
HAL Id: hal-02265247
https://hal.science/hal-02265247

Preprint submitted on 9 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Note on Backpropagation in Neural Networks
Xin Jin

To cite this version:

Xin Jin. Note on Backpropagation in Neural Networks. 2019. �hal-02265247�

https://hal.science/hal-02265247
https://hal.archives-ouvertes.fr

Note on Backpropagation in Neural Networks

Xin Jin
felixxinjin@gmail.com

August 8, 2019

Abstract

This note intends to facilitate low level implementation by provid-
ing an analytical perspective on neural networks. Different feedforward
and recurrent neural networks are dissected through a derivation of the
backpropagation update. We choose Multilayer Perceptron (MLP) which
possesses the basic architecture of deep artificial neural network as a de-
parture of introduction. Sigmoid Cross-Entropy loss is applied to MLP
for an exemplification of multi-label classification. We then turn to intro-
duce Convolutional Neural Network (CNN) — an intricate architecture
which adopts filter and sub-sampling to realize a form of regularization.
In the end, we illustrate Backpropagation Through Time (BPTT) to elicit
Exploding / Vanishing Gradients problem and Long short-term memory
(LSTM).

1 Fully Connected Neurons: Multilayer Percep-
tron

1.1 Structure of an elemental MLP
Multilayer Perceptron (MLP) has a structure of fully connected neurons. Neuron-
like processing unit is the basic element of MLP:

a = φ

(∑
i

wixi + b

)
(1)

where xi are input to the neuron, the wi are the weights, b is the bias, φ is the
activation function, and a is the unit’s activation.

For simplicity but without loss of generality, we consider an elemental MLP
with only 3 layers:

The 1st Layer (Input Layer) is composed of M neurons with no connection
to each other. The activation-input relation in this layer is the intact transit of
input and bias:

1

[
−→a (in)

1 . . . −→a (in)
N

]
=

1 . . . 1

a
(in)
1,1 . . . a

(in)
1,N

...
a
(in)
M,1 . . . a

(in)
M,N

 =

1 . . . 1

x
(in)
1,1 . . . x

(in)
1,N

...
x
(in)
M,1 . . . x

(in)
M,N

 (2)

In practical use, the M neurons are playing a role of dispatching M features
(x(in)1,i . . . x

(in)
M,i) of the ith sample xi, i ∈ [1, . . . , N] respectively to the next layer.

The 2nd Layer (Hidden Layer) has K neurons each processes M activation
of Input Layer as input:

[−→a (h)
1 . . .−→a (h)

N

]
=

1 . . . 1

φ
(−→w (h)

1
−→a (in)

1

)
. . . φ

(−→w (h)
1
−→a (in)
N

)
...

φ
(−→w (h)

K
−→a (in)

1

)
. . . φ

(−→w (h)
K
−→a (in)
N

)

 (3)

where we choose sigmoid function φ (z) =
(

1
1+e−z

)
as activation function in

Hidden Layer.
The 3rd Layer (Output Layer) possesses C neurons, where C is the number

of classes. The activation of the cth neuron represents the predicted conditional
probability that the ith input sample belongs to class c:

[−→a (out)
1 . . .−→a (out)

N

]
=

φ
(−→w (out)

1
−→a (h)

1

)
. . . φ

(−→w (out)
1
−→a (h)
N

)
...

φ
(−→w (out)

c
−→a (h)

1

)
. . . φ

(−→w (out)
c
−→a (h)
N

)
...

φ
(−→w (out)

C
−→a (h)

1

)
. . . φ

(−→w (out)
C
−→a (h)
N

)

(4)

where a
(out)
c,i = φ

(−→w (out)
c
−→a (h)
i + bc

)
= P̂ (yi = c | xi) , i ∈ [1, . . . , N] , c ∈

[1, . . . , C] and φ (z) =
(

1
1+e−z

)
.

1.2 Multi-Label MLP and Sigmoid Cross-Entropy loss
Multi-Label MLP is able to make prediction for Multi-Label Classification,
where the sample xi can belong to more than one class. If xi belonging to a cer-
tain class doesn’t influence the decision for another class (i.e. P (yi = c | xi) , c ∈
[1 . . . C] are independent), Multi-Label Classification problem can be split into
C binary Classification problems. The solution of C binary Classification prob-
lems is to learn weights w by maximizing the likelihood L (w) below:

2

L (w) =

C∏
c=1

n∏
i=1

(
a
(out)
c,i

)P (yi=c|xi) (
1− a(out)c,i

)1−P (yi=c|xi)
(5)

In practice, the equivalent approach of minimizing Sigmoid Cross-Entropy Loss
J(w) makes calculation convenient:

J(w) = −
C∑
c=1

n∑
i=1

[
P (yi = c | xi) log

(
a
(out)
c,i

)
+ (1− P (yi = c | xi)) log

(
1− a(out)c,i

)]
(6)

1.3 Training MLP via Backpropagation
In order to update the weights through Backpropagation, we fisrt apply forward
propagation to generate the activation of the output layer through (2),(3), and
(4) with initial weight values. We then use gradient descent to update the
weights in each layer:

∂J(w)

∂w
(out)
c,k

=
(
a
(out)
c,i − P (yi = c | xi)

)
a
(h)
k,i (7)

∂J(w)

∂w
(h)
k,m

=
(
a
(out)
c,i − P (yi = c | xi)

)
w

(out)
c,k a

(h)
k,i

(
1− a(h)k,i

)
a
(in)
m,i (8)

w
(out)
c,k = w

(out)
c,k − η ∂J(w)

∂w
(out)
c,k

(9)

w
(h)
k,m = w

(h)
k,m − η

∂J(w)

w
(h)
k,m

(10)

Where η is the learning rate. The derivation of Equation (7) and (8) is detailed
in Appendix.

2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are composed of multiple Convolutional
Layer / Pooling Layer pair followed by Fully Connection Layer at the end [1, 2].
We exhibit below a basic CNN with a single Convolutional Layer / Pooling
Layer pair with a Fully Connection Layer.

3

2.1 Convolution Layer
Convolution Layer can be imagined as a variant of Hidden Layer in which the
inner product of the weight and the input is replaced by convolution:

Acout = φ
(
X ∗W (conv)

cout + b(conv)cout

)
(11)

Acout (i, j) = φ

(
m1−1∑
k1=0

m2−1∑
k2=0

X(i− k1, j − k2)W (conv)
cout (k1, k2) + b(conv)cout

)
(12)

whereX ∈ Rn1×n2 is the input matrix,W (conv)
cout ∈ Rm1×m2 , cout ∈ {1, . . . , Cout}

is the kernel matrix for the coutth channel, b(conv)cout is the bias for the coutth
channel, and φ (z) =

(
1

1+e−z

)
. We consider the zero-padded edges are not added

to the original input matrix X, i.e. the kernel cannot exceed the boundary of
input during the convolution which leads i ∈ {m1, . . . , n1} , j ∈ {m2, . . . , n2}.

2.2 Pooling Layer
Subsampling is performed in pooling layer, where the average value (mean-
pooling) or the max value (max-pooling) is calculated in each sub-region. Here
we use nonoverlapping mean-pooling as an example:

Scout (i, j) =
1

p1p2

p1∑
k1=1

p2∑
k2=1

Acout(p1i
′ − k1, p2j′ − k2) (13)

where p1,p2 are pooling size in each dimension, i′ = m1+i ∈
{
m1 + 1, . . . ,m1 +

n1

p1

}
and j′ = m1 + j ∈

{
m2 + 1, . . . ,m2 +

n2

p2

}
.

2.3 Fully Connection Layer
Fully Connetion Layer is similar to the output layer which contains neuron-like
processing units. Additionally, Fully Connetion Layer vectorizes and concate-
nates the output of pooling layer.

z = Z
(
{Scout}cout=1,...,Cout

)
(14)

{Scout}cout=1,...,Cout
= Z−1 (z) (15)

Equation (14) denotes the process of vectorizing the output of each channel
by column scan and concatenates them to form a whole string. Equation (15)
represents the reverse process, where z ∈ RCout(n1/p1)(n2/p2)×1. The whole string
is then input into the activation function for predicting class labels.

4

−→
ŷ =

ŷ1
...
ŷc
...
ŷC

 = φ
(
W (f)z +

−→
b
)

(16)

where ŷc = P̂ (y = c | X), C is the number of classes,W (f) ∈ RC×Cout(n1/p1)(n2/p2),
−→
b ∈ RC×1, and φ (z) =

(
1

1+e−z

)
.

2.4 Backpropagation in CNNs
We choose Cross-Entropy as the Loss Function in this note, since it outperforms
Squared Error Loss for some circumstances [3]. The Cross-Entropy Loss J is
specified as below:

J = −
C∑
c=1

P (y = c | X) log (ŷc) (17)

We still begin with performing forward propagation to generate
−→
ŷ with

initial value of weight and bias in Convolution Layer and Fully Connection
Layer. Then we resort to gradient descent to update the weights and bias from
Fully Connection Layer to Convolution Layer:

∂J

∂W
(f)
c,j

= − (1− ŷc) zj (18)

∂J

∂b
(f)
c

= − (1− ŷc) (19)

∂J

∂W
(conv)
cout (k1, k2)

=

n1∑
i=1

n2∑
j=1

α ∗Xrot180 (20)

∂J

∂b
(conv)
cout

=

n1∑
i=1

n2∑
j=1

α (i, j) (21)

W
(f)
c,j =W

(f)
c,j − η

∂J

∂W
(f)
c,j

(22)

b(f)c = b(f)c − η
∂J

∂b
(f)
c

(23)

W (conv)
cout (k1, k2) =W (conv)

cout (k1, k2)− η
∂J

∂W
(conv)
cout (k1, k2)

(24)

5

b(conv)cout = b(conv)cout − η ∂J

∂b
(conv)
cout

(25)

The derivation of Equation (18),(19),(20), and (21) can be refer to Appendix
for the details.

3 Recurrent Neural Network
Different from a feedforward network (MLP as an example) dealing with in-
dependent and identically distributed data, Recurrent Neural Network (RNN)
processes input data in a certain order and dependent of each other. Base on
such purpose, RNN is designed to has input layer/hidden layers/output layer
unit at each time instance with connection between hidden layers in the same
level at two adjacent time instances [4, 5].

3.1 Structure of a Single Layer RNN
We consider a single layer RNN in which only one hidden layer locates at each
time instance. The hidden layer activation at time instance τ is the function of
−→x τ the input data at the time instance τ and

−→
h τ−1 the hidden layer activation

at time instance τ − 1:

−→
h τ = φh

(
W T

hh

−→
h τ−1 +W T

xh
−→x τ +

−→
b h

)
(26)

where φh (·) is the activation fucntion of the hidden layer and
−→
b h is the bias

vector.
Output layer pre-activation at instance τ is calculated from weighting matrix

from hidden layer to output layer Why , hidden layer activation
−→
h τ (X), and the

bias at output layer
−→
b y as

−→
ŷ τ = φy

(
W T

hy

−→
h τ +

−→
b y

)
(27)

where φy (·) is the activation fucntion of the output layer which is the soft-
max function usde in this note, and

−→
ŷ τ = [ŷτ1 , . . . , ŷ

τ
c , . . . , ŷ

τ
C] is the predicted

probability distribution at instance τ .

3.2 Backpropagation Through Time (BPTT) and Explod-
ing / Vanishing Gradients problem

The Loss function J for RNN is the sum of all the loss functions at each time
instance. Here we choose Cross-Entropy as the Loss Function:

J =

T∑
τ=1

J (τ) =

T∑
τ=1

(
−

C∑
c=1

yc,τ log (ŷc,τ)

)
(28)

6

As Whh is include in the hidden layer activation at each time instance, we need
to apply Backpropagation Through Time (BPTT) to RNN which will expand
the partial derivative in the time demension when we calculate gradient descent
to update the weights:

∂J (τ)

∂Whh
=
∂J(τ)

∂
−→
ŷ τ

∂
−→
ŷ τ

∂
−→
h τ

(
τ∑
t=1

∂
−→
h τ

∂
−→
h t

∂
−→
h t

∂Whh

)
(29)

=
∂J(τ)

∂
−→
ŷ τ

∂
−→
ŷ τ

∂
−→
h τ

(
τ∑
t=1

τ∏
i=t+1

∂
−→
h i

∂
−→
h i−1

∂
−→
h t

∂Whh

)

=
∂J(τ)

∂
−→
ŷ τ

∂
−→
ŷ τ

∂
−→
h τ

(
τ∑
t=1

τ∏
i=t+1

Whh
∂
−→
h t

∂Whh

)
∏τ
i=t+1Whh will lead ∂J(τ)

∂Whh
to trend towards positive infinity when |Whh | > 1

and τ − t is large. Conversely, ∂J(τ)

∂Whh
will trend towards zero when |Whh | < 1

and τ − t is large. The former is called Exploding Gradients problem and the
other is called Vanishing Gradients problem.

3.3 Long Short-Term Memory (LSTM)
Long Short-Term Memory (LSTM) [6] is a RNN architecture designed to over-
come Exploding / Vanishing Gradients problem. LSTM is introduce 3 gates
(Input gate iτ , Forget gate fτ , Output gate oτ) to suppress −→a τ the input acti-
vation at the time instance τ ,

−→
C τ−1 the cell state at the time instance τ − 1,

−→
C τ the cell state at the time instance τ respectively:

The calculation of gates are specified below, where σ denotes sigmoid func-
tion:

−→
i τ = σ (−→zi τ) = σ

(
Wxi
−→x τ +Whi

−→
h τ−1 +

−→
b i

)
(30)

−→
f τ = σ (−→zf τ) = σ

(
Wxf
−→x τ +Whf

−→
h τ−1 +

−→
b f

)
(31)

−→o τ = σ (−→zoτ) = σ
(
Wxo
−→x τ +Who

−→
h τ−1 +

−→
b o

)
(32)

The Feed-Forward operation of LSTM:

−→a τ = σ (−→zaτ) = tanh
(
Wxa
−→x τ +Whi

−→
h τ−1 +

−→
b a

)
(33)

−→
C τ =

(−→a τ�−→i τ)⊕ (−→C τ−1�
−→
f τ

)
(34)

−→
h τ = tanh

(−→
C τ

)
�−→o τ (35)

7

After the feed-forward operation is performed with initial value of weight and
bias, the backpropagation is conducted to update weight and bias by minimizing
the loss which we use the sum of squared of the errors (SSE) loss as an example:

J =

T∑
τ=1

J (τ) =

T∑
τ=1

(
1

2

(−→y τ −−→h τ)2) (36)

The calculation of the partial derivatives of loss function regardingWxa,Wxi,Wxf ,Wxo,
−→
b a

are detailed below. The partial derivatives of loss function regarding Whf , Wxo,
Who, Whi,

−→
b i,
−→
b f ,
−→
b o have the very similar structure and are not specified here.

∂J

∂Wxa
=

When τ = T :

= ∂J(T)

∂
−→
C T

∂
−→
C T

∂−→a T
∂−→a T
Wxa

=
(−→
h T −−→y T

)
�
(
1− tanh2

(−→
C T

))
�−→o T�

−→
i T�

(
1− tanh2 (−→zaT)

)−→x T
When τ < T :

= ∂J(T)

∂
−→
C τ

∂
−→
C τ

∂−→a τ
∂−→a τ
Wxa

+ . . .+ ∂J(τ)

∂
−→
C τ

∂
−→
C τ

∂−→a τ
∂−→a τ
Wxa

=
(−→
h T −−→y T

)
�
(
1− tanh2

(−→
C T

))
�−→o T�

−→
f T . . .

−→
f τ+1�

−→
i τ�

(
1− tanh2 (−→zaτ)

)−→x τ
+ . . .+

(−→
h τ −−→y τ

)
�
(
1− tanh2

(−→
C τ

))
�−→o τ�

−→
i τ�

(
1− tanh2 (−→zaτ)

)−→x τ
(37)

∂J

∂Wxi
=

When τ = T :

= ∂J(T)

∂
−→
C T

∂
−→
C T

∂
−→
i T

∂
−→
i T

Wxi

=
(−→
h T −−→y T

)
�
(
1− tanh2

(−→
C T

))
�−→o T�−→a T�

(
1− tanh2 (−→zi T)

)−→x T
When τ < T :

= ∂J(T)

∂
−→
C τ

∂
−→
C τ

∂
−→
i τ

∂
−→
i τ

Wxi
+ . . .+ ∂J(τ)

∂
−→
C τ

∂
−→
C τ

∂
−→
i τ

∂
−→
i τ

Wxi

=
(−→
h T −

−→
yT
)
�
(
1− tanh2

(−→
C T

))
�−→o T�

−→
f T . . .

−→
f τ+1�−→o τ�−→a τ�

(
1− tanh2 (−→zi τ)

)−→x τ
+ . . .+

(−→
h τ −−→y τ

)
�
(
1− tanh2

(−→
C τ

))
�−→o τ�−→a τ�

(
1− tanh2 (−→zi τ)

)−→x τ
(38)

8

∂J

∂Wxf
=

When τ = T :

= ∂J(T)

∂
−→
C T

∂
−→
C T

∂
−→
f T

∂
−→
f T

Wxf

=
(−→
h T −−→y T

)
�
(
1− tanh2

(−→
C T

))
�−→o T�

−→
C T−1�

(
1− tanh2 (−→zf T)

)−→x T
When τ < T :

= ∂J(T)

∂
−→
C τ

∂
−→
C τ

∂
−→
f τ

∂
−→
f τ

Wxf
+ . . .+ ∂J(τ)

∂
−→
C τ

∂
−→
C τ

∂
−→
f τ

∂
−→
f τ

Wxf

=
(−→
h T −

−→
yT
)
�
(
1− tanh2

(−→
C T

))
�−→o T�

−→
f T . . .

−→
f τ+1�−→o τ�

−→
C τ−1�

(
1− tanh2 (−→zf τ)

)−→x τ
+ . . .+

(−→
h τ −−→y τ

)
�
(
1− tanh2

(−→
C τ

))
�−→o τ�

−→
C τ−1�

(
1− tanh2 (−→zf τ)

)−→x τ
(39)

∂J

∂Wxo
=
∂J (τ)

∂
−→
h τ

∂
−→
h τ

∂−→o τ
∂−→o τ
Wxo

(40)

=

(
−→
h T −

−→
yT
)
� tanh

(−→
C τ

)
�
(
1− tanh2 (−→zoτ)

)−→x τ

∂J

∂ba
=

When τ = T :

= ∂J(T)

∂
−→
C T

∂
−→
C T

∂−→a T
∂−→a T
ba

=
(−→
h T −−→y T

)
�
(
1− tanh2

(−→
C T

))
�−→o T�

−→
i T�

(
1− tanh2 (−→zaT)

)
When τ < T :

= ∂J(T)

∂
−→
C τ

∂
−→
C τ

∂−→a τ
∂−→a τ
Wxa

+ . . .+ ∂J(τ)

∂
−→
C τ

∂
−→
C τ

∂−→a τ
∂−→a τ
Wxa

=
(−→
h T −−→y T

)
�
(
1− tanh2

(−→
C T

))
�−→o T�

−→
f T . . .

−→
f τ+1�

−→
i τ�

(
1− tanh2 (−→zaτ)

)
+ . . .+

(−→
h τ −−→y τ

)
�
(
1− tanh2

(−→
C τ

))
�−→o τ�

−→
i τ�

(
1− tanh2 (−→zaτ)

)
(41)

4 Appendix

4.1 Derivation of Equations
Derivation of Equation (7): Using the chain rule, the partial derivative of loss
with respect to the weight in output layer can be calculated as:

9

∂J(w)

∂w
(out)
c,k

=
∂J(w)

∂a
(out)
c,i

∂a
(out)
c,i

∂w
(out)
c,k

(42)

= −

(
P (yi = c | xi)

a
(out)
c,i

− (1− P (yi = c | xi))
1− a(out)c,i

)
∂φ
(
z
(out)
c,i

)
∂z

(out)
c,i

∂z
(out)
c,i

∂w
(out)
c,k

= −

(
P (yi = c | xi)

a
(out)
c,i

− (1− P (yi = c | xi))
1− a(out)c,i

)
a
(out)
c,i

(
1− a(out)c,i

)
a
(h)
k,i

=
(
a
(out)
c,i − P (yi = c | xi)

)
a
(h)
k,i

where z(out)c,i = a
(h)
1,i w

(out)
c,1 + . . .+ a

(h)
k,iw

(out)
c,k + . . .+ a

(h)
K,iw

(out)
c,K .

Derivation of Equation (8):

∂J(w)

∂w
(h)
k,m

=
∂J(w)

∂a
(out)
c,i

∂a
(out)
c,i

∂a
(h)
k,i

∂a
(h)
k,i

∂w
(h)
k,m

(43)

= −

(
P (yi = c | xi)

a
(out)
c,i

− (1− P (yi = c | xi))
1− a(out)c,i

)
a
(out)
c,i

(
1− a(out)c,i

)
w

(out)
c,k a

(h)
k,i

(
1− a(h)k,i

)
a
(in)
m,i

=
(
a
(out)
c,i − P (yi = c | xi)

)
w

(out)
c,k a

(h)
k,i

(
1− a(h)k,i

)
a
(in)
m,i

Derivation of Equation (18):

∂J

∂W
(f)
c,j

=
∂J

∂ŷc

∂ŷc

∂W
(f)
c,j

(44)

= − 1

ŷc

∂φ
(∑Cout(n1/p1)(n2/p2)−1

j=0 W
(f)
c,j z + b

(f)
c

)
∂W

(f)
c,j

= − 1

ŷc
ŷc (1− ŷc) zj

= − (1− ŷc) zj

Derivation of Equation (19):

∂J

∂b
(f)
c

=
∂J

∂ŷc

∂ŷc

∂b
(f)
c

(45)

= − 1

ŷc

∂φ
(∑Cout(n1/p1)(n2/p2)−1

j=0 W
(f)
c,j z + b

(f)
c

)
∂b

(f)
c

= − (1− ŷc)

10

Derivation of Equation (18):

∂J

∂W
(conv)
cout (k1, k2)

=
∂J

∂Acout (i, j)

∂Acout (i, j)

∂W
(conv)
cout (k1, k2)

(46)

=

n1∑
i=1

n2∑
j=1

∂J

∂Acout (i, j)

∂
(
φ
(∑m1−1

k1=0

∑m2−1
k2=0 X(i− k1, j − k2)W (conv)

cout (k1, k2) + b
(conv)
cout

))
∂W

(conv)
cout (k1, k2)

=

n1∑
i=1

n2∑
j=1

∂J

∂Acout (i, j)
Acout (i, j) (1−Acout (i, j))X(i− k1, j − k2)

=

n1∑
i=1

n2∑
j=1

α (i, j)Xrot180(k1 − i, k2 − j)

=

n1∑
i=1

n2∑
j=1

α ∗Xrot180

where Xrot180 denotes rotating X 180 degrees. α = ∂J
∂Acout (i,j)

Acout (i, j) and
∂J

∂Acout (i,j)
can be obtained by devectorizing and upsampling ∂J

∂z . Equation (47),
(48), (49) provides the solving process to get analytical solution of ∂J

∂Acout (i,j)
.

∂J

∂z
=
∂J

∂ŷc

∂ŷc
∂z

(47)

= − 1

ŷc
Wc,j

∂J

∂Scout
= Z−1

(
∂J

∂z

)
(48)

∂J

∂Acout (i, j)
= p1p2

∂J

∂Scout
(di/p1edj/p2e) (49)

Derivation of Equation (21):

∂J

∂b
(conv)
cout

=
∂J

∂Acout (i, j)

∂Acout (i, j)

∂b
(conv)
cout

(50)

=

n1∑
i=1

n2∑
j=1

α (i, j)

=

n1∑
i=1

n2∑
j=1

p1p2
∂J

∂Scout
(di/p1edj/p2e)Acout (i, j)

11

References
[1] Zhifei Zhang. 2016. Derivation of Backpropagation in Convolutional Neural

Network (CNN). Technical Report. University of Tennessee, Knoxvill, TN.

[2] Bouvrie, J. 2006. Notes on convolutional neural networks. Chatfield, K.;
Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2014. Return of the
devil in the details: Delving deep into convolutional nets. arXiv preprint
arXiv:1405.3531.

[3] F.J. Huang and Y. LeCun. “Large-scale Learning with SVM and Convolu-
tional for Generic Object Categorization”, In: Proc. 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp.
284-291, 2006.

[4] Pascanu, Razvan, Mikolov, Tomas, and Bengio, Yoshua. On the difficulty of
training recurrent neural networks. In Proceedings of the 30th International
Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16- 21
June 2013, pp. 1310–1318, 2013.

[5] Hojjat Salehinejad, Julianne Baarbe, Sharan Sankar, Joseph Barfett, Er-
rol Colak, and Shahrokh Valaee, “Recent advances in recurrent neural net-
works,” arXiv preprint arXiv:1801.01078, 2017.

[6] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical Evaluation of Gated Recurrent Neural Networks on Se-
quence Modeling. arXiv:1412.3555 [cs], December 2014. URL http://arxiv.
org/abs/1412.3555.

12

