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Abstract
Polytropes are self-gravitating fluid spheres used in astrophysics as crude approximation of more 

realistic stellar models. They possess equations that have scale parameters linked to mass, energy 

and entropy. Since Boltzmann distribution yields unphysical results, the use of generalized 

entropies, such as Tsallis and Kaniadakis entropies, had been proposed. Here we discuss how these 

entropies are related in polytrope solutions.
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1. Introduction

In astrophysics, a polytrope refers to a solution of the Lane–Emden equation. This is an equation

which gives the pressure as a function of density [1]. These solutions are modelling self-gravitating

fluid spheres that are called “polytropes” too, which are objects used as crude   approximation to

more realistic stellar models [2]. The solution of the Lane-Emden equation, a dimensionless form

of Poisson's equation for the gravitational potential, depends on a parameter which is the polytropic

index n. It is written as P=Kρ(n+1)/n, where P is pressure, ρ is density and K a constant. If stellar

structure is approximated with a polytrope having a given index, then two scaling parameters are

needed to express the structure in physical units [3]. The two parameters that we can use are a

constant  which is  related  to  entropy and the  stellar  mass.  Since  Boltzmann  distribution  yields

unphysical  results,  the  Boltzmann  entropy  had  been  substituted  by  a  generalized  entropy,  the

Tsallis  entropy  [4].  Another  generalized  entropy,  the  Kaniadakis  entropy,  had  been  recently

proposed too, in [5]. Here we discuss how these two entropies are related in polytrope solutions,

and that the result given in [5] can be easily obtained from [4].

 2. The entropies

Well-known is the entropy proposed by Claude Shannon in 1948 [6].  

He defined the entropy H  of a discrete random variable X, as the expected value of the information



content:  H(X)= −Σi pi logb  pi .  The probability  of  i-event  is  pi  and b is  the  base of  the  used

logarithm. However, several entropies exist which are generalizing Shannon entropy. Among them

we have Tsallis and Kaniadakis  entropies [7,8], which are defined, with a corresponding choice of

measurement units equal to 1, as follow: 
 

 

 In (1) and (2) we have the entropic indies q and κ. For its generalized additivity, the Kaniadakis

entropy requires another function, defined as follow: 

A detailed discussion of the generalized additivity of Tsallis and κ-entropy is given in [9].  Tsallis

and Kaniadakis entropies are linked:  

 

 Eq.(3) is a simpler form of an expression given in [10,11]. However, besides this relation, because

of the generalized additivity possessed by the Kaniadakis entropy, we need also another relation: 
 

 In (3) and (4), we have Kaniadakis functions expressed by Tsallis entropy. As shown in [12], we

can also write T expressed by means of Kaniadakis functions:
 

 



 

Let us have: κ=1−q. From (5) we have immediately the relation between Tsallis and Kaniadakis

functions:
 

 3. With polytropes 

The relation (6) between Tsallis and Kaniadakis entropies can be useful in several problems. Here

we consider its use in polytropes. In the previous equations, we have p i denoting the probability

distribution. In Ref.4, it is used letter f for probability. From now on, we will use this notation. In

[4], the distribution from Tsallis entropy is: 
 

 

After Eq.6, we can write Eq.7 in the following manner: 
 

 

Of course, (7) and (8) are the same equation. As a consequence, Kaniadakis distributions are linked

to Tsallis distribution by:   
 

 

From [4], a relation exists between polytrope index and entropic Tsallis index: 
 

As a special case, for q→1, we find the isothermal situation. To have Eq.6, as shown in [12], we

need  κ=1−q  or  κ=q−1.  Then,  from (10),  considering  that  we  have  for  the  Kaniadakis  index,

−1<κ<1:
 



 

And in fact, (11) is the relation that we find in [5].   Using then the relation between Tsallis and

Kaniadakis entropies and distributions we can easily finds results concerning several applications.

Polytropes are an example of such a possible approach.
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