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Abstract

Our purpose is to explore, in the context of loop ensembles on fi-
nite graphs, the relations between combinatorial group theory, loops
topology, loop measures, and signatures of discrete paths. We deter-
mine the distributions of the loop homotopy class, and of the first and
second homologies, defined by the lower central series of the funda-
mental group. This last result has yet to be extended to higher order
homologies.

1 Geodesic loops and fundamental group for
graphs

We consider a finite connected graph G, denoting by X the set of vertices
and by F° the set of oriented edges.

The extremities of an oriented edge e are denoted (e~,e*). The opposite
oriented edge is denoted —e.

Recall that on graphs, geodesics paths are defined as non backtracking paths:
(o, T1, .oy ) with {z;, x;11} in E and x;_1 # x;.;. Based loops at x are
paths from x to z. We say they are tailless if their first edge and the op-
posite of their last edge differ. Loops are equivalence classes of based loops
under the shift. Geodesic loops are defined as equivalence classes of non
backtracking tailless based loops under the shift.

For each choice of a base vertex z, the fundamental group (Cf [13] ) I', is
defined by geodesics from x to x. The composition rule is concatenation
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followed by erasure of backtracking subarcs. These groups are all isomorphic
to the free group I' with » = |E| — |X| + 1 generators, in a non canonical
way. However, geodesic (unrooted) loops are in canonical bijection with the
conjugacy classes of any I',.

The isomorphisms between different I',’s, as well as a set of generators for
the free group, can be defined by the choice of a spanning tree T" of the graph.
To each oriented edge o = (a,b) outside the spanning tree we associate the
element 7,(a) of I', defined by the based loop obtained by concatenation
of the geodesic from x to o~ in T, «, and the geodesic from a™* to x in 7.
Note that 7,(—a) is the inverse of ~,(«). Finally recall that each loop [ is
homotopic to a unique geodesic loop 19, obtained by removing from the loop
all its subtrees. The same holds for based loops (but in this case the tail is
not removed).

2 The lower central series

Recall (see section 5-3 in [10], section 6-4 in [14]) that the lower central series
'™ of normal subgroups of the free group I are defined recursively by setting
'Y =T and I'™*Y = [I'™, T']. The quotients groups H, = I'™/T"+1) are
Abelian. H; is the homology group of the graph, i.e the abelianized image
of the fundamental group. By Witt’s formula (Cf theorem 5-11 in [10]), H,,
we will refer to as the homology group of class n, is a free Abelian group
with d,, = %Zd‘n u(d)r™?® generators, p denoting the Moebius function. In

particular, d; =7, dy = T(T;U, and ds = TBB_T.

The quotient group I'/T™*Y is the free nilpotent group of class n, with
r generators (obtained by imposing that all iterated commutators of order
n + 1 vanish).

Each element u of '™ projects on an element h,(u) of H,. which depends
only on the conjugacy class of u, as h,(ujus) = hy,(u1) + hy(uz) .

We can now define the degree d(vy) of a geodesic loop v as the highest index
n such that the associated conjugacy class is included in T, h(v) denotes

the corresponding element of Hy.. Note that h,(vy) vanishes for n < d().

3 Discrete signatures

Given a root vertex z, a spanning tree 7" and an orientation e; of the of the
r = |E| —|X|+1 edges +e; not included in 7', the elements ~,,(e;) denoted
7; generate the free group I'y,.



Each group element ¢ (except the neutral element) can be expressed uniquely
by a reduced word 77'y72...y5™, m being a positive integer and the n; a m-
tuple of non zero integers (reduced means that consecutive j’s are distinct).
Each conjugacy class, or equivalently geodesic loop, is represented uniquely
by a class of cyclically reduced words equivalent under the shift (cyclically
reduced means reduced, and that either j; # j,,, either that j; = j,, and
sgn(ny) = sgn(ny)).

Following the definition given in corollary 5-19 of [10], we will associate to
such a goup element the formal series S(g) = n§=1 e"i%ii | the X;’s being
non-commuting symbols.

By analogy with the definition of Chen [2], extended to bounded variation
paths in [3], and in the theory of rough paths, we say that S(g) is the signature
of g. Note that the connection with this notion becomes more visible if one
lifts the geodesic based loop to a geodesic (I.e. non backtracking) path of
the universal Abelian cover, which is a lattice. Shift invariance becomes
invariance under Verwaat transformation.

We denote by £ the free Lie algebra (Cf [10], section 5-6 or [14] Section 0-2
) generated by the X;’s. It is the space of formal series whose homogeneous
terms of all degrees are Lie polynomials.

Let us start by recalling a few fundamental properties proved in [10] and
14))

Proposition 1

a) S(g9192) = S(91)5(g2)
b) log(S(g)) belongs to £.

c) The sum of the terms of lowest degree in S(g) — 1 and in log(S(g)),
denoted Py(X) are equal, and their degree is d(g). P, is a homogeneous
Lie polynomial of degree d(g).

d) For any word w composed of the non-commuting symbols X;, denoting
by L the shuffle product of words (Cf [14], section 1-4), and {S(g),u)
the coeficient of u in S(g),

(5(91)5(g2), u) = Z (S(g1)ur) (S(g2), uz)-

u1,u2, ulluz=u

Remark 1 It follows easily from the above proposition that Py-1(X) = —Py(X)
(as S(g)S(¢g™") = 1 and that P,(X) and d(g) depends only on the conjugacy
class C(g) .



If v is a geodesic loop, we denote by P, the Lie polynomial defined by
the associated conjugacy class. If [ is a loop, we denote by P, the polynomial
P and its degree d(19) by d(l). h(19) will be denoted h(l) and for n < d(1),
hy,(19) will be denoted h,(1).

As in [7], we denote by N.(l), e € E°, the oriented edge occupation field
defined by a loop | and by N.(L) = >}, Ne(l) the field defined by a set of
loops L. It counts the total number of traversals of e and therefore verifies
the Fulerian property: We set Nx,y = Ny — Ny One checks easily from
the Eulerian property that for any choice of spanning tree and outside edges
orientation, NV is determined by the r integers N., we will simply denote by
]\\71'.

Then we have:

Proposition 2
a)d(l) > 1 iff Ny(I) =0 for all 1 <i <r.
b) Ifd(l) =1, P =3, e, Ni(1) X,

¢) If d(l) = 1, hy(l) = X iey Ni(Dha (7).

It

Proof. Note that N;(I) = N;(19). Then compute the non constant term of
degree 1 in S(19) and hy(l) = hy(l9) using the decomposition of the signature
in a product of exponentials stemming from the decomposition of {9 by a
cyclically reduced word. m

For [. any based loop, we denote by Ne)e(),...em)(l.) the number of
increasing m-tuples of times at which /. crosses the m-tuple oriented edges
e(1)...e(m) successively. Denote by N; j the number Ne, o, +N_¢, —¢;—Ne, —c; —
N_¢; ;- Then:

Proposition 3

a) If hi(l) vanishes (i.e. if d(1) = 2), and if I is any based loop representing
l

the loop 1, N”( ) - N (1) is independent of the base point and
d(l)>2iﬁNm() N;i(l) =0 foralll1 <i<j<
b) If d(l) = 2, Pi = 5 Xy ciejer (Nig (1) = Nya(D)[X3, X

¢) If d(l) = 2, ha(l) = %ZKKKAN@-JU) — Nji()ha ([, 7))



Proof. Let [. be a loop based at x( representing [ and 9 be the associated
geodesic based loop, defining an element « of I';,. Using the decomposition
of the signature in a product of exponentials, we get that the sum of the
terms of degree < 2 in S() equals:

L Yicier NilDXi 4§ Doy s(Ni(D(Ne, (1) = 1) + N, (DN, (1) = 1) -
2N, (DN, (1 ))X2+Zlgz<j<r(N (XX + Ny (0 X5X0) + 5 e, (N, (1) +
N_..(1))X? (the second and third sum come from the products of terms of
degree one in two exponentials and the last sum from the terms of degree
two in one exponential )

=1 B Ni)Xi + 5[S i, NiDXP + 5 By (N (DX, X1+
N;:(D)[X;,X;)], denoting X;X; — X;X; by [Xl,X] Note also that the
terms of degree < 2 in log(S(7)) are Zl<z<7‘N X + 3 21<2<J<7~(Nm(l) —

](fjﬂ-(l)))[XiX ;]. a) and b) follow directly, by remark 1. Then c) follows from
theorem 5-12 in [10] and its corollary. m

Remark: More generally, we can define

ep=1,1<k<
Then, if d(l) = m, it follows directly from its definition that:

P = Z Ni),i2),....itm) (1) Xs1) Xi2) - Xigm)
§(1),0(2) i (m)

for any representative I. of [, Moreover from theorem 1-4 in[14] (or in theorem
5-17 in [10] ) this last expression can be rewritten as follows:

Proposition 4

1 -
— E (Ni(1),i2),....itm) (1) =Ni2),i(1),i3),..im) E - [ Xy, Xi2) )1 Xigmy |-
m A .

(1) <i(2),4(3) ()

This gives a non self-contained proof of proposition 3. In general, this expres-
sion can be further modified to get a decomposition in any specific basis of



the free Lie algebra (cf [14], chapter 4). Then it follows that its coefficients
which are linear combinations of N's depend only on [, as Nz, and Nz g if
d(l) > 1.
For example, if d(1) = 3, using Jacobi 1dent1ty, we get that [[Xk, X, ]X | =
(16, X X6] = [[X5, Xe] X, Hence Py =33, ([(Ni = Ny = Nia +

Vot DX XX+ (N N = N+ Nog WO [0, X Xil)+5 B [Nigim
JZ](Z)[[Xj’Xi]Xi]' Morevover, as N~(l) =0, Nijr + lej + szk =
Nzk =0 and as N, (l) 0, NjkZ + N;“] + Nkﬂ = O Therefore:

= 5 Zicj=r[( Njirt 2N | (D [IXG, X Xe 412N i N ) (DG, X ) X))+
%Z i Niga (DX, Xi]X5).

N
N,

4 Loop measures and homotopies distribu-
tion.

Following [7], we attach a positive conductance C, to each edge e € E and
a killing rate k, to each vertex x € X, then, denoting A a set of r oriented
edges define the duality measure A\, = Kk, + Zy Cay

Cay
Az

and the A-symmetric transition matrix P = , PX = kzA;. The energy

functional is:
= Sl @) = W) + Y f (@)

and the associated Green function is denoted by G.

We define a measure p on (discrete time, unbased) loops:

i) = mullt(l) H <P:+_)mult(l)'

edges of [

Here mult(l) denotes the multiplicity of the loop . Note that

|ul = u(1) = —log(det(I — P))

Note that this measure is induced by the restriction to non-trivial discrete
loops of the measure >, _. SOO LPy*M\.dt defined on continuous time based
loops, P} being the non- normahzed bridge measure defined by the transi-
tion semigroup exp(t[I — P]) associated with the energy functional (Cf [7]).
It is the discrete space version of the loop measure defined by Lawler and
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Werner ([6] and Symanzik ([16] ).

We denote by L, the Poisson point process of intensity au. The ensemble
L, can be decomposed into independent sets of loops of distinct homotopies:
For any geodesic loop 7, the number of loops | € £, such that 9 = v is a
Poisson variable of parameter ..
In the case of the regular graphs with unit conductances and constant k, a
simple expression of /1, was obtained in [12]:

Proposition 5 If G is a d-reqular graph, with C, = 1, k constant, for any
closed geodesic vy, the number of loops homotopic to v is a Poisson r.v. of
expectation:

v
1 d+ kK 4(d -1
= () (2(d I G Y @2))

In particular, for k =0, p, = m(d —1)=h

Remark: If k = % +u(d—1)—d, the associated generating function Zw ullp,
coincides with the logarithm of Thara’s zeta function (Cf [15], [4] [7]).

1
hl — _ oo B 25
; multw)u” = log(¢rn(u)) = —log[(1 — w*) X det(I —uA + u(d—1)I)]
where A denotes the adjacency matrix and x the Euler number |E| — | X| of

the graph.

This result follow from a more general one: If (z,y) is an edge, let us
denote r*¥ the probability that the Markov chain starting at y returns to y
following a tree-contour subloop without visiting = at the first step. Note
that:

0
Ty _ Yy pz Y,z n
DN DN
ZF#T n=0

Set p®¥ = > [r®¥]". We get the following:

n=0

Proposition 6 If v varies in the set of geodesic loops (conjugacy classes),
{l € L, 19 = ~}| are independent Poisson r.v. with mean values

e— e~ ,eT\mult(y)
( Ly )

edges of ~y

1
mult(y)

M~y =

7



and

P =1+ ) PYpP P gt
ZFT

If G is a d-regular graph, with C, = 1, k constant, it is clear that the ¥ are
all equal to the same return probability to the root of a half- d-regular tree.
We then get from the previous equations that

(d+ k)2
2s(d—1)

A(d — 1)
@+

x?y 3

(1—4/1-

and recover the result of [12].

This argument is close to the proof of Thara’s formula in [15].

The corresponding generalization of Thara’s formula is given in [1]. A differ-
ent generalization was given in [17].

Let us now consider the distribution of the number of loops homotopic
to a point; It is obviously a Poisson distribution of parameter — In(det(I —
P) - Z'y Fy-

To compute this quantity, let us now denote r*¥* the probability that the
Markov chain starting at y returns to y for the first time in 2k steps following
a tree-contour subloop without visiting = at the first step. Set r*¥(s) =

Srtvksh Set pmY(s) = Y0 [r™Y(s)|"

Note that:
r*Y(s) =s Z Pj’Pyzpy’Z(s)
ZF#T

and that p™¥(s) satisfies the relation:

FU(s) = 1+ 5 3 PYpU=(s) Pip™(s).
ZFT

Let us now denote 7** the probability that the Markov chain starting at
x returns to x for the first time in 2k steps following a tree-contour subloop.
Set r*(s) = >.r®*sk Note that:

re(s) = SZP;prx’y(s).

Y

Let denote p®* the probability that the Markov chain starting at x re-
turns to « in 2k steps following a tree-contour subloop. Set p”(s) = >, p™*s"

and note that: p®(s) = #T(s)



The number of loops of £ homotopic to a point is a Poisson r.v. with expec-
tation >, D0 s=p™ksk =3 S(l) P (25271 ds.

If G is a d-regular graph, with C, = 1, k constant, it is clear that p™¥(s)
and p”(s) are constants in the edge or vertex variables. We get from the
previous equations that

(d + k)?

eyl 4s(d —1)
P @>—§;Ejﬁ' AV

SV s ER

and

2d —1)

B 4s(d—1)
d—=2+d\/1 - G57)
From the expression of p*, by an elementary integration, we finally deduce

that:

p*(s)

Proposition 7 If G is a d-reqular graph, with C. = 1, k constant, the num-
ber of loops homotopic to a point is a Poisson r.v. of expectation

X|(§ (log(2) — log(b + 1)) + (d — 2)(log(b + “—2) ~ log(1 + —2)))

d
with b= /1 - 4555
In particular, for k = 0, this is equal to: (d — 2)log(d — 2) + d/2)log(d) —
(d—2+d/2)log(d —1).

5 Homology and holonomies distributions

The loops L, can also be classified into independent sets of loops £ ac-
cording to their degrees d(19). For each degree d, we can try to determine
the distribution of the sum of the homologies of the loops of degree d and
the distribution of the number of loops of given d-th homology,

In this section, we recall and complete the results obtained in [7], [9], and
[11], which solve the problem for d = 1.
Define 7] , = 1 +—1

T a— +.
T=e; y=e;] !

J

Denoting by P the matrix P;e%ﬁ L0y we have (see [7]):

y:e;,x:e

f(ezi VEIRNW8 1)) = — log(det(T — PO).
Hence for any (j;) € Z", using an inverse Fourier transform, we have:
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Proposition 8 |{l € Lo, N;(l) = j;, i = 1...r}| are independent Poisson r.v.
with expectations:

ap({l, N;(1) = ji, i=1..r}) = —af log(det(I—PD)) [ [e > ""7%db;.
[0,1]" i=1

Remarks:
- Consequently, the distribution of the homology field defined by L, is:

~ o det(I — P) T o106,
P N == ; = 1 = —_— a »JiVi .
( z(£a> Jiy T T) £071]r [det([ — P(@))])] | | € d@l

=1

- An intrinsic, but less explicit, expression ( not relying on the choice of the
spanning tree) is given in [9]. It involves the evaluation of a discrete differen-
tial form (Cf [7], section 1-5) on the loop. The Fourier integration is done on
the Jacobian torus ([5]), i.e. the quotient of the space of harmonic one-forms
H'(G,R) (i.e. the space of one-forms w such that >} C,,w™ = 0) for all
r € X by H'(G,Z) the space of harmonic one-forms with Z-valued integrals
on loops. The Lebegue measure is normalized by its volume which is equal
to y/det(J), with J;; = 6; jCe, — C¢; Ko, 0, Ce,, for 1 < i,j < r, K denoting
the transfer matrix: K5 = Ge+ j+ + Ge- - — Get - — G- .

- For a = 1, an alternative expression (without inverse Fourier transform) is
given in section 3 of [8].

To try to to solve the problem for higher values of d, in particular for
d = 2, we need to recall more results.

For the fundamental groups I', morphisms in a group G are obtained
from maps A, assigning to each oriented edge e an element Ale| in G with
Al—e] = Ale]™.

A path, in particular a based loop, is mapped to the product of the images by
A of its oriented edges and the associated loop [ to the conjugacy class of this
product, i.e. the holonomy of [, is denoted H(l). Moreover H4(l) = Ha(l9)

A gauge equivalence relation between assignment maps is defined as fol-
lows: A; ~ A, iff there exists (): X — G such that:

Asle] = Q(e*)As[e] Q7 ()

Equivalence classes are GG-connexions. They define G- Galois coverings of G
(cf [11]). Obviously, holonomies depend only on connections.

10



Given a spanning tree T, there exists a unique AT ~ A such that AT[e] =T
for every edge e of T'.

For any unitary representation 7 of G, denote . (C') the normalized trace of
the image by 7 of any element in the conjugacy class C.

Recall that free groups are conjugacy separable: Two conjugacy classes are
separated by a morphism in some finite group.

Conjugate separability implies that if we consider all unitary representa-
tions of finite groups and all connections, the holonomies determine the
geodesic loop (i.e. the conjugacy class of I') defined by I. The functions
v +— Xx(Ha(7v)) span an algebra and separate geodesic loops.

Fix now a finite group G, and let R denote the set of irreducible unitary
representations of G.
Define an extended transition matrix P4™ with indices in X x {1, 2, ... dim(7)}
by [PA’”];E:;- = Pr[n(A[(z,y)])];- Then the following proposition follows
directly from the expression of the based loop measure inducing p (see [7]):

Proposition 9

S (HA(D)lD) = =g Tog(det( = PA<)
l

Remarks:
- This result extends to compact groups.
- For any unitary representation 7, choose, for any oriented edge e;, an
Hermitian matrix H;F), such that exp[\/le;w)] = m[A(e;)]. Then, for any
based loop representative of [, denoted [., the holonomy can be expressed as
the normalized trace of the signature series acting on the matrices H ;ﬂ) in
place of the X;’s:

1

Xx(Ha(l)) = dim—(mTT(S(lfL])[Hj, I1<j<r]

- It follows from this proposition and group representation theory (Cf for
example [18]) that |{l € L,, Ha(l) = C}| are independent Poisson r.v. with
expectations:

]

ap({l, Ha(l) = C}) = —a > XW(C)@dim(ﬂ) log(det(I — PA7Y).
TER
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6 Nilpotent holonomy and homology of class
two

Let us now consider the case where G is the free nilpotent group of class two
based on the field Z, = Z/pZ, for some prime number p. This group can be
defined as follows:

G = {(a,c), a € Zy,ce [Z;]**}, with product :

(a,¢)-(d,d)=(a+d,c+d+(a®d —d ®a)).

Associativity is checked easily. The neutral element is (0,0), and (a,c)™! =

(—a,—c).

For any (r,r) skew-symetric matrix h; ; with coeficients in Z,, a unitary
representation Uy, of G on the space V., of functions on Zj is defined as

follows: -

Un(a, cppla) = e ™5 EDH@D e 4y q)

with (¢, h) = X1 icjep hijCig, (ha)i = 201 <j, higaj and Ca, ) = X5 o, ai;

(note that {a ® a’ — a’ ® a, hy = {a’, h - a)). This is similar to the Schrodinger

representation of the Heisenberg group.

dim(V;,) = p" and an orthonormal base of V,., is given by products of ex-
/=1 s

ponentials ¥, . (L, ...l;) = e 7 Lisier i with 0 < I; < p. We can check

w1
that the normalized trace xy, ((a,c)) = 1{a:0}€2 )

Consider the G-connection A defined by assigning to each edge ¢;, i €
{1, ...r} the element (v;,0), v; being the i-th element of the canonical base of
RT‘

Then if . is any based loop in [, (Nfl(l), Nw(l) - ]\ij,(l)) is a representa-
i i — 2 Yi<i<j<r Ni,j(l)hm
tive of H4(l) in G and xu, (Ha(l)) = 1y 5,020, viy€ * Si<is .
By the previous proposition, >, xu, (Ha(l)p(l) = —#log(det(l — PAURY),
Hence, for any (r,7) skew-symetric matrix w;; with coeficients in [0, 1),
Ty — <i<'<rﬁei,e- Du; _ A/ — U
21V =11 <icj< ;O () = Z{l, . 2m/=1¢ha (1) >p(l)

Z{l, Ni(1)=0, vi} € n=0y €
= limyrop —# log(det(I — PAVr@n), taking for h(u,p);; the integral part of
Ui,jp-

Proposition 10 [{l € . sz(l) =m;j, 1 <i<j<r}| are independent

12



Poisson r.v. with expectations:

oz,u({l, Nz,](l) = mi7j, 1 < 7 < j < ’I"}) = —CVJ[ ]T(Til) F(u) HG_QW\/?lmi’jui’jdui’j.
0,1

7:7j

with F(u) = limyye 1% log(det(I — PAhwp)Y),

Remarks:
- The inverse Fourier transfom can also be performed before taking the limit
ploo
- As before, a more intrinsic formulation can be given using a couple of
harmonic discrete differential forms and an integration on the product of two
Jacobian tori. - The distribution of the homology field of class 2 hg(ﬁg}))
can then be derived straightforwardly in the same way as the distribution of
hi(Lea)-
- The distributions of higher order homologies are likely to be obtained in a
similar way, using representations of nilpotent groups of higher class.
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