Sensitivity of different methods for simultaneous evaluation of emissivity and temperature through multispectral infrared thermography simulation

Thibaud Toullier, Jean Dumoulin, Laurent Mevel

To cite this version:

hal-02264677

HAL Id: hal-02264677
https://hal.archives-ouvertes.fr/hal-02264677
Submitted on 7 Aug 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
This study focuses on the simultaneous evaluation of temperature and emissivity with multispectral infrared thermography (IRT). It leans on the study and development of an IRT simulator able to address 3D scene in static or dynamic configuration. The sensitivity of 4 different temperature and emissivity joint estimation methods are then evaluated.

Results

Comparison of 4 methods to estimate simultaneously emissivity and temperature through multispectral infrared thermography simulation

Introduction and nomenclature

IRT Simulator through the radiosity method

- **View factor**
 - Geometrical coefficient for radiative exchange between two diffuse elements
 - $F_{A_1 A_2} = \int_{A_1} \frac{\cos(\theta_1) \cos(\theta_2)}{\pi r^2} dA_1 dA_2$

- **Radiosity equation**
 - $B_{k, \Delta \lambda_i} = M_{k, \Delta \lambda_i} + (1 - \epsilon_{k, \Delta \lambda_i}) \sum_{j=1, j \neq k}^{N} V_{k j} F_{k j, \Delta \lambda_i} \Delta \lambda_i$

Temperature and emissivity retrieval

With Bouguer’s law and for infinitesimal surfaces:

$$E_{\text{sensor}, \Delta \lambda_i} = \frac{\Theta_{\text{source}, \Delta \lambda_i} \cos(\Theta_{\text{sensor}})}{\pi^2} \cos(\Theta_{\text{source})} d\Theta_{\text{source}} \Delta \lambda_i$$

$$\Rightarrow$$

Undetermined system with $\epsilon_{\Delta \lambda_i}$ and T unknowns

$$E_{\text{sensor}, \Delta \lambda_i} = \int T^4 \frac{\epsilon_{\Delta \lambda_i}(\lambda) \cos(\Theta_{\text{source}})}{\pi^2} \cos(\Theta_{\text{source})} d\Theta_{\text{source}} \Delta \lambda_i$$

Non linear optimization

$$\arg\min_{\lambda} \sum_{k=1}^{N} \left\| \epsilon_{\Delta \lambda_i}(\lambda) - \epsilon_{\Delta \lambda_i, k}(\lambda) \right\|^2$$

$$\epsilon_{\Delta \lambda_i, k} = \int T^4 \frac{\epsilon_{\Delta \lambda_i}(\lambda) \cos(\Theta_{\text{source}})}{\pi^2} \cos(\Theta_{\text{source})} d\Theta_{\text{source}} \Delta \lambda_i$$

Bayesian (Monte-Carlo Markov chain (MCMC))

Conclusion and perspectives

Bibliography

