutoff. 
 
Recommendation 15: Increasing the number of non-DA proteins is also an efficient way to reduce FDR 
instability with respect to the p-value threshold that might be observed on the volcano plot. 
 

7. Conclusions 
Differential analysis is classically the final stage in any mass spectrometry-based proteomics 
experiment. As such, it combines all the imprecisions or mistakes accumulated from the sample 
preparation to the mass spectrometry measurements and bioinformatics involved in biomolecule 
identification and quantification. The resulting data may have characteristics and qualities that vary 
according to the problems studied and instruments used, making the strict application of statistical 
guidelines difficult. With this in mind, statistical protocols may be blindly and routinely applied, with 
the risk of generating doubtful results; or the data and the theory can be matched as much as possible. 
However, this alternative requires watchful eyes, as well as expertise unrelated to experience in 
analytical chemistry. Fortunately, modern bioinformatics tools provide visualization interfaces for 
large proteomics datasets that make it possible for the analyst to scrutinize each step in data 
processing. In this context, this article splits the differential analysis into five essential steps, the quality 
of which can be visually assessed throughout the process. Using these steps as a guideline will help 
proteomics and other mass spectrometry-based omics communities to communicate more reliable 
biological results. Moreover, they will help familiarize users with the underlying statistical concepts, 
leading researchers to better handle the ever-growing experimental data they produce. 
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