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Abstract—To face the exponential data traffic growth, the
sub-THz spectrum (100-300 GHz) is envisioned for wireless
communications. However, sub-THz systems are critically im-
pacted by the strong phase noise of high frequency oscillators.
This paper discusses the appropriate choice of phase noise
model for sub-THz communications. Two phase noise models are
introduced and compared: one correlated, accurate but complex,
and another uncorrelated, analytically simpler. The expression of
the likelihood ratio enables us to propose an analytical condition
to select the best of the two models for a measured oscillator
spectral characteristic. Numerical simulations are performed
with realistic phase noise generated according to a state-of-the-art
sub-THz oscillator and show that an uncorrelated Gaussian
process is appropriate to model the impact of phase noise in
sub-THz systems. Eventually, the proposed results are applied to
link adaptation in the presence of phase noise in order to choose
the most robust scheme between a coherent and a differential
modulation.

Index Terms—Sub-THz communications, Oscillator, Phase
noise, Wiener Phase Noise, Gaussian distribution.

I. INTRODUCTION

With a specific demand for wireless connectivity, the current
exponential data traffic growth will lead to a 100+ Gbit/s
requirement within few years. To meet this demand, the
large bands available in the sub-THz spectrum (100-300 GHz)
are studied for wireless communications [1]. To reach 100+
Gbit/s data rates, classical coherent architectures are combined
with high spectral efficiency schemes. This entails numerous
constraints on the design of radio-frequency components espe-
cially at the oscillator level. Indeed, high frequency oscillators
severely impair sub-THz systems with Phase Noise (PN) [2]. It
is hence essential to discuss the PN model selection to design
dedicated signal processing and thus performant schemes.

A wide range of PN models have been introduced in
the literature: Non-linear [3], Tikhonov [4], Wiener [5], ...
The selection of the PN model is application dependent. For
millimeter-wave systems, the PN is usually modeled by the
superposition of a correlated contribution (colored PN) and an
uncorrelated one (white PN floor) [6]. However, sub-THz sys-
tems exploit wider bands and thus require to reconsider the PN
model. It has been shown in [5] that performance of wide-band
systems are significantly more impacted by the uncorrelated
contribution of PN than the correlated one. This result prompts
us to compare the efficiency of an uncorrelated Gaussian PN
model to the common correlated one used for millimeter-wave,
superposition of Wiener PN and Gaussian PN.

In this work, we intend to provide analytical tools for sub-
THz communication design and circuit specifications. Firstly,
we present two PN models: one correlated (Wiener PN +
Gaussian PN) and another uncorrelated (Gaussian PN). Sec-
ondly, these two models are confronted by means of numerical
simulations as well as an analytical analysis. The accuracy of

The research leading to these results received funding from the French
National Research Agency (ANR-17-CE25-0013) within project BRAVE.

the uncorrelated Gaussian PN model is first checked with a
Pearson’s χ2 goodness of fit test. We next derive the closed-
form expression of the likelihood-ratio of the two models.
Thereupon, an analytical condition is proposed to determine
whether the correlated or the uncorrelated model is the most
efficient given a system bandwidth and an oscillator spectral
characterization. Numerical simulations are performed with
realistic PN generated according to a state-of-the-art sub-THz
oscillator. Simulation results show that an uncorrelated Gaus-
sian process is appropriate to model the impact of PN in sub-
THz systems. Thirdly, the proposed results on model selection
are applied to link adaptation in the presence of PN. Upon
the analysis of the Bit-Error-Rate (BER) of phase modulated
signals, we are able to choose the most robust scheme between
a coherent and a differential modulation.

The remainder of this paper is structured as follows. Sec-
tion II describes the considered communication system and
oscillator. Section III presents the correlated and uncorrelated
PN models. Section IV is dedicated to the comparison of these
two models in order to select the most efficient one for a
given system. Section V applies the results on model selection
to link adaptation while Section VI eventually draws some
conclusions.

II. SYSTEM DESCRIPTION

A. Oscillator
The modeling of the complex output v of a practical

oscillator with central frequency f0 is given by

v(t) =
(

1 + ε(t)
)

exp
(
j2π(f0 + ζ)t+ jφ(t)

)
, (1)

where ε, ζ and φ denote respectively the amplitude noise, the
Carrier Frequency Offset (CFO) and the PN. The amplitude
noise ε is mitigated by applying a limiter on the oscillator
output and is considered negligible [7]. It is also assumed that
the receiver is synchronized in frequency s.t. the CFO term
ζ is compensated. When it comes to PN, the common figure
to characterize the performance of an oscillator is its Single-
Side-Band (SSB) spectrum L(f). It is obtained throughout the
following measurements

L(f) =
Sv(f0 + f)

Pv
, (2)

with Sv the Power Spectral Density (PSD) and Pv the power of
the oscillator output v. Though the total power of an oscillator
should ideally be concentrated in f0 and the PSD of the
oscillator a pure tone, PN induces the power to be spread
over frequencies around f0. We denote Sφ the PSD of PN φ.
For large f , the small angle approximation ejφ ' 1 + jφ
leads to Sφ(f) ' L(f). The latter equation bonds the PN φ
and the oscillator output v. This link enables us to calibrate
the PN model on the oscillator spectral characterizations.



Fig. 1: PSD of the considered 200 GHz oscillator [8].

In this work, we intend to confront PN models on realistic
observations. We therefore select a state-of-the-art 200 GHz
oscillator [8], whose PSD is illustrated in Fig. 1. The simulated
PN will correspond to this oscillator by respecting the spectral
characteristics measured in Fig. 1. We refer the reader to [5]
for PN simulation based on oscillator spectral characterizations
and also to [9] for simulation of power law noise.

B. Channel
The recent measurement campaigns [10] have confirmed

the expectations from theory that the line-of-sight component
prevails in sub-THz channels, hence considered as frequency
flat. We study a single carrier communication system1 im-
pacted by oscillator PN. It is assumed that the channel is
ideally equalized2 and the receiver synchronized in time and
frequency. Subsequently, we consider the discrete-time symbol
model of an Additive White Gaussian Noise (AWGN) channel
impacted by PN. The received symbol at instant k is expressed
by

rk = ske
jφk + wk, (3)

where sk is the modulated symbol with duration T and
wk ∼ CN (0, σ2

w = N0/T ). The spectral density of the white
noise is denoted N0. The discrete stochastic process φk rep-
resents the oscillator PN to be modeled. Further, the discrete-
time symbol model in Eq. (3) is discussed in [11]. Conditions
on the PN intensity and the sampling rate of the system are
given for this model to be accurate. It is also worth mentioning
that communication systems may use separate oscillators at the
transmitter and the receiver. In this case, both PN contributions
must be added together.

III. PHASE NOISE MODELS

We present in this section two PN models. The first one
is a correlated model based on the physical modeling of the
PN generation in oscillators. This model is frequently used for
millimeter-wave systems [6] and describes the superposition
of a correlated contribution (colored PN) and an uncorrelated
one (white PN floor). The second one is an uncorrelated model
describing only the white PN floor. Its mathematical expres-
sion is hence simple and commonly exploited to optimize the
signal processing for PN channels [12].

1Though the presented results may also be exploited for channel bounding
or multi-carrier modulation schemes.

2The phase shift of the channel is compensated and the propagation gain
is normalized.
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Fig. 2: PSD of the considered correlated PN model.

A. Correlated phase noise
PN generation in oscillators is due to the transformation

of amplitude fluctuations into phase fluctuations. In practical
systems, free-running oscillators are stabilized by means of a
Phase-Locked Loop (PLL). With respect to the linear time-
invariant model of the PLL, the PN generation mechanism
may be modeled as an amplification and an integration of the
noise sources present in the circuits [5] [7]. The integration of
noise sources by the PLL gives a cumulative and correlated
nature to PN. We make the assumption that the circuitry is
only subject to white noise3. Accordingly, the oscillator PN φk
may be modeled by the superposition of a Wiener (Gaussian
random-walk) process φw,k and a Gaussian one φg,k [7] i.e.

φk = φw,k + φg,k. (4)

The Gaussian PN φg,k ∼ N (0, σ2
g) is caused by the amplifi-

cation of the thermal noise in the oscillator. The Wiener PN
is defined by

φw,k = φw,k−1 + δφw,k, (5)

where δφw,k ∼ N (0, σ2
w). It expresses the integration by the

PLL and hence the cumulative nature of PN. Fig. 2 presents
the PSD described by this PN composed of two characteristics.
The uncorrelated Gaussian process with variance σ2

g = K0/T
has a flat spectrum of density K0. The correlated Wiener
PN presents a Lorentzian characteristic (i.e. 1/f2) [7] with
density K2. The variance of the Wiener increment verifies
σ2
w = 4π2K2T [7]. The variances σ2

g and σ2
w of the two

processes are bonded by the corner frequency f2c = K2/K0.
We use hereafter the normalized corner frequency fc · T
expressed as a fraction of the band. In the following, we will
refer to this model as MW for short. Based on the physical
modeling of the PN generation in oscillators, this model is
frequently used in the literature for its accuracy – see [5]
and references therein. However its complexity motivates the
introduction of an uncorrelated Gaussian PN model.

B. Uncorrelated phase noise
By definition, modeling a stochastic process represents a

trade-off between the accuracy and the complexity of de-
scription. Since the development of communication systems
highly benefits from analytical analyses, the low analytical
complexity of a model can be preferred over its accuracy.
By means of illustration, the Gaussian PN model has already
been exploited in [12] to optimize constellations for PN

3The influence of flicker noise is disregarded in this paper.



TABLE I: Spectral density K0 (dBc/Hz) of the white PN floor.

Bandwidth 1/T

100 MHz 1 GHz 10 GHz

Strong PN σ2
g = 10−1 −90 −100 −110

Medium PN σ2
g = 10−2 −100 −110 −120

Low PN σ2
g = 10−3 −110 −120 −130

channels and also in [13] to improve demodulation in the
presence of PN. We thus turn away from the accurate but
complex MW to consider the Gaussian PN model. Besides its
mathematical convenience, the Gaussian distribution is also
a relevant PN model for wide-band systems. The work in
[5] has studied separately the influences of the different PN
spectrum regions on communications. It has exhibited a strong
dependence with the system bandwidth 1/T . In particular,
when considering high symbol rate systems, the oscillator
noise floor – characteristic K0 in Fig. 2 – represents the
greatest contribution to the overall PN. This result may also
be appreciated by evaluating the ratio

γ =
σ2
w

σ2
g

= 4π2f2c T
2. (6)

For wide-band systems, fc � 1/T leads to σ2
w � σ2

g . It
follows that the Wiener PN becomes negligible compared to
the Gaussian PN. For these reasons, it is worth considering
a Gaussian PN model denoted MG. The oscillator PN φk is
described by a truncated Gaussian distribution,

φk ∼ N (0, σ2
g). (7)

As the phase is naturally bounded by (−π, π], the Gaus-
sian distribution must be truncated. The probability density
function is normalized4 by λ = (FN (π)− FN (−π))−1 to
ensure that

∫ π
−π p(φ)dφ = 1, where F denotes the cumulative

distribution function. Returning to oscillator characterization,
Table I presents some values of spectral density K0 of the
white PN floor for different variances σ2

g and system band-
width 1/T . The following work evaluates the efficiency of
MG to model PN observations. It is clear from Eq. (6) that the
accuracy of MG is function of the normalized corner frequency
fc · T .

IV. MODEL SELECTION

We have previously introduced two PN models: MW corre-
lated with a complex and accurate description of PN, and MG

uncorrelated with a simple mathematical expression. In this
section, we first evaluate the accuracy of MG, the Gaussian
distribution, to model PN observations. Then, we compare the
likelihood of the correlated MW and uncorrelated MG models
in order to select the most efficient one given the system
bandwidth and the oscillator spectral characterization.

A. Accuracy of the Gaussian model
To assess the accuracy of MG, we perform a Pearson’s

χ2 goodness of fit test on simulated PN. By doing so, we
intend to determine the systems parameters, communication
bandwidth and oscillator spectral characteristics, for which

4It is worth mentioning that most of algorithms are not subject to a
normalization of the likelihood function and hence a factor multiplication
does not increase the complexity.

MG models accurately the PN observations. The simulated
PN samples are generated either according to MW , considered
as an accurate and realistic PN model, or to the oscillator
described in Fig. 1. First, the goodness of fit test is described,
and then, the simulations results are presented.

1) Pearson’s χ2 goodness of fit test: The aim of this
subsection is to establish whether an observed PN frequency
distribution differs from a truncated Gaussian distribution. In
other words, we operate normality tests on simulated PN.
Let φ = {φk}1≤k≤N denote the observed values of random
PN and N the number of symbols within a communication
frame. Two different communication frames hence represent
two independent realizations of PN. The null hypothesis can
now be described as

H0 : MG is consistent with the observations φ. (8)

To test this hypothesis, a Neyman-Pearson approach is a rea-
sonable choice. This approach is designed for binary detection
problem with a given significance α [14]. The hypothesis
testing δ takes the following form

δ(φ) =

{
accept H0, if S(φ) < λc,

reject H0, otherwise,
(9)

where S is the test statistic of observed samples φ compared
to a decision threshold λc which maximizes the probability
of detection. Further, we exploit the common Pearson’s χ2

goodness of fit to test the observations against the null
hypothesis H0. In this case, the value of the statistic S is

S(φ) = N

M∑
i=1

(Oi(φ)
N − pi)2
pi

, (10)

where Oi is the number of observations φk ∈ Ii, while
M denotes the number of intervals Ii partitioning (−π, π]
and pi = Pr(φk ∈ Ii). To determine the goodness of fit
we compare the value of S(φ) to a χ2

M−2 distribution with
M − 2 degrees of freedom5. The critical value is given by
λc = F−1

χ2
M−2

(1− α), where α is the given significance.

2) Simulations results: We first perform the χ2 test on
PN samples generated according to MW , with significance
α = 0.1. Fig. 3 illustrates the frequency of accepting H0 as
a function of the normalized corner frequency fc · T . This
confirms the aforementioned intuition in Eq. (6) that MG is
accurate when fc � 1/T . The value 0.9 of the frequency of
accepting is consistent with the significance of 0.1. It must
be pointed out that N , the length of the studied sequence,
has a great influence on the selection of the model. For long
sequences, the impact of the PN correlation is significant and
cannot be neglected. Secondly, we test H0 against realistic
PN samples simulated according to the oscillator described in
Fig. 1. The frequency of choosing δ(φ) = H0 is presented in
Fig. 4 as a function of the system bandwidth 1/T . Properties
observed in Fig. 4 and the resulting conclusions are similar to
the ones of Fig. 3. We have confirmed with the Pearson’s
χ2 goodness of fit test that the uncorrelated Gaussian PN
model MG is accurate if the corner frequency remains small
compared to the system bandwidth. However, we have not yet

5The variance is estimated from observations, the mean is not.
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Fig. 3: Frequency of accepting the Gaussian model H0 with
a χ2 goodness of fit test for simulated correlated PN.
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Fig. 4: Frequency of accepting the Gaussian model H0 with
a χ2 goodness of fit test for simulated realistic PN.

derived an analytical expression of the dependence between
the accuracy of MG and the system features N and fc · T .
This is carried out in the following subsection.

B. Models comparison
We have previously witnessed the limitations of the

Neyman-Pearson approach. The properties of MG have been
highlighted, still they have not been expressed analytically.
To do so, we compare the efficiency of MW and MG to
model some PN observations φ = {φk}1≤k≤N . We recall that
N denotes the number of symbols within a frame and that
different frames represent independent realizations of PN.

1) Log-likelihood ratio: Given the oscillator PSD, the com-
parison between MG and MW can be achieved by evaluating
the Log-Likelihood Ratio (LLR) of the models for observa-
tions φ, i.e.

ΛG/W = ln

(
P (φ|MG)

P (φ|MW )

)
, (11)

denoted Λ for brevity. While the sign of Λ infers the model
to select (MG if Λ ≥ 0, MW otherwise), its absolute
value quantifies the reliability of this decision. So, |Λ| small
leads to the conclusion that MG and MW are equally likely.
Conversely, a high value of |Λ| indicates that the observations
are particularly in favor of one model over the other. To derive
the expression of Λ, we must express the joint distributions
p(φ|MG) and p(φ|MW ). Regarding MG, φk are i.i.d.. It is
hence straightforward from Eq. (7) that

p(φ|MG) =
(
2πσ2

g

)−N
2 · exp

(
−

N∑
k=1

φ2k
2σ2

g

)
. (12)

As for MW , PN is correlated and we must start by applying
the conditional chain rule. Denoting φk−1 = (φ1, · · · , φk−1),

p(φ|MW ) =

N∏
k=1

p(φk|MW ,φk−1) =

N∏
k=1

p(φk|MW , φk−1).

(13)
The latter equality holds as MW is a Markov chain of order 1.
To evaluate the factors in the previous equation, we next define
∆φk = φk − φk−1 which yields

p(φk|MW , φk−1) ∼ N
(
φk−1, σ

2
g(2 + γ)

)
,

= p(∆φk|MW ) ∼ N
(
0, σ2

g(2 + γ)
)
,

(14)

where γ = σ2
w/σ

2
g as defined in Eq. (6). Substituting Eq. (14)

into (13), we have

p(φ|MW ) =
(
2πσ2

g

(
2 + γ))−

N
2 · exp

(
−

N∑
k=1

∆φ2k
2σ2

g(2 + γ)

)
.

(15)
At last, we obtain the closed-form expression of the LLR:

Λ =
N

2
ln(2 + γ) +

N∑
k=1

∆φ2k
2σ2

g(2 + γ)
−

N∑
k=1

φ2k
2σ2

g

, (16)

which completes our derivation.

2) Simulation results with correlated phase noise: Let us
now consider that the PN observations are generated by a MW

process and study the expected value E[Λ]. Given the system
features N and fc · T , the expected value of the LLR yields
the selected model in average. Since MW is considered as an
accurate and realistic PN model, studying the expected value
of the LLR enables us to characterize analytically the observed
properties in Fig. 3 and 4. When φk are generated according
to MW , we have in Eq. (16)

N∑
k=1

∆φ2k
σ2
g(2 + γ)

∼ χ2
N , with E

[
χ2
N

]
= N. (17)

Then, the second sum in Eq. (16) has for expected value

E

[
N∑
k=1

φ2k

]
=

N∑
k=1

E
[
(φw,k + φg,k)2

]
,

=

N∑
k=1

E
[
φ2w,k

]
+ E [2φw,k · φg,k] + E

[
φ2g,k

]
,

= σ2
g ·

N∑
k=1

(k · γ + 1) = σ2
g

(
N(N + 1)

2
γ +N

)
.

(18)



10−3 10−2 10−1 100
-1000

-100

-10

-1
0
1

10

100

1000

Normalized Corner Frequency fc · T

M
ea

n
V

al
ue

of
LL

R
E
[Λ

G
/
W
]

N = 25
N = 100
N = 1000
simulated
analytical

Fig. 5: Mean value of LLR ΛG/W on simulated correlated PN.

It follows that the expected value of the LLR is given by

E[Λ] =
N

2

(
ln(2 + γ)− γ · N + 1

2

)
. (19)

Several remarks must be mentioned with regard to this expres-
sion. Firstly, E[Λ] ∝ −γ · N confirms the simulation results
that the longer the sequence, the lower the normalized corner
frequency must be to ensure that MG remains an accurate
model. Furthermore, we are now able to give a condition on N
and fc ·T for the correlated PN to be negligible. By evaluating
the inequality E[Λ] ≥ 0 with a 1st-order approximation, we
claim that the PN is appropriately modeled by MG if

N · f2c · T 2 ≤ ln(2)

2π2
. (20)

Regarding communication design, the condition in Eq. (20)
may either be exploited to specify the normalized corner
frequency fc ·T or to set the length N of the frame. Secondly,
when the PN is generated from MW with γ small, the value
of Λ may be greater than zero. The LLR actually penalizes
the complexity of MW in comparison to MG. This illustrates
the Occam’s razor: if both MG and MW accurately model
the observations, then the simplest model should be favored.
Eventually, Fig. 5 presents the mean LLR value for different
frame lengths with MW simulated PN. Fig. 5 and condition in
Eq. (20) may be exploited to select the best PN model – MG

if E[Λ] ≥ 0, MW otherwise – with regard to system features
N and fc · T .

3) Simulation results with realistic PN: In this paragraph,
the simulation results are presented for a realistic PN corre-
sponding to the sub-THz oscillator described in the Fig. 1.
The Fig. 6 shows the mean value of the LLR as a function
of the system bandwidth 1/T for several frame lengths N .
The analytical curves correspond to the expected value of the
LLR if the PN samples where generated according to MW

with characteristics K0 and K2 measured on Fig. 1. We can
deduce from these results that the condition given in Eq. (20)
does indeed ensure that an uncorrelated PN model is valid.
Nevertheless, it can be observed that this analytical condition
is slightly conservative in view of the results obtained by simu-
lation. This may be explained by the fact that the correlated PN
of the oscillator close to the center frequency is not as strong
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Fig. 6: Mean value of LLR ΛG/W on simulated realistic PN.

as the one described by a Lorentzian characteristic. In other
words, MW models a stronger correlated PN contribution than
the one measured in practice. Furthermore, considering that
the bandwidths of sub-THz systems will be of the order of
the GHz [15], we can conclude from these results that an
uncorrelated Gaussian model is appropriate to describe the
PN in sub-THz communications.

V. APPLICATION TO LINK ADAPTATION

The objective of this section is to give the reader some
application examples. In particular, it aims to illustrate that
the proposed model selection may be exploited to adapt the
modulation with regards to the oscillator PN performance.

A. BER analysis for PSK and DPSK
High-rate communications over wireless links in the sub-

THz domain demand tremendous amount of power. For this
reason, constant envelope modulations are valuable since they
offer an efficient use of amplifiers. Yet, coherent Phase Shift
Keying (PSK) are very sensitive to phase related impairments.
Differential PSK (DPSK) has been introduced to enable non-
coherent demodulation. It is hence not subject to the cumula-
tive nature of PN. This robustness is achieved at the expense
of a noise enhancement – ' 3 dB – and so a BER degradation.
Still, the stronger the phase impairments, the more interesting
it is to select a differential modulation. This leaves an open
question: With regard to normalized corner frequency, when
does DPSK become more robust than PSK? The closed form
expressions of PSK and DPSK BER subject to MW PN have
been derived in [16]. Fig. 7 depicts the BER performance
for a 4-PSK and a 4-DPSK with a Signal-to-Noise Ratio
(SNR) of 20 dB and a frame length of N = 7 symbols.
The aforementioned intuition is confirmed: Tough the DPSK
presents a loss in BER performance, it is more robust than
the PSK for strong correlated PN. It may be observed on
Fig. 7 that the PSK and DPSK performance are equal in a
critical value γc independent from the white PN variance. It
can also be shown that γc is independent from the SNR. For
this reason, γc provides a general criterion for link adaptation.
Moreover, it is worth noting that the plotted BER satisfies the
condition in Eq. (20). With a sequence length N = 7, Eq. (20)
gives that it is not relevant to consider the correlated PN if
fc · T ≤ 0.71. This agrees with the critical value measured in
Fig. 7 of fc · T ' 0.853 greater than 0.71.
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B. Adaptive systems
To guarantee robustness or to maximize spectral effi-

ciency, communication systems implement adaptive modu-
lation schemes. The modulation is inferred from a channel
estimation. For sub-THz communications, a link adaptation
scheme function of the PN level is highly valuable. Indeed,
aggregated bands by sub-THz systems with channel-bonding
are wide enough to exhibit differences in oscillators perfor-
mance between the higher frequencies and the lower ones. In
our study, the link adaptation lies in the choice of a differential
or coherent modulation and sums up to following question: Is
the cumulative PN strong enough to advantage a differential
modulation? The link adaptation decision δ takes the following
form

δ(r) =

{
DPSK, if σ2

w/σ
2
g > γc

PSK, otherwise
, (21)

where r = (r1, ..., rN ) is a received sequence of pilots
symbols to estimate channel. The link adaptation problem can
be expressed as a detection problem

H0 : σ2
w/σ

2
g > γc, (correlated PN),

H1 : σ2
w/σ

2
g ≤ γc, (uncorrelated PN).

(22)

This is a very similar problem to the one studied in Sec. IV-B.
The transceiver has to discriminate between H0 and H1 to
select the modulation. We have investigated this detection
problem in [16] where a statistic of the received pilot sequence
has been proposed to perform the link adaptation.

VI. CONCLUSION

In this paper, we have addressed the problem of PN model-
ing for sub-THz communications. We have first introduced two
PN models: one correlated, accurate but complex, and another
uncorrelated, analytically simpler. Next, we have evaluated
the accuracy of the uncorrelated Gaussian PN model with
a χ2 goodness of fit test. Simulations have been performed
considering realistic PN corresponding to a state-of-the-art
200 GHz oscillator. We have demonstrated that the Gaussian
PN model is accurate when the oscillator corner frequency
remains small compared to the system bandwidth. This result

has been confirmed by deriving the closed-form expression of
the LLR between the correlated and uncorrelated PN models.
Given the number of samples in a frame and the normalized
corner frequency, an analytical condition has been proposed
to select the best PN model between correlated and uncor-
related. Simulation results have shown that an uncorrelated
Gaussian process is an appropriate PN model for sub-THz
communication systems. Finally, a practical application of
model selection has been presented. We have investigated a
link adaptation scheme where the transceiver selects the most
robust modulation between a coherent and a differential one
with regard to the PN performance. Though the results of
the paper are presented within the context of sub-THz com-
munication, the analysis remain true for other scenarios such
as satellite communications or next generation of millimeter-
wave communication (5G).
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