A. Cotillard, S. P. Kennedy, L. C. Kong, E. Prifti, N. Pons et al., Dietary intervention impact on gut microbial gene richness, Nature, vol.500, issue.7464, pp.585-593, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001543

L. A. David, C. F. Maurice, R. N. Carmody, D. B. Gootenberg, J. E. Button et al., Diet rapidly and reproducibly alters the human gut microbiome, Nature, vol.505, issue.7484, pp.559-63, 2014.

J. R. Marchesi, D. H. Adams, F. Fava, G. D. Hermes, G. M. Hirschfield et al., The gut microbiota and host health: a new clinical frontier, Gut, vol.65, issue.2, pp.330-339, 2016.

J. L. Sonnenburg and F. Bäckhed, Diet-microbiota interactions as moderators of human metabolism, Nature, vol.535, issue.7610, pp.56-64, 2016.

V. Tremaroli and F. Bäckhed, Functional interactions between the gut microbiota and host metabolism, Nature, vol.489, issue.7415, pp.242-251, 2012.

R. N. Carmody and P. J. Turnbaugh, Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics, J Clin Inv, vol.124, issue.10, pp.4173-81, 2014.

L. S. Zhang and S. S. Davies, Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions

, Genome Med, vol.8, issue.1, p.46, 2016.

W. R. Wikoff, A. T. Anfora, J. Liu, P. G. Schultz, S. A. Lesley et al., Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites, Proc Natl Acad Sci, vol.106, issue.10, pp.3698-703, 2009.

M. S. Donia and M. A. Fischbach, Small molecules from the human microbiota, Science, vol.349, issue.6246, p.1254766, 2015.

P. Kovatcheva-datchary, A. Nilsson, R. Akrami, Y. S. Lee, D. Vadder et al., Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella, Cell Metab, vol.22, issue.6, pp.971-82, 2015.

E. D. Sonnenburg, S. A. Smits, M. Tikhonov, S. K. Higginbottom, N. S. Wingreen et al., Diet-induced extinctions in the gut microbiota compound over generations, Nature, vol.529, issue.7585, pp.212-217, 2016.

C. De-filippo, D. Cavalieri, D. Paola, M. Ramazzotti, M. Poullet et al., Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa, Proc Natl Acad Sci, vol.107, issue.33, pp.14691-14697, 2010.

D. Aune, N. Keum, E. Giovannucci, L. T. Fadnes, P. Boffetta et al., Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies, BMJ, vol.353, p.2716, 2016.

G. C. Chen, X. Tong, J. Y. Xu, S. F. Han, Z. X. Wan et al., Whole-grain intake and total, cardiovascular, and cancer mortality: a systematic review and meta-analysis of prospective studies, Am J Clin Nutr, vol.104, issue.1, pp.164-72, 2016.

J. De-munter, F. B. Hu, D. Spiegelman, M. Franz, and R. M. Van-dam, Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review, PLoS Med, vol.4, issue.8, p.261, 2007.

A. Helnaes, C. Kyrø, I. Andersen, S. Lacoppidan, K. Overvad et al., Intake of whole grains is associated with lower risk of myocardial infarction: the Danish Diet, Cancer and Health Cohort, Am J Clin Nutr, vol.103, issue.4, pp.999-1007, 2016.

L. Schwingshackl, C. Schwedhelm, G. Hoffmann, A. M. Lampousi, S. Knuppel et al., Food groups and risk of allcause mortality: a systematic review and meta-analysis of prospective studies, Am J Clin Nutr, vol.105, issue.6, pp.1462-73, 2017.

R. Giacco, G. Clemente, D. Cipriano, D. Luongo, D. Viscovo et al., Effects of the regular consumption of wholemeal wheat foods on cardiovascular risk factors in healthy people, Nutr Metabol Cardiovasc Dis, vol.20, issue.3, pp.186-94, 2010.

P. Tighe, G. Duthie, N. Vaughan, J. Brittenden, W. G. Simpson et al., Effect of increased consumption of wholegrain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: a randomized controlled trial, Am J Clin Nutr, vol.92, issue.4, pp.733-773, 2010.

M. Kristensen, S. Toubro, M. G. Jensen, A. B. Ross, G. Riboldi et al., Whole grain compared with refined wheat decreases the percentage of body fat following a 12-week, energy-restricted dietary intervention in postmenopausal women, J Nutr, vol.142, issue.4, pp.710-716, 2012.

O. K. Magnusdottir, R. Landberg, I. Gunnarsdottir, L. Cloetens, B. Åkesson et al., Whole grain rye intake, reflected by a biomarker, is associated with favorable blood lipid outcomes in subjects with the metabolic syndrome-a randomized study, PloS One, vol.9, issue.10, p.110827, 2014.

P. Vitaglione, I. Mennella, R. Ferracane, A. A. Rivellese, R. Giacco et al., Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber, Am J Clin Nutr, vol.101, issue.2, pp.251-61, 2015.

A. Andersson, S. Tengblad, B. Karlstrom, A. Kamal-eldin, R. Landberg et al., Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects, J Nutr, vol.137, issue.6, pp.1401-1408, 2007.

I. A. Brownlee, C. Moore, M. Chatfield, D. P. Richardson, P. Ashby et al., Markers of cardiovascular risk are not changed by increased whole-grain intake: the WHOLEheart study, a randomised, controlled dietary intervention, Br J Nutr, vol.104, issue.1, pp.125-159, 2010.

A. Costabile, A. Klinder, F. Fava, A. Napolitano, V. Fogliano et al., Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study, Br J Nutr, vol.99, issue.1, pp.110-130, 2008.

N. Okarter and R. H. Liu, Health benefits of whole grain phytochemicals, Crit Rev Food Sci Nutr, vol.50, issue.3, pp.193-208, 2010.

A. Fardet, New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre?, Nutr Res Rev, vol.23, issue.01, pp.65-134, 2010.

J. M. Lattimer and M. D. Haub, Effects of dietary fiber and its components on metabolic health, Nutrients, vol.2, issue.12, pp.1266-89, 2010.

N. Chary, V. Kumar, D. Vairamani, M. Prabhakar, and S. , Characterization of amino acid-derived betaines by electrospray ionization tandem mass spectrometry, J Mass Spectrom, vol.47, issue.1, pp.79-88, 2012.

G. Blunden, B. E. Smith, M. W. Irons, M. Yang, and O. G. Roch, Patel AVJBs, ecology. Betaines and tertiary sulphonium compounds from 62 species of marine algae, Biochem Syst Ecol, vol.20, issue.4, pp.373-88, 1992.

P. M. Ueland, P. I. Holm, and S. Hustad, Betaine: a key modulator of onecarbon metabolism and homocysteine status, Clin Chem Lab Med, vol.43, issue.10, pp.1069-75, 2005.

S. A. Craig, Betaine in human nutrition, Am J Clin Nutr, vol.80, issue.3, pp.539-588, 2004.

K. F. Allred, K. M. Yackley, J. Vanamala, and C. D. Allred, Trigonelline is a novel phytoestrogen in coffee beans, J Nutr, vol.139, issue.10, pp.1833-1841, 2009.

G. F. Ferrazzano, I. Amato, A. Ingenito, D. Natale, A. Pollio et al., Anti-cariogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea), Fitoterapia, vol.80, issue.5, pp.255-62, 2009.

O. Kärkkäinen, M. A. Lankinen, M. Vitale, J. Jokkala, J. Leppänen et al., Diets rich in whole grains increase betainized compounds associated with glucose metabolism, Am J Clin Nutr, vol.108, issue.5, pp.971-980, 2018.

J. Pekkinen, N. Rosa-sibakov, V. Micard, P. Keski-rahkonen, M. Lehtonen et al., Amino acid-derived betaines dominate as urinary markers for rye bran intake in mice fed high-fat diet-a nontargeted metabolomics study, Mol Nutr Food Res, vol.59, pp.1550-62, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01269028

O. Kärkkäinen, T. Tuomainen, V. Koistinen, M. Tuomainen, J. Leppänen et al., Whole grain intake associated molecule 5-aminovaleric acid betaine decreases ?-oxidation of fatty acids in mouse cardiomyocytes, Sci Rep, vol.8, issue.1, p.13036, 2018.

N. Rosa-sibakov, K. Poutanen, and V. Micard, How does wheat grain, bran and aleurone structure impact their nutritional and technological properties?, Trends Food Sci Technol, vol.41, issue.2, pp.118-152, 2015.

I. Bondia-pons, A. Vuorela, S. Kolehmainen, M. Mykkänen, H. Poutanen et al., Rye phenolics in nutrition and health, J Cereal Sci, vol.49, issue.3, pp.323-359, 2009.

N. M. Anson, E. Selinheimo, R. Havenaar, A. Aura, I. Mattila et al., Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds, J Agric Food Chem, vol.57, issue.14, pp.6148-55, 2009.

M. Al-waiz, M. Mikov, S. Mitchell, and R. Smith, The exogenous origin of trimethylamine in the mouse, Metabolism, vol.41, issue.2, pp.135-141, 1992.

A. B. Ross, A. Zangger, and S. P. Guiraud, Cereal foods are the major source of betaine in the Western diet-analysis of betaine and free choline in cereal foods and updated assessments of betaine intake, Food Chem, vol.145, pp.859-65, 2014.

K. Hanhineva, M. A. Lankinen, A. Pedret, U. Schwab, M. Kolehmainen et al., Nontargeted metabolite profiling discriminates diet-specific biomarkers for consumption of whole grains, fatty fish, and bilberries in a randomized controlled trial, J Nutr, vol.145, issue.1, pp.7-17, 2015.

T. Mitsuoka, Bifidobacteria and their role in human health, J Ind Microbiol, vol.6, issue.4, pp.263-270, 1990.

M. C. Dao, E. A. Aron-wisnewsky, J. Sokolovska, N. Prifti, E. Verger et al., Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology, Gut, vol.65, issue.3, pp.426-462, 2016.

Y. Zhong, N. Marungruang, F. Fåk, and M. Nyman, Effects of two wholegrain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low-and high-fat diets, Br J Nutr, vol.113, issue.10, pp.1558-70, 2015.

F. F. Anhe, D. Roy, G. Pilon, S. Dudonne, S. Matamoros et al., A polyphenol-rich cranberry extract protects from dietinduced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice, Gut, vol.64, issue.6, pp.872-83, 2015.

S. Jangi, R. Gandhi, L. M. Cox, N. Li, V. Glehn et al., Alterations of the human gut microbiome in multiple sclerosis, Nat Commun, vol.7, p.12015, 2016.

T. Clavel, P. Lepage, and C. Charrier, The Family Coriobacteriaceae, The Prokaryotes, 2014.

T. Clavel, C. Desmarchelier, D. Haller, P. Gérard, S. Rohn et al., Intestinal microbiota in metabolic diseases: from bacterial community structure and functions to species of pathophysiological relevance, Gut Microbes, vol.5, issue.4, pp.544-51, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01608260

X. Ze, S. H. Duncan, P. Louis, and H. J. Flint, Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon, ISME J, vol.6, issue.8, p.1535, 2012.

C. Zhang, M. Zhang, X. Pang, Y. Zhao, L. Wang et al., Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations, ISME J, vol.6, issue.10, p.1848, 2012.

Y. J. Chen, H. Wu, S. D. Wu, N. Lu, Y. T. Wang et al., Parasutterella, in associated with irritable bowel syndrome and intestinal chronic inflammation, J Gastroenterol Hepatol, vol.33, pp.1844-52, 2018.

K. E. Fujimura, N. A. Slusher, M. D. Cabana, and S. V. Lynch, Role of the gut microbiota in defining human health, Expert Rev Anti Infect Ther, vol.8, issue.4, pp.435-54, 2010.

M. J. Claesson, I. B. Jeffery, S. Conde, S. E. Power, E. M. O'connor et al., Gut microbiota composition correlates with diet and health in the elderly, Nature, vol.488, issue.7410, p.178, 2012.

S. M. Finegold, Desulfovibrio species are potentially important in regressive autism, Med Hypotheses, vol.77, issue.2, pp.270-274, 2011.

F. Rowan, N. G. Docherty, M. Murphy, B. Murphy, J. C. Coffey et al., Desulfovibrio bacterial species are increased in ulcerative colitis, Dis Colon Rectum, vol.53, issue.11, pp.1530-1536, 2010.

L. Geurts, V. Lazarevic, M. Derrien, E. A. Van-roye, M. Knauf et al., Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue, Front Microbiol, vol.2, p.149, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00617647

H. Song, W. Wang, B. Shen, H. Jia, Z. Hou et al., Pretreatment with probiotic Bifico ameliorates colitis-associated cancer in mice: transcriptome and gut flora profiling, Cancer Sci, vol.109, issue.3, pp.666-77, 2018.

X. Yuan, J. Wang, and H. Yao, Feruloyl oligosaccharides stimulate the growth of Bifidobacterium bifidum, Anaerobe, vol.11, issue.4, pp.225-234, 2005.

N. N. Rosa, J. Pekkinen, K. Zavala, G. Fouret, A. Korkmaz et al., Impact of wheat aleurone structure on metabolic disorders caused by a high-fat diet in mice, J Agric Food Chem, vol.62, issue.41, pp.10101-10110, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268932

V. M. Koistinen, O. Mattila, K. Katina, K. Poutanen, A. Aura et al., Metabolic profiling of sourdough fermented wheat and rye bread, Sci Rep, vol.8, issue.1, p.5684, 2018.

A. M. Aura, H. Härkönen, M. Fabritius, and K. Poutanen, Development of an in vitro enzymic digestion method for removal of starch and protein and assessment of its performance using rye and wheat breads, J Cereal Sci, vol.29, issue.2, pp.139-52, 1999.

E. Nordlund, A. Aura, I. Mattila, T. Kössö, X. Rouau et al., Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model, J Agric Food Chem, vol.60, issue.33, pp.8134-8179, 2012.

R. Hermes, G. Giatsis, and C. , NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes, F1000Research, vol.5, p.1791, 2018.

J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman et al., QIIME allows analysis of highthroughput community sequencing data, Nat Methods, vol.7, issue.5, p.335, 2010.

J. Lep? and P. ?milauer, Multivariate analysis of ecological data using CANOCO, 2003.