C. C. Aggarwal and J. Han, Frequent Pattern Mining, 2014.

S. Andrews, In-Close2, a high performance formal concept miner, International Conference on Conceptual Structures, vol.5062, 2011.

A. Ben-dor, B. Chor, R. Karp, and Z. Yakhini, Discovering local structure in gene expression data: the order-preserving submatrix problem, Journal of computational biology, vol.10, issue.3-4, p.373384, 2003.

Y. Cheng and G. M. Church, Biclustering of expression data, vol.8, p.93103, 2000.

R. P. Duarte, Á. Simões, R. Henriques, and H. C. Neto, FPGA-based OpenCL accelerator for discovering temporal patterns in gene expression data using biclustering, Proceedings of the 6th International Workshop on Parallelism in Bioinformatics, vol.5362, 2018.

B. Ganter and S. O. Kuznetsov, Pattern structures and their projections, International Conference on Conceptual Structures, p.129142, 2001.

B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foundations, 1999.

R. Henriques, F. L. Ferreira, and S. C. Madeira, Bicpams: software for biological data analysis with pattern-based biclustering, BMC bioinformatics, vol.18, issue.1, p.82, 2017.

R. Henriques and S. C. Madeira, BicPAM: Pattern-based biclustering for biomedical data analysis, Algorithms for Molecular Biology, vol.9, issue.1, p.27, 2014.

R. Henriques and S. C. Madeira, Bicspam: exible biclustering using sequential patterns, BMC bioinformatics, vol.15, issue.1, p.130, 2014.

R. Henriques, S. C. Madeira, and C. Antunes, F2g: ecient discovery of full-patterns, p.19, 2013.

D. I. Ignatov, S. O. Kuznetsov, and J. Poelmans, Concept-based biclustering for internet advertisement, IEEE 12th International Conference on, p.123130, 2012.

D. I. Ignatov, J. Poelmans, and V. Zaharchuk, Recommender system based on algorithm of bicluster analysis RecBi, 2012.

M. Kaytoue, S. O. Kuznetsov, A. Napoli, and S. Duplessis, Mining gene expression data with pattern structures in formal concept analysis, Information Sciences, vol.181, issue.10, p.19892001, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00541100

S. O. Kuznetsov and S. A. Obiedkov, Comparing performance of algorithms for generating concept lattices, Journal of Experimental & Theoretical Articial Intelligence, vol.14, issue.2-3, p.189216, 2002.

G. Li, Q. Ma, H. Tang, A. H. Paterson, and Y. Xu, QUBIC: a qualitative biclustering algorithm for analyses of gene expression data, Nucleic Acids Research, vol.37, issue.15, pp.101-101, 2009.

S. C. Madeira and A. L. Oliveira, Biclustering algorithms for biological data analysis: a survey, IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), vol.1, issue.1, p.2445, 2004.

G. Pio, M. Ceci, D. D'elia, C. Loglisci, and D. Malerba, A novel biclustering algorithm for the discovery of meaningful biological correlations between microRNAs and their target genes, BMC bioinformatics, vol.14, issue.7, p.8, 2013.

B. Pontes, R. Giráldez, and J. S. Aguilar-ruiz, Biclustering on expression data: A review, Journal of biomedical informatics, vol.57, p.163180, 2015.

A. Tanay, R. Sharan, and R. Shamir, Discovering statistically signicant biclusters in gene expression data, Bioinformatics, vol.18, issue.suppl_1, pp.136-144, 2002.

R. Veroneze, A. Banerjee, and F. J. Von-zuben, Enumerating all maximal biclusters in numerical datasets, Information Sciences, vol.379, p.288309, 2017.