P. Shore and A. D. Sharrocks, The MADS-box family of transcription factors, Eur J Biochem, vol.229, pp.1-13, 1995.

R. Melzer, Y. Wang, and G. Theißen, The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower, Semin Cell Dev Biol, vol.21, pp.118-146, 2010.

L. Gramzow, M. S. Ritz, and G. Theißen, On the origin of MADS-domain transcription factors, Trends Genet, vol.26, pp.149-53, 2010.

S. Masiero, L. Colombo, P. E. Grini, A. Schnittger, and M. M. Kater, The emerging importance of type I MADS box transcription factors for plant reproduction, Plant Cell, vol.23, pp.865-72, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00600356

A. Litt and E. M. Kramer, The ABC model and the diversification of floral organ identity, Semin Cell Dev Biol, vol.21, pp.129-166, 2010.

B. Thomson and F. Wellmer, Molecular regulation of flower development, Curr Top Dev Biol, vol.131, pp.185-210, 2019.

W. Yan, D. Chen, and K. Kaufmann, Molecular mechanisms of floral organ specification by MADS domain proteins, Curr Opin Plant Biol, vol.29, pp.154-62, 2016.

J. R. Dinneny and M. F. Yanofsky, Floral development: an ABC gene chips in downstream, Curr Biol, vol.14, pp.840-841, 2004.

C. Callens, M. R. Tucker, D. Zhang, and Z. A. Wilson, Dissecting the role of MADS-box genes in monocot floral development and diversity, J Exp Bot, vol.69, pp.2435-59, 2018.

H. Sommer, J. P. Beltrán, P. Huijser, H. Pape, W. E. Lönnig et al., Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors, EMBO J, vol.9, pp.605-618, 1990.

E. R. Alvarez-buylla, S. Pelaz, S. J. Liljegren, S. E. Gold, C. Burgeff et al., An ancestral MADS-box gene duplication occurred before the divergence of plants and animals, Proc Natl Acad Sci, vol.97, pp.5328-5361, 2000.

B. M. Victoria, C. B. , C. D. Mauricio, and H. , MADS-box genes expressed during tomato seed and fruit development, Plant Mol Biol, vol.52, p.15, 2003.

K. Ehlers, A. S. Bhide, D. G. Tekleyohans, B. Wittkop, R. J. Snowdon et al., The MADS Box Genes ABS, SHP1, and SHP2 are essential for the coordination of cell divisions in ovule and seed coat development and for endosperm formation in Arabidopsis thaliana, PLOS ONE, vol.11, 2016.

C. Fan, X. Wang, Y. Wang, R. Hu, X. Zhang et al., Genome-wide expression analysis of soybean MADS genes showing potential function in the seed development, PLoS ONE, vol.8, 2013.

C. Mizzotti, M. A. Mendes, E. Caporali, A. Schnittger, M. M. Kater et al., The MADS box genes SEEDSTICK and ARABIDOPSIS Bsister play a maternal role in fertilization and seed development: the role of STK and ABS in ovule and seed development, Plant J, vol.70, pp.409-429, 2012.

M. J. Carmona, N. Ortega, and F. Garcia-maroto, Isolation and molecular characterization of a new vegetative MADS-box gene from Solanum tuberosum L, Planta, vol.207, pp.181-189, 1998.

F. M. Rosin, Suppression of a vegetative MADS box gene of potato activates axillary meristem development, Plant Physiol, vol.131, pp.1613-1635, 2003.

R. Immink, A petunia MADS box gene involved in the transition from vegetative to reproductive development, Development, vol.126, p.10, 1999.

H. Yu and C. J. Goh, Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition, Plant Physiol, vol.123, pp.1325-1361, 2000.

G. Theißen, R. Melzer, and F. Rümpler, MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution, Development, vol.143, pp.3259-71, 2016.

J. Nam, Antiquity and evolution of the MADS-box gene family controlling flower development in plants, Mol Biol Evol, vol.20, pp.1435-1482, 2003.

M. Chen, W. Hsu, P. Lee, M. Thiruvengadam, H. Chen et al., The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis: FYF regulates flower senescence and abscission, Plant J, vol.68, pp.168-85, 2011.

Q. Xie, Z. Hu, Z. Zhu, T. Dong, Z. Zhao et al., Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato, Sci Rep, vol.4, pp.1-10, 2014.

C. Smaczniak, J. M. Muiño, D. Chen, G. C. Angenent, and K. Kaufmann, Differences in DNAbinding specificity of floral homeotic protein complexes predict organ-specific target genes, Plant Cell, 2017.

V. Hugouvieux and C. Zubieta, MADS transcription factors cooperate: complexities of complex formation, J Exp Bot, vol.69, pp.1821-1824, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01852416

M. E. Bartlett, Changing MADS-box transcription factor protein-protein interactions as a mechanism for generating floral morphological diversity, Integr Comp Biol, vol.57, pp.1312-1333, 2017.

J. J. Tilly, D. W. Allen, and T. Jack, The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects, Development, vol.125, pp.1647-57, 1998.

S. D. Folter and G. C. Angenent, Trans meets cis in MADS science, Trends Plant Sci, vol.11, pp.224-255, 2006.

L. Gramzow and G. Theissen, A hitchhiker's guide to the MADS world of plants, Genome Biol, vol.11, p.214, 2010.

A. Becker and G. Theißen, The major clades of MADS-box genes and their role in the development and evolution of flowering plants, Mol Phylogenet Evol, vol.29, pp.464-89, 2003.

G. Thangavel and S. Nayar, A survey of MIKC type MADS-box genes in non-seed plants: algae, bryophytes, lycophytes and ferns, Front Plant Sci, vol.9, 2018.

R. Melzer, W. Verelst, and G. Theißen, The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in 'floral quartet'-like complexes in vitro, Nucleic Acids Res, vol.37, pp.144-57, 2009.

K. Jetha, G. Theißen, and R. Melzer, Arabidopsis SEPALLATA proteins differ in cooperative DNA-binding during the formation of floral quartet-like complexes, Nucleic Acids Res, vol.42, pp.10927-10969, 2014.

A. Han, J. He, Y. Wu, J. O. Liu, and L. Chen, Mechanism of recruitment of class II histone deacetylases by myocyte enhancer Factor-2, J Mol Biol, vol.345, pp.91-102, 2005.

S. T. Malcomber and E. A. Kellogg, SEPALLATA gene diversification: brave new whorls, Trends Plant Sci, vol.10, pp.427-462, 2005.

R. G. Immink, I. A. Tonaco, S. De-folter, A. Shchennikova, A. D. Van-dijk et al., SEPALLATA3: the "glue" for MADS box transcription factor complex formation

, Genome Biol, vol.10, p.24, 2009.

C. Smaczniak, R. Immink, G. C. Angenent, and K. Kaufmann, Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies, Development, vol.139, pp.3081-98, 2012.

S. De-folter, Comprehensive interaction map of the Arabidopsis MADS box transcription factors, Plant Cell, vol.17, pp.1424-1457, 2005.

C. Espinosa-soto, R. G. Immink, G. C. Angenent, E. R. Alvarez-buylla, and S. De-folter, Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network, BMC Syst Biol, vol.8, p.9, 2014.

S. Puranik, S. Acajjaoui, S. Conn, L. Costa, V. Conn et al., Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis, Plant Cell, vol.26, pp.3603-3618, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01140161

C. S. Silva, S. Puranik, A. Round, M. Brennich, A. Jourdain et al., Evolution of the plant reproduction master regulators LFY and the MADS transcription factors: the role of protein structure in the evolutionary development of the flower, Front Plant Sci, vol.6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01281213

F. Rümpler, G. Theißen, and R. Melzer, A conserved leucine zipper-like motif accounts for strong tetramerization capabilities of SEPALLATA-like MADS-domain transcription factors, J Exp Bot, vol.69, pp.1943-54, 2018.

B. A. Krizek and E. M. Meyerowitz, Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins, Proc Natl Acad Sci, vol.93, pp.4063-70, 1996.

C. Dingwall and R. A. Laskey, Nuclear targeting sequences -a consensus?, Trends Biochem Sci, vol.16, pp.478-81, 1991.

Y. Wu, R. Dey, A. Han, N. Jayathilaka, M. Philips et al., Structure of the MADS-box/ MEF2 domain of MEF2A bound to DNA and its implication for Myocardin recruitment, J Mol Biol, vol.397, pp.520-553, 2010.

L. Pellegrini, S. Tan, and T. J. Richmond, Structure of serum response factor core bound to DNA, Nature, vol.376, pp.490-498, 1995.

S. Tan and T. J. Richmond, Crystal structure of the yeast MATa2/MCM1/DNA ternary complex, Nature, vol.391, pp.660-666, 1998.

J. L. Riechmann and E. M. Meyerowitz, Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins API, AP3, PI, and AG is independent of their DNAbinding specificity, Mol Biol Cell, vol.8, p.17, 1997.

N. Aerts, S. De-bruijn, H. Van-mourik, G. C. Angenent, and A. Van-dijk, Comparative analysis of binding patterns of MADS-domain proteins in Arabidopsis thaliana, BMC Plant Biol, vol.18, 2018.

V. Hugouvieux, C. S. Silva, A. Jourdain, A. Stigliani, Q. Charras et al., Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis, Nucleic Acids Res, vol.46, pp.4966-77, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01852399

J. L. Riechmann, B. A. Krizek, and E. M. Meyerowitz, Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS, Proc Natl Acad Sci, vol.93, pp.4793-4801, 1996.

A. Van-dijk, G. Morabito, M. Fiers, R. Van-ham, G. C. Angenent et al., Sequence motifs in MADS transcription factors responsible for specificity and diversification of protein-protein interaction, PLoS Comput Biol, vol.6, 2010.

X. Lei, H. Shi, Y. Kou, N. Rajashekar, F. Wu et al., Crystal structure of Apo MEF2B reveals new insights in DNA binding and cofactor interaction, Biochemistry, vol.57, pp.4047-51, 2018.

A. Han, F. Pan, J. C. Stroud, H. Youn, J. O. Liu et al., Sequence-specific recruitment of transcriptional co-repressor Cabin1 by myocyte enhancer factor-2, Nature, vol.422, pp.730-734, 2003.

X. Lei, Y. Kou, Y. Fu, N. Rajashekar, H. Shi et al., The Cancer mutation D83V induces an ?-Helix to ?-Strand conformation switch in MEF2B, J Mol Biol, vol.430, pp.1157-72, 2018.

A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello et al., SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res, vol.46, pp.296-303, 2018.

Y. Tanabe, M. Hasebe, H. Sekimoto, T. Nishiyama, M. Kitani et al., Characterization of MADS-box genes in charophycean green algae and its implication for the evolution of MADS-box genes, Proc Natl Acad Sci, vol.102, pp.2436-2477, 2005.

K. Kaufmann, R. Melzer, and G. Theißen, MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants, Gene, vol.347, pp.183-98, 2005.

Y. Yang and T. Jack, Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins, Plant Mol Biol, vol.55, pp.45-59, 2004.

Y. Yang, L. Fanning, and T. Jack, The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA, Plant J, vol.33, pp.47-59, 2003.

Y. Wang, X. Zhang, H. Zhang, Y. Lu, H. Huang et al., Coiled-coil networking shapes cell molecular machinery, Mol Biol Cell, vol.23, pp.3911-3933, 2012.

A. Rose and I. Meier, Scaffolds, levers, rods and springs: diverse cellular functions of long coiled-coil proteins, Cell Mol Life Sci, vol.61, 2004.

G. G. Rhys, C. W. Wood, E. Lang, A. J. Mulholland, R. L. Brady et al., Maintaining and breaking symmetry in homomeric coiled-coil assemblies, Nat Commun, vol.9, 2018.

A. N. Lupas and J. Bassler, Coiled coils -a model system for the 21st century, Trends Biochem Sci, vol.42, pp.130-170, 2017.

X. Robert and P. Gouet, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res, vol.42, pp.320-324, 2014.

E. Wolf, P. S. Kim, and B. Berger, MultiCoil: a program for predicting two-and threestranded coiled coils: MultiCoil, Protein Sci, vol.6, pp.1179-89, 1997.

K. Vandereyken, J. Van-leene, D. Coninck, B. Cammue, and B. , Hub protein controversy: taking a closer look at plant stress response hubs, Front Plant Sci, vol.9, p.694, 2018.

T. Alhindi, Z. Zhang, P. Ruelens, H. Coenen, H. Degroote et al., Protein interaction evolution from promiscuity to specificity with reduced flexibility in an increasingly complex network, Sci Rep, vol.7, 2017.

R. Immink, D. Pose, S. Ferrario, F. Ott, K. Kaufmann et al., Characterization of SOC1's central role in flowering by the identification of its upstream and downstream regulators, Plant Physiol, vol.160, pp.433-482, 2012.

S. Kagale, M. G. Links, and K. Rozwadowski, Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis, Plant Physiol, vol.152, pp.1109-1143, 2010.

K. Hill, H. Wang, and S. E. Perry, A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components, Plant J, vol.53, pp.172-85, 2008.

V. V. Sridhar, APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development, Development, vol.133, pp.3159-66, 2006.

S. Cho, S. Jang, C. S. Chung, K. M. Moon, Y. Jang et al., Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain, Plant Mol Biol, vol.40, pp.419-448, 1999.

K. Kaufmann, J. M. Muiño, R. Jauregui, C. A. Airoldi, C. Smaczniak et al., Target genes of the MADS transcription factor sepallata3: integration of developmental and hormonal pathways in the arabidopsis flower, PLoS Biol, vol.7, pp.854-75, 2009.

T. Honma and K. Goto, Complexes of MADS-box proteins are sufficient to convert leaves into floral organs, Nature, vol.409, pp.525-534, 2001.

E. Piwarzyk, Y. Yang, and T. Jack, Conserved C-terminal motifs of the Arabidopsis proteins APETALA3 and PISTILLATA are dispensable for floral organ identity function, Plant Physiol, vol.145, pp.1495-505, 2007.

M. Egea-cortines, Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus, EMBO J, vol.18, pp.5370-5379, 1999.

M. O. Steinmetz, I. Jelesarov, W. M. Matousek, S. Honnappa, W. Jahnke et al., Molecular basis of coiled-coil formation, Proc Natl Acad Sci, vol.104, pp.7062-7069, 2007.

E. I. Severing, A. Van-dijk, G. Morabito, J. Busscher-lange, R. Immink et al., Predicting the impact of alternative splicing on plant MADS domain protein function, PLoS ONE, vol.7, 2012.

D. Posé, L. Verhage, F. Ott, L. Yant, J. Mathieu et al., Temperaturedependent regulation of flowering by antagonistic FLM variants, Nature, vol.503, pp.414-421, 2013.