Sensitivity of different methods for simultaneous evaluation of emissivity and temperature through multispectral infrared thermography simulation

Thibaud Toullier, Jean Dumoulin, Laurent Mevel

To cite this version:

Thibaud Toullier, Jean Dumoulin, Laurent Mevel. Sensitivity of different methods for simultaneous evaluation of emissivity and temperature through multispectral infrared thermography simulation. EGU 2019 - European Geoscience Union, Apr 2019, Vienne, Austria. 21, pp.1, 2019. hal-02264677

HAL Id: hal-02264677
https://hal.archives-ouvertes.fr/hal-02264677
Submitted on 7 Aug 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Sensitivity of different methods for simultaneous evaluation of emissivity and temperature through multispectral infrared thermography simulation

This study focuses on the simultaneous evaluation of temperature and emissivity with multispectral infrared thermography (IRT). It leans on the study and development of an IRT simulator able to address 3D scene in static or dynamic configuration. The sensitivity of 4 different temperature and emissivity joint estimation methods are then evaluated.

IRT Simulator through the radiosity method

View factor

Geometrical coefficient for radiative exchange between two diffuse elements

\[
F_{1,2} = \int_{A_2} \frac{\cos(\vartheta_1) \cos(\vartheta_2)}{r^2} dA_1 dA_2
\]

Radiosity equation

\[
B_{k,\Delta \lambda_i} = M_{k,\Delta \lambda_i} + \sum_{j=1,j \neq k}^{N} V_{kj} F_{kj} B_{j,\Delta \lambda_i}
\]

Conclusion and perspectives

- User-friendly graphical interface
- Python interpreter for user-case scenarios
- Geometrical coefficient for radiative exchange between two diffuse elements

3D Model

A target with 4 different materials properties

Fig. 2: (a) Spectral emissivity distribution of 4 artificial materials for the target in the 7.5μm – 13μm bandwidth

Fig. 3: Temperature estimation for the 4 different methods

Fig. 4: Emissivity estimation for the 4 different methods

Results

- Non linear optimization
- Multi-temperature
- Bayesian (Monte-Carlo Markov Chain (MCMC))

Bibliography

