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On discrete loop signatures and Markov loops
topology

Yves Le Jan

August 11, 2019

Abstract

Our purpose is to explore, in the context of loop ensembles on fi-
nite graphs, the relations between combinatorial group theory, loops
topology, loop measures, and signatures of discrete paths. We deter-
mine the distributions of the loop homotopy class, and of the first and
second homologies, defined by the lower central series of the funda-
mental group. This last result has yet to be extended to higher order
homologies.

1 Geodesic loops and fundamental group for

graphs

We consider a finite connected graph G, denoting by X the set of vertices
and by Eo the set of oriented edges.
The extremities of an oriented edge e are denoted pe´, e`q. The opposite
oriented edge is denoted ´e.
Recall that on graphs, geodesics paths are defined as non backtracking paths:
px0, x1, ..., xnq with txi, xi`1u in E and xi´1 ‰ xi`1. Based loops at x are
paths from x to x. We say they are tailless if their first edge and the op-
posite of their last edge differ. Loops are equivalence classes of based loops
under the shift. Geodesic loops are defined as equivalence classes of non
backtracking tailless based loops under the shift.
For each choice of a base vertex x, the fundamental group (Cf [13] ) Γx is
defined by geodesics from x to x. The composition rule is concatenation
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followed by erasure of backtracking subarcs. These groups are all isomorphic
to the free group Γ with r “ |E| ´ |X| ` 1 generators, in a non canonical
way. However, geodesic (unrooted) loops are in canonical bijection with the
conjugacy classes of any Γx.
The isomorphisms between different Γx’s, as well as a set of generators for
the free group, can be defined by the choice of a spanning tree T of the graph.
To each oriented edge α “ pa, bq outside the spanning tree we associate the
element γxpαq of Γx defined by the based loop obtained by concatenation
of the geodesic from x to α´ in T , α, and the geodesic from α` to x in T .
Note that γxp´αq is the inverse of γxpαq. Finally recall that each loop l is
homotopic to a unique geodesic loop lg, obtained by removing from the loop
all its subtrees. The same holds for based loops (but in this case the tail is
not removed).

2 The lower central series

Recall (see section 5-3 in [10], section 6-4 in [14]) that the lower central series
Γpnq of normal subgroups of the free group Γ are defined recursively by setting
Γp1q “ Γ and Γpn`1q “ rΓpnq,Γs. The quotients groups Hn “ Γpnq{Γpn`1q are
Abelian. H1 is the homology group of the graph, i.e the abelianized image
of the fundamental group. By Witt’s formula (Cf theorem 5-11 in [10]), Hn,
we will refer to as the homology group of class n, is a free Abelian group
with dn “

1
n

ř

d|n µpdqr
n{d generators, µ denoting the Moebius function. In

particular, d1 “ r, d2 “
rpr´1q

2
, and d3 “

r3´r
3

.

The quotient group Γ{Γpn`1q is the free nilpotent group of class n, with
r generators (obtained by imposing that all iterated commutators of order
n` 1 vanish).
Each element u of Γpnq projects on an element hnpuq of Hn. which depends
only on the conjugacy class of u, as hnpu1u2q “ hnpu1q ` hnpu2q .
We can now define the degree dpγq of a geodesic loop γ as the highest index
n such that the associated conjugacy class is included in Γpnq. hpγq denotes
the corresponding element of Hdpγq. Note that hnpγq vanishes for n ă dpγq.

3 Discrete signatures

Given a root vertex x0, a spanning tree T and an orientation ej of the of the
r “ |E| ´ |X| ` 1 edges ˘ej not included in T , the elements γx0pejq denoted
γj generate the free group Γx0 .
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Each group element g (except the neutral element) can be expressed uniquely
by a reduced word γn1

j1
γn2
j2
...γnmjl , m being a positive integer and the ni a m-

tuple of non zero integers (reduced means that consecutive j’s are distinct).
Each conjugacy class, or equivalently geodesic loop, is represented uniquely
by a class of cyclically reduced words equivalent under the shift (cyclically
reduced means reduced, and that either j1 ‰ jm, either that j1 “ jm and
sgnpn1q “ sgnpnmq).
Following the definition given in corollary 5-19 of [10], we will associate to
such a goup element the formal series Spgq “

śl
i“1 e

njiXji , the Xj’s being
non-commuting symbols.
By analogy with the definition of Chen [2], extended to bounded variation
paths in [3], and in the theory of rough paths, we say that Spgq is the signature
of g. Note that the connection with this notion becomes more visible if one
lifts the geodesic based loop to a geodesic (I.e. non backtracking) path of
the universal Abelian cover, which is a lattice. Shift invariance becomes
invariance under Verwaat transformation.
We denote by L the free Lie algebra (Cf [10], section 5-6 or [14] Section 0-2
) generated by the Xj’s. It is the space of formal series whose homogeneous
terms of all degrees are Lie polynomials.
Let us start by recalling a few fundamental properties proved in [10] and
[14]) :

Proposition 1

a) Spg1g2q “ Spg1qSpg2q

b) logpSpgqq belongs to L.

c) The sum of the terms of lowest degree in Spgq ´ 1 and in logpSpgqq,
denoted PgpXq are equal, and their degree is dpgq. Pg is a homogeneous
Lie polynomial of degree dpgq.

d) For any word u composed of the non-commuting symbols Xj, denoting
by � the shuffle product of words (Cf [14], section 1-4), and xSpgq, uy
the coeficient of u in Spgq,

xSpg1qSpg2q, uy “
ÿ

u1,u2, u1�u2“u

xSpg1qu1y xSpg2q, u2y.

Remark 1 It follows easily from the above proposition that Pg´1pXq “ ´PgpXq
(as SpgqSpg´1q “ 1 and that PgpXq and dpgq depends only on the conjugacy
class Cpgq .
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If γ is a geodesic loop, we denote by Pγ the Lie polynomial defined by
the associated conjugacy class. If l is a loop, we denote by Pl the polynomial
Plg and its degree dplgq by dplq. hplgq will be denoted hplq and for n ď dplq,
hnpl

gq will be denoted hnplq.

As in [7], we denote by Neplq, e P E
o, the oriented edge occupation field

defined by a loop l and by NepLq “
ř

lPLNeplq the field defined by a set of
loops L. It counts the total number of traversals of e and therefore verifies
the Eulerian property: We set qNx,y “ Nx,y ´ Ny,x. One checks easily from
the Eulerian property that for any choice of spanning tree and outside edges
orientation, qN is determined by the r integers qNei we will simply denote by
qNi.
Then we have:

Proposition 2

a) dplq ą 1 iff qNiplq “ 0 for all 1 ď i ď r.

b) If dplq “ 1, Pl “
ř

1ďiďr
qNiplqXi.

c) If dplq ě 1, h1plq “
ř

1ďiďr
qNiplqh1pγiq.

Proof. Note that qNiplq “ qNipl
gq. Then compute the non constant term of

degree 1 in Splgq and h1plq “ h1pl
gq using the decomposition of the signature

in a product of exponentials stemming from the decomposition of lg by a
cyclically reduced word.

For l¨ any based loop, we denote by Nep1q,ep2q,...,epmqpl.q the number of
increasing m-tuples of times at which l¨ crosses the m-tuple oriented edges
ep1q...epmq successively. Denote by qNi,j the numberNei,ej`N´ei,´ej´Nei,´ej´

N´ei,ej . Then:

Proposition 3

a) If h1plq vanishes (i.e. if dplq ě 2), and if l. is any based loop representing

the loop l, qNi,jpl.q ´ qNj,ipl.q is independent of the base point and

dplq ą 2 iff qNi,jplq ´ qNj,iplq “ 0 for all 1 ď i ă j ď r.

b) If dplq “ 2, Pl “
1
2

ř

1ďiăjďrp
qNi,jplq ´ qNj,iplqqrXi, Xjs.

c) If dplq ě 2, h2plq “
1
2

ř

1ďiăjďrp
qNi,jplq ´ qNj,iplqqh2prγi, γjsq.
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Proof. Let l¨ be a loop based at x0 representing l and lg¨ be the associated
geodesic based loop, defining an element γ of Γx0 . Using the decomposition
of the signature in a product of exponentials, we get that the sum of the
terms of degree ď 2 in Spγq equals:

1`
ř

1ďiďr
qNiplqXi`

1
2

ř

1ďiďr
1
2
pNiplqpNeiplq´1q`N´eiplqpN´eiplq´1q´

2NeiplqN´eiplqqX
2
i `

ř

1ďiăjďrp
qNi,jplqXiXj` qNi,jplqXjXiq`

1
2

ř

1ďiďrpNeiplq`

N´eiplqqX
2
i (the second and third sum come from the products of terms of

degree one in two exponentials and the last sum from the terms of degree
two in one exponential )

“ 1`
ř

1ďiďr
qNiplqXi`

1
2
r
ř

1ďiďr
qNiplqXis

2` 1
2

ř

1ďiăjďrp
qNi,jplqrXi, Xjs`

qNj,iplqrXj, Xiqs, denoting XiXj ´ XjXi by rXi, Xjs. Note also that the

terms of degree ď 2 in logpSpγqq are
ř

1ďiďr
qNiplqXi `

1
2

ř

1ďiăjďrp
qNi,jplq ´

qNj,iplqqqrXiXjs. a) and b) follow directly, by remark 1. Then c) follows from
theorem 5-12 in [10] and its corollary.

Remark: More generally, we can define

qNip1q,ip2q,...,ipmqpl¨q “
ÿ

εk“˘,1ďkďm

m
ź

k“1

εk Nε1eip1q,ε2eip2q,...,εmeipmq .

Then, if dplq “ m, it follows directly from its definition that:

Pl “
ÿ

ip1q,ip2q,...,ipmq

qNip1q,ip2q,...,ipmqpl¨qXip1qXip2q...Xipmq

for any representative l¨ of l, Moreover from theorem 1-4 in[14] (or in theorem
5-17 in [10] ) this last expression can be rewritten as follows:

Proposition 4

Pl “
1

m

ÿ

ip1q,ip2q,...,ipmq

qNip1q,ip2q,...,ipmqpl¨qrr...rXip1q, Xip2qs...sXipmqs.

Remark: Equivalently, Pl equals:

1

m

ÿ

ip1qăip2q,ip3q,...,ipmq

p qNip1q,ip2q,...,ipmqpl¨q´ qNip2q,ip1q,ip3q,...,ipmqpl¨qqrr...rXip1q, Xip2qs...sXipmqs.

This gives a non self-contained proof of proposition 3. In general, this expres-
sion can be further modified to get a decomposition in any specific basis of
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the free Lie algebra (cf [14], chapter 4). Then it follows that its coefficients

which are linear combinations of qN ’s depend only on l, as qNi, and qNi,j if
dplq ą 1.

For example, if dplq “ 3, using Jacobi identity, we get that rrXk, XisXjs “

´rrXi, XjsXks´ rrXj, XksXis. Hence Pl “
1
3

ř

iăjăkprp
qNi,j,k´ qNj,i,k´ qNk,i,j `

qNi,k,jsplqrrXi, XjsXks`rp qNj,k,i´ qNk,j,i´ qNk,i,j` qNi,k,jsplqrrXj, XksXisq`
1
3

ř

i‰jr
qNi,j,i´

qN sj,i,isplqrrXj, XisXis. Morevover, as qNjplq “ 0, qNi,j,k ` qNi,k,j ` qNj,i,k “

qNj
qNi,k “ 0 and as qNjplq “ 0, qNj,k,i ` qNk,i,j ` qNk,j,i “ 0. Therefore:

Pl “
1
3

ř

iăjăkprp
qNj,i,k`2 qNk,i,jsplqrrXj, XisXks`rp2 qNj,k,i` qNi,k,jsplqrrXj, XksXisq`

2
3

ř

i‰j
qNi,j,iplqrrXj, XisXjs.

4 Loop measures and homotopies distribu-

tion.

Following [7], we attach a positive conductance Ce to each edge e P E and
a killing rate κx to each vertex x P X, then, denoting Λ a set of r oriented
edges define the duality measure λx “ κx `

ř

y Cx,y

and the λ-symmetric transition matrix P x
y “

Cx,y
λx

, P x
∆ “ κxλx. The energy

functional is:

εpf, fq “
1

2

ÿ

x,y

Cx,ypfpxq ´ fpyqq
2
`
ÿ

x

κxfpxq
2

and the associated Green function is denoted by G.

We define a measure µ on (discrete time, unbased) loops:

µplq “
1

multplq

ź

edges of l

´

P e´

e`

¯multplq

.

Here multplq denotes the multiplicity of the loop l. Note that

|µ| “ µp1q “ ´ logpdetpI ´ P qq

Note that this measure is induced by the restriction to non-trivial discrete
loops of the measure

ř

xPX

ş8

0
1
t
Px,xt λxdt defined on continuous time based

loops, Px,xt being the non-normalized bridge measure defined by the transi-
tion semigroup expptrI ´ P sq associated with the energy functional (Cf [7]).
It is the discrete space version of the loop measure defined by Lawler and
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Werner ([6] and Symanzik ([16] ).

We denote by Lα the Poisson point process of intensity αµ. The ensemble
Lα can be decomposed into independent sets of loops of distinct homotopies:
For any geodesic loop γ, the number of loops l P Lα such that lg “ γ is a
Poisson variable of parameter µγ.
In the case of the regular graphs with unit conductances and constant κ, a
simple expression of µγ was obtained in [12]:

Proposition 5 If G is a d-regular graph, with Ce “ 1, κ constant, for any
closed geodesic γ, the number of loops homotopic to γ is a Poisson r.v. of
expectation:

µγ “
1

multpγq

˜

d` κ

2pd´ 1q
p1´

d

1´
4pd´ 1q

pd` κq2
q

¸|γ|

In particular, for κ “ 0, µγ “
1

mult pγq
pd´ 1q´|γ|

Remark: If κ “ 1
u
`upd´1q´d, the associated generating function

ř

γ u
|γ|µγ

coincides with the logarithm of Ihara’s zeta function (Cf [15], [4] [7]).

ÿ

γ

1

multpγq
u|γ| “ logpζIhpuqq “ ´ logrp1´ u2

q
´χ detpI ´ uA` u2

pd´ 1qIqs

where A denotes the adjacency matrix and χ the Euler number |E| ´ |X| of
the graph.

This result follow from a more general one: If px, yq is an edge, let us
denote rx,y the probability that the Markov chain starting at y returns to y
following a tree-contour subloop without visiting x at the first step. Note
that:

rx,y “
ÿ

z‰x

P y
z P

z
y

8
ÿ

n“0

rry,zsn

Set ρx,y “
ř8

n“0rr
x,ysn. We get the following:

Proposition 6 If γ varies in the set of geodesic loops (conjugacy classes),
|tl P L, lg “ γu| are independent Poisson r.v. with mean values

µγ “
1

multpγq
p

ź

edges of γ

P e´
e` ρ

e´,e`
q
multpγq
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and

ρx,y “ 1`
ÿ

z‰x

P y
z ρ

y,zP z
y ρ

x,y

If G is a d-regular graph, with Ce “ 1, κ constant, it is clear that the rx,y are
all equal to the same return probability to the root of a half- d-regular tree.
We then get from the previous equations that

ρx,y “
pd` κq2

2spd´ 1q
p1´

d

1´
4pd´ 1q

pd` κq2
q

and recover the result of [12].
This argument is close to the proof of Ihara’s formula in [15].
The corresponding generalization of Ihara’s formula is given in [1]. A differ-
ent generalization was given in [17].

Let us now consider the distribution of the number of loops homotopic
to a point; It is obviously a Poisson distribution of parameter ´ lnpdetpI ´
P q ´

ř

γ µγ.

To compute this quantity, let us now denote rx,y,k the probability that the
Markov chain starting at y returns to y for the first time in 2k steps following
a tree-contour subloop without visiting x at the first step. Set rx,ypsq “
ř

rx,y,ksk. Set ρx,ypsq “
ř8

n“0rr
x,ypsqsn

Note that:
rx,ypsq “ s

ÿ

z‰x

P y
z P

z
y ρ

y,z
psq

and that ρx,ypsq satisfies the relation:

ρx,ypsq “ 1` s
ÿ

z‰x

P y
z ρ

y,z
psqP z

y ρ
x,y
psq.

Let us now denote rx,k the probability that the Markov chain starting at
x returns to x for the first time in 2k steps following a tree-contour subloop.
Set rxpsq “

ř

rx,ksk Note that:

rxpsq “ s
ÿ

y

P x
y P

y
x ρ

x,y
psq.

Let denote ρx,k the probability that the Markov chain starting at x re-
turns to x in 2k steps following a tree-contour subloop. Set ρxpsq “

ř8

0 ρ
x,ksk

and note that: ρxpsq “ 1
1´rxpsq

.

8



The number of loops of L homotopic to a point is a Poisson r.v. with expec-
tation

ř

x

ř8

0
1
2k
ρx,ksk “

ř

x

ş1

0
ρxpsq´1

2s
ds.

If G is a d-regular graph, with Ce “ 1, κ constant, it is clear that ρx,ypsq
and ρxpsq are constants in the edge or vertex variables. We get from the
previous equations that

ρx,ypsq “
pd` κq2

2spd´ 1q
p1´

d

1´
4spd´ 1q

pd` κq2
q and

ρxpsq “
2pd´ 1q

d´ 2` d
b

1´ 4spd´1q
pd`κq2

q

.

From the expression of ρx, by an elementary integration, we finally deduce

that:

Proposition 7 If G is a d-regular graph, with Ce “ 1, κ constant, the num-
ber of loops homotopic to a point is a Poisson r.v. of expectation

|X|p
d

2
plogp2q ´ logpb` 1qq ` pd´ 2qplogpb`

d´ 2

d
q ´ logp1`

d´ 2

d
qqq

with b “
b

1´ 4 d´1
pd`κq2

.

In particular, for κ “ 0, this is equal to: pd ´ 2q logpd ´ 2q ` d{2q logpdq ´
pd´ 2` d{2q logpd´ 1q.

5 Homology and holonomies distributions

The loops Lα can also be classified into independent sets of loops Lpdqα ac-
cording to their degrees dplgq. For each degree d, we can try to determine
the distribution of the sum of the homologies of the loops of degree d and
the distribution of the number of loops of given d-th homology,

In this section, we recall and complete the results obtained in [7], [9], and
[11], which solve the problem for d “ 1.

Define ηjx,y “ 1x“e´j ,y“e
`
j
´ 1y“e´j ,x“e

`
j

.

Denoting by P pθq the matrix P x
y e

2π
?
´1

ř

θiη
i
x,y , we have (see [7]):

ż

pe
ř

i

?
´1π qNiplqθi ´ 1qµpdlq “ ´ logpdetpI ´ P pθqq.

Hence for any pjiq P Zr, using an inverse Fourier transform, we have:
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Proposition 8 |tl P Lα, qNiplq “ ji, i “ 1...ru| are independent Poisson r.v.
with expectations:

αµptl, qNiplq “ ji, i “ 1...ruq “ ´α

ż

r0,1sr
logpdetpI´P pθqqq

r
ź

i“1

e´2π
?
´1 jiθidθi.

Remarks:
- Consequently, the distribution of the homology field defined by Lα is:

P p qNipLαq “ ji, i “ 1...rq “

ż

r0,1sr

„

detpI ´ P q

detpI ´ P pθqq
sq

α r
ź

i“1

e´2π
?
´1,jiθidθi

- An intrinsic, but less explicit, expression ( not relying on the choice of the
spanning tree) is given in [9]. It involves the evaluation of a discrete differen-
tial form (Cf [7], section 1-5) on the loop. The Fourier integration is done on
the Jacobian torus ([5]), i.e. the quotient of the space of harmonic one-forms
H1pG,Rq (i.e. the space of one-forms ω such that

ř

y Cx,yω
x,y “ 0) for all

x P X by H1pG,Zq the space of harmonic one-forms with Z-valued integrals
on loops. The Lebegue measure is normalized by its volume which is equal
to

a

detpJq, with Ji,j “ δi,jCei ´ CeiKei,ejCej , for 1 ď i, j ď r, K denoting
the transfer matrix: Ke,f “ Ge`,f` `Ge´,f´ ´Ge`,f´ ´Ge´,f` .
- For α “ 1, an alternative expression (without inverse Fourier transform) is
given in section 3 of [8].

To try to to solve the problem for higher values of d, in particular for
d “ 2, we need to recall more results.

For the fundamental groups Γx morphisms in a group G are obtained
from maps A, assigning to each oriented edge e an element Ares in G with
Ar´es “ Ares´1.
A path, in particular a based loop, is mapped to the product of the images by
A of its oriented edges and the associated loop l to the conjugacy class of this
product, i.e. the holonomy of l, is denoted HAplq. Moreover HAplq “ HApl

gq

A gauge equivalence relation between assignment maps is defined as fol-
lows: A1 „ A2 iff there exists Q: X ÞÑ G such that:

A2res “ Qpe`qA1resQ
´1
pe´q

Equivalence classes are G-connexions. They define G- Galois coverings of G
(cf [11]). Obviously, holonomies depend only on connections.
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Given a spanning tree T , there exists a unique AT „ A such that AT res “ I
for every edge e of T .
For any unitary representation π of G, denote χπpCq the normalized trace of
the image by π of any element in the conjugacy class C.
Recall that free groups are conjugacy separable: Two conjugacy classes are
separated by a morphism in some finite group.
Conjugate separability implies that if we consider all unitary representa-
tions of finite groups and all connections, the holonomies determine the
geodesic loop (i.e. the conjugacy class of Γ) defined by l. The functions
γ ÞÑ χπpHApγqq span an algebra and separate geodesic loops.

Fix now a finite group G, and let R denote the set of irreducible unitary
representations of G.
Define an extended transition matrix PA,π with indices inXˆt1, 2, ... dimpπqu
by rPA,πs

x,i
y,j “ P x

y rπpArpx, yqsqs
i
j. Then the following proposition follows

directly from the expression of the based loop measure inducing µ (see [7]):

Proposition 9

ÿ

l

χπpHAplqqµplq “ ´
1

dimpπq
logpdetpI ´ PA,π

qq

Remarks:
- This result extends to compact groups.
- For any unitary representation π, choose, for any oriented edge ej, an

Hermitian matrix H
pπq
j , such that expr

?
´1H

pπq
j s “ πrApejqs. Then, for any

based loop representative of l, denoted l¨, the holonomy can be expressed as
the normalized trace of the signature series acting on the matrices H

pπq
j in

place of the Xj’s:

χπpHAplqq “
1

dimpπq
TrpSplg¨ qrHj, 1 ď j ď rs.

- It follows from this proposition and group representation theory (Cf for
example [18]) that |tl P Lα, HAplq “ Cu| are independent Poisson r.v. with
expectations:

αµptl, HAplq “ Cuq “ ´α
ÿ

πPR
χπpCq

|C|

|G|
dimpπq logpdetpI ´ PA,π

qq.
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6 Nilpotent holonomy and homology of class

two

Let us now consider the case where G is the free nilpotent group of class two
based on the field Zp “ Z{pZ, for some prime number p. This group can be
defined as follows:

G “ tpa, cq, a P Zrp, c P rZrps^2u, with product :

pa, cq ¨ pa1, c1q “ pa` a1, c` c1 ` pab a1 ´ a1 b aqq.

Associativity is checked easily. The neutral element is p0, 0q, and pa, cq´1 “

p´a,´cq.

For any pr, rq skew-symetric matrix hi,j with coeficients in Zp, a unitary
representation Uh of G on the space Vr,p of functions on Zrp is defined as
follows:

Uhpa, cqψpxq “ e
2π
?
´1
p

pxc,hy`xa,xyqψpx` h ¨ aq

with xc, hy “
ř

1ďiăjďr hi,jci,j, ph¨aqi “
ř

1ďjďr hi,jaj and xa, xy “
ř

1ďiďr aixi
( note that xab a1 ´ a1 b a, hy “ xa1, h ¨ ay). This is similar to the Schrödinger
representation of the Heisenberg group.
dimpVr,pq “ pr and an orthonormal base of Vr,p is given by products of ex-

ponentials ψn1,...,nrpl1, ...lrq “ e
2π
?
´1
p

ř

1ďiďr lini , with 0 ď li ă p. We can check

that the normalized trace χUhppa, cqq “ 1ta“0ue
2π
?
´1
p

xc,hy.

Consider the G-connection A defined by assigning to each edge ei, i P
t1, ...ru the element pvi, 0q, vi being the i-th element of the canonical base of
Rr.

Then if l¨ is any based loop in l, p qNiplq, qNi,jpl¨q ´ qNj,ipl¨qq is a representa-

tive of HAplq in G and χUhpHAplqq “ 1
tl, qNiplq“0, @iue

2π
?
´1
p

ř

1ďiăjďr
qNi,jplqhi,j .

By the previous proposition,
ř

l χUhpHAplqµplq “ ´ 1
pr

logpdetpI ´ PA,Uhqq.

Hence, for any pr, rq skew-symetric matrix ui,j with coeficients in r0 , 1q,
ř

tl, qNiplq“0, @iu e
2π
?
´1

ř

1ďiăjďr
qNei,ej plqui,jµplq “

ř

tl, h1plq“0u e
2π
?
´1xh2plq,uyµplq

“ limpÒ8´
1
pr

logpdetpI ´ PA,Uhpu,pqq, taking for hpu, pqi,j the integral part of
ui,jp.

Proposition 10 |tl P Lp1qα , qNi,jplq “ mi,j, 1 ď i ă j ď r u| are independent
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Poisson r.v. with expectations:

αµptl, qNi,jplq “ mi,j, 1 ď i ă j ď ruq “ ´α

ż

r0,1s
rpr´1q

2

F puq
ź

i,j

e´2π
?
´1mi,jui,jdui,j.

with F puq “ limpÒ8
1
pr

logpdetpI ´ P pA,hpu,pqqqq.

Remarks:
- The inverse Fourier transfom can also be performed before taking the limit
p Ò 8
- As before, a more intrinsic formulation can be given using a couple of
harmonic discrete differential forms and an integration on the product of two
Jacobian tori. - The distribution of the homology field of class 2 h2pLp1qα q
can then be derived straightforwardly in the same way as the distribution of
h1pLαq.
- The distributions of higher order homologies are likely to be obtained in a
similar way, using representations of nilpotent groups of higher class.
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