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Abstract—Complex diseases such as Cancer or Alzheimer’s are
caused by multiple molecular perturbations leading to patho-
logical cellular behavior. However, the identification of disease-
induced molecular perturbations and subsequent development
of efficient therapies are challenged by the complexity of the
genotype-phenotype relationship. Accordingly, a key issue is
to develop frameworks relating molecular perturbations and
drug effects to their consequences on cellular phenotypes. Such
framework would aim at identifying the sets of causal molecular
factors leading to phenotypic reprogramming. In this article,
we propose a theoretical framework, called Boolean Control
Networks, where disease-induced molecular perturbations and
drug actions are seen as topological perturbations/actions on
molecular networks leading to cell phenotype reprogramming.
We present a new method using abductive reasoning principles
inferring the minimal causal topological actions leading to an
expected behavior at stable state. Then, we compare different
implementations of the algorithm and finally, show a proof-of-
concept of the approach on a model of network regulating the
proliferation/apoptosis switch in breast cancer by automatically
discovering driver genes and their synthetic lethal drug target
partner.

Keywords—Boolean control network, therapeutic target infer-
ence, cell reprogramming, abductive reasoning.

I. INTRODUCTION

THE technological advances in molecular biology of the
last two decades have led to the emergence of a new

biomedical paradigm: precision medicine. This new field aims
at redefining diseases and their treatments at molecular level
in order to guide clinical decision making toward the most
appropriate drug for the patient. However, the translation
of technological advances into medical applications faces
numerous challenges [1], [2]. First of all, the transformation of
molecular data into biological knowledge requires integrative
computational frameworks enabling a better understanding of
the complex relationship linking genotypes and phenotypes.
Subsequently, the formalisation and the automatization of
reasoning over this biological knowledge appear necessary to
guide the decision-making for new therapeutic strategies.

Complex diseases such as Cancer or Alzheimer’s are caused
by diverse and multiple molecular perturbations leading to
pathological cellular behavior. Such diversity and multiplicity
challenge the identification of the perturbations causing the
transformation of a healthy cell into a diseased one through
data analysis. Molecular network modelling underlies the
integrative, systems-level understanding of cells by linking
molecules (genes, proteins, RNAs, metabolites) and their in-
teractions to behaviors, interpreted as the dynamical states

emerging from these interactions. As a matter of fact, cells
may be envisioned as webs of interacting macromolecules
constituting the “interactome” and behavioral reprogramming
observed in the course of diseases is explained by the perturba-
tions of molecular interactions [3]. Therefore, the study of cell
fate reprogramming through the lens of molecular networks
constitutes the root for disease molecular etiology investigation
and subsequent development of efficient therapies.

Main issues for integrative framework development then
concerns the definition of the nature of the perturbations
responsible for cell fate reprogramming and their effects. In
biology and medicine, phenotypic changes are assessed by the
measure of the state of some molecules, called biomarkers,
that are defined as observable and objective characteristics
of biological processes and used to characterize the shift
between normal and pathological conditions [4], [5]. In [6], the
authors relate mutations to their network effect and introduce
the notion of edgetic perturbations of molecular networks:
nonsense mutation, out-of-frame insertion or deletion and de-
fective splicing are interpreted as node or arc deletions whereas
missense mutation and in-frame insertion or deletion can be
modelled as node or arc addition. Moreover, in [7], the authors
classify mutations according to the way they affect signalling
networks and distinguish mutations that constitutively activate
or inhibit enzymes and mutations that rewire the network
interactions. The effect of mutations on molecular networks
can thus be described as elementary topological actions of
deletion or insertion of nodes and arcs. Symmetrically, targeted
therapies switch cancer cells phenotype toward growth arrest
and apoptosis. Their actions can also be interpreted as network
rewiring [5].

A phenotypic switch following disease-induced molecular
perturbations or targeted therapies is therefore considered as
the observable trait of a dynamical system reprogramming
caused by topological network actions (TN-action). Therefore
the identification of the TN-actions that are responsible for
dynamical reprogramming would provide major insights for
etiological investigation of disease, molecular pathogenesis
and drug targets prediction by equating them to the causal
genetic perturbations (a.k.a, drivers) or actions of drugs. It
is worth noticing that generate-and-test method checking the
TN-actions exhaustively is often pointless: assuming that an
expected phenotypic switch results from the application of a
specific gene action up to m among n genes, then the number
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of trials1 equals
∑m
k=1

(
n
k

)
. For example, the number of trials

for targeting up to 10% on 100 genes exceeds 19 billions2.
Hence, automatic inference of TN-actions is essential to meet
this challenge.

In this paper, we define a theoretical framework called
Boolean control network that relates the TN-actions to their
dynamical effects. Then, we propose to use algorithmic ap-
proaches borrowed from artificial intelligence field and more
specifically diagnosticability analysis to infer the TN-actions
responsible for specified observable effects.

The article is organised as follows: first, we define the
Boolean control network framework (Section II), then we
specify the reprogramming modalities and constraints on solu-
tions and show their resolution based on abductive reasoning
(Section III), in Section IV, we present different algorithms
computing the solutions and compare their performances and
finally, we present a proof-of-concept of this approach for the
identification of driver genes and synthetic lethal drugs on a
Boolean model of breast cancer (Section V).

II. BOOLEAN CONTROL NETWORK

In this section we first review the main theoretical elements
used in this article, namely: propositional logic, Boolean
network and introduce Boolean control network.

A. Propositional logic

A propositional formula is inductively constructed from
atoms composed of constants (False/0, True/1) and variables
V , unary negation operator ¬, and binary logical operators
(e.g., ∧/conjunction/AND, ∨/disjunction/OR). A literal is either
an atom or its negation. Given a formula f , V (f) denotes the
set of variables occurring in f . For example, let fα be the
propositional formula representing the exclusive OR between
atom x1 and the negation of atom x2, fα = (x1 Y ¬x2),
the variables are V (fα) = {x1, x2} and the literals are x1

and ¬x2. Let X ′ ⊆ X be a subset of variables f↓X′ is the
restriction of a formula f to the literals involving the variables
of X ′.

A cube syntactically denotes a conjunction of literals and
a clause a disjunction. In this article, cubes and clauses
will be considered as literal sets when needed. A disjunctive
normal form (DNF) of a formula is a disjunction of cubes
(ie.,

∨
i

∧
ji
lji ) whereas a conjunctive normal form (CNF) is

a conjunction of clauses (ie.,
∧∨

ji
lji ). Any formula can

be transformed in DNF or in CNF. For example, a DNF of
fα is (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2) and a CNF is (¬x1 ∨ x2) ∧
(x1 ∨ ¬x2).

Let an interpretation I : V → {0, 1} be a mapping
assigning a truth value to each variable3, a model of a formula
f , I |= f , is an interpretation such that the formula is
evaluated to True and a satisfiable formula admits a model at
least. For example, fα is satisfiable because the interpretations

1corresponding to the number of parts of size 1 to m in a set with n
elements.

2Exactly 19 415 908 147 835 trials.
3A mapping will be described x = v instead of x 7→ v for the sake of

simplicity.

I1 = {x1 = 1, x2 = 1} and I2 = {x1 = 0, x2 = 0} are both
models of fα.

Formula f1 entails formula f2, denoted by f1 |= f2, if and
only if any model of f1 is also a model of f2 (ie., f1 |= f2

def
==

∀I : I |= f1 =⇒ I |= f2). Hence, the entailment defines a
partial order on formulas.

A minterm CI of an interpretation I is the unique cube
such that V (I) = V (CI) fulfilling I |= CI . For the example
C1 = x1 ∧ x2 and C2 = ¬x1 ∧ ¬x2 are the minterms of
I1 and I2 respectively. A cube C entailing a formula f is
said an implicant of f and it is prime if it ceases to be one
when deprived of any literal. Considering the example, C1, C2

are both prime implicants of fα with I1 and I2 as model
respectively, thus entailing fα: C1 |= fα, C2 |= fα. Notice
that by contrast to a minterm, an implicant does not necessary
involve all the variables of the formula (e.g., x1 is an implicant
of (x1 ∨ x2) ∧ (x1 ∨ x3)).

B. Boolean network

The formalism of Boolean networks have been introduced
for modelling the dynamics of gene regulatory networks by
Stuart Kauffman [8] and René Thomas [9]. A Boolean network
is a discrete dynamical system operating on Boolean variables
X that determines the state evolution of variables xi ∈ X .
It is defined as a system of Boolean equations of the form:
xi = fi(x1, . . . , xn), 1 ≤ i ≤ n where each fi is a
propositional formula. A Boolean state of s is an interpretation
of the variables (ie., s : X → B) and SX will denote the set
of all states for variables of X .
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F = {x1 = x2 ∨ x3, x2 = ¬x3, x3 = ¬x2 ∧ x1}
Fig. 1. Model of asynchronous dynamics and interaction graph of F .

A Boolean network model of dynamics describes exhaus-
tively all the trajectories of the system where a trajectory
corresponds to a path in a labeled transition system. For each
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transition the states of agents are updated with respect to a pre-
defined updating policy. For the asynchronous updating used
in the article, one agent only is updated per transition. Hence,
the labelled transition system for the asynchronous updating is
〈−→, X,Bn〉 where the transition relation −→⊆ SX×X×SX
is labelled by the updated agent, xi−→ such that:

s1
xi−→ s2

def
== s1 6= s2

∧ s2(xi) = fi(s1)

∧ ∀xj ∈ X \ {xi} : s2(xj) = s1(xj)

We denote −→=
⋃
xi∈X

xi−→. A state s2 is said reachable
from state s1 if and only if there exists a trajectory defined
by the reflexive and transitive closure of the transition relation
connecting s1 to s2, s1 −→∗ s2.

A state s is an equilibrium for −→ if it is infinitely often
reached once met, formally:

∀s′ ∈ SX : s −→∗ s′ =⇒ s′ −→∗ s.

An attractor is a set of equilibria that are mutually reachable
and from which no other states can be reached but these
equilibria. Formally the states in an attractor S′ ⊆ S complies
to:

∀s, s′ ∈ S′ : s −→∗ s′.

Hence, an attractor corresponds to a terminal strongly con-
nected component in the transition graph depicting the model
of dynamics.

A stable state or one-state attractor is an attractor of
cardinality 1. In Figure 1, the states 101 and 110 in grey are
stable. Stable states remain identical whatever the updating
policy as they comply to Definition 1:

STBLF (s)
def
== ∀1 ≤ i ≤ n : fi(s) = s(xi) (1)

An interaction graph 〈X, 〉 portrays the directed inter-
actions between variables of a Boolean network (cf., Figure 1)
representing the causal dependencies between variables. An
interaction xi xj exists if and only if xi occurs as literal
in a minimal DNF form of fj , ie.,

xi xj
def
== xi ∈ V (DNF(fj)).

C. Boolean Control Network

Boolean Control Network (BCN) extends Boolean network
by adding control parameters that are Boolean variables, ui ∈
U without equation definition. Hence, a BCN is defined as
a function generating Boolean network parametrized by an
interpretation of control parameters µ ∈ SU , called a control
input: Fu : SU → (SX → SX). For example, an extension
of the Boolean network in Figure 1 to a BCN by adding four
control parameters u1, u2, u3, u4 is:

Fu1,u2,u3,u4
=


x1 = (x2 ∧ u1) ∨ x3,

x2 = ¬(x3 ∨ ¬u2),

x3 = ((¬x2 ∧ x1) ∨ ¬u3) ∧ u4

(2)

The application of a control input µ to a Boolean control
network Fµ therefore reprograms the dynamics. Figure 2

describes the dynamics resulting from the application4 of two
control inputs µ1 = {u1 = 0, u2 = 1, u3 = 1, u4 = 1} and
µ2 = {u1 = 1, u2 = 1, u3 = 1, u4 = 0}.

Fµ1 =


x1 = x3,

x2 = ¬x3,

x3 = ¬x2 ∧ x1
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µ2 = {u1 = 1, u2 = 1, u3 = 1, u4 = 0}

Fig. 2. Modification of the dynamics by control inputs µ1 and µ2 for the
example of Figure 1.

Boolean control network provides a general framework
for dynamical system reprogramming. Indeed, let F be an
initial Boolean network reprogrammed into an other Boolean
network G where the equations are modified, then the Boolean
control network Fu = (u ∧ F ) ∨ (¬u ∧ G) behaves as F
if u = 1 and as G if u = 0. The switch between F and
its reprogramming G now depends on the value of u only.

4The formulas resulting from the instantiation of the BCN by a control
input are simplified.
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This encoding can be trivially extended to address a family
of dynamical systems viewed as the different outcomes of
reprogramming by triggering each particular system from a
particular valuation of several control parameters, e.g.,

Fu1,u2
= (u1 ∧ u2 ∧ F ) ∨ (¬u1 ∧ u2 ∧G1)

∨ (u1 ∧ ¬u2 ∧G2) ∨ (¬u1 ∧ ¬u2 ∧G3)

with G1, G2, G3 as reprogramming outcomes. However, the
control will be practically specified in another way in order
to represent the effective control operated in the real system
(Section II-D).

Finally, a Boolean control network can be associated to a
control constraint Φ : Um → B fixing the allowed control
inputs.

D. Control-freezing category

Among different possibilities to control a Boolean network,
we focus on a particular category called control-freezing
where the control action fixes (freezes) variable states to a
specific value. We define two categories of control actions:
Definition-freezing (D-freezing) that controls the definition of
a variable and Use-freezing (U-freezing) controlling the use
of a variable in an equation defining another variable. The
D-freezing parameter governing the freeze of variable xi will
be denoted di and the U-freezing parameter is denoted ui,j
standing for the control by freeze of the variable xi in its
use in fj . Moreover, each control parameter has two distinct
regimes: either it freezes the variable to a specific value or
leaves it unchanged. The convention, inspired by the freezing
temperature of water 0◦C, is as follows: the freezing action
is triggered when the control parameter is set to 0 whereas a
control parameter set to 1 is inactive.

Control-freezing implementation to Boolean network.: d0
i

is the control parameter freezing the variable state xi to 0
and u0

i,j for the variable xi occurring in fj . Similarly, d1
i , u

1
i,j

stands for 1-freezing with the same convention. For example,
by considering the following controlled equation x1 = (¬x2)∧
d0

1, d0
i will freeze x1 to 0 if d0

1 = 0 otherwise x1 behaves as
the negation of x2 (See also (7)). The implementation of the
freezing control on a Boolean network extends the formulas
to obtain the expected control behavior depending on the type
of control parameters: D0, D1 or U0, U1.

a) D-freezing control implementation.: The D-freezing
control of variable xi consists in adding a D-freezing parame-
ter to formula fi such that setting µ(dki ) = 0, k ∈ {0, 1} leads
to freeze variable xi to k or leaves it unchanged otherwise
(µ(dki ) = 1). Formula fi is completed according to this control
behavior:

xi = fi(x1, . . . , xn) ∧ d0
i for freezing to 0 (3)

xi = fi(x1, . . . , xn) ∨ ¬d1
i for freezing to 1 (4)

D0 and D1 freezing parameters can be combined to trigger
the freeze to different values. To avoid a contradictory freeze
to 0 and 1 simultaneously, the constraint Φ = d0

i ∨d1
i is added

ensuring the mutual exclusion of the parameter activities.

b) U-freezing control implementation.: The U-freezing
control application follows the same principles as the D-
freezing control but applied on the occurrence of variables
in the equations of other variables.

xj = fj(x1, . . . , xi ∧ u0
i,j , . . . , xn) for freezing to 0 (5)

xj = fj(x1, . . . , xi ∨ ¬u1
i,j , . . . , xn) for freezing to 1 (6)

Both controls can be also combined with a constraint avoiding
to trigger contradictory freezing controls simultaneously (ie.,
Φ = u0

i,j ∨ u1
i,j).

In Example (2), u1 is the U-freezing parameter of x2 to 0
(u1 = u0

2,1) used in x1 definition, u2 can be interpreted as the
U-freezing parameter of x3 (u2 = u1

3,2), and u3, u4 are the
D-freezing parameters of x3 freezing the variable to 1 and 0
respectively (u3 = d1

3, u4 = d0
3). Consequently, the BCN (2)

can be rewritten using the appropriate naming convention as:

Fu0
2,1,u

1
3,2,d

1
3,d

3
0

=


x1 =

(
x2 ∧ u0

2,1

)
∨ x3,

x2 = ¬(x3 ∨ ¬u1
3,2),

x3 =
(
(¬x2 ∧ x1) ∨ ¬d1

3

)
∧ d0

3

(7)

The control activity is thus fully determined by the param-
eters assigned to 0 in a control input µ. The set of active
control parameters collect these parameters to trace the control
activity (ie., {ui ∈ U | µ(ui) = 0}). In the sequel U will
represent the set of control parameters indifferently of their
action types (D or U ) and ui ∈ U a generic freezing control
parameter.

Effects of control-freezing on the interaction graph: The
control-freezing category models the dynamical aftermaths on
Boolean network of the TN-actions on the interaction graph.
D-freezing directly assigns an invariant value to variables
whereas U-freezing sets locally an invariant value for their use
in an equation. The immediate consequence on the interaction
graph of a freezing is to disconnect a node from its inputs for
D-freezing and to remove an arc for U-freezing. Therefore,
D-freezing control models node action whereas U-freezing
control models arc action (cf., Section V for their interpretation
in biological network).

III. CONTROL PARAMETERS INFERENCE

In this section we first formally characterize the basic
patterns specifying the changes of the observable molecular
traits resulting from biological system reprogramming and
then, we show that the abductive formulation of finding the
causes of these change enable their resolution.

Specification of reprogramming modalities and solutions

Molecular state variations will be questioned at equilibrium
conditions in a twofold way: either finding a particular prop-
erty in some stable states, or finding a particular property in
all of them. We thus define two modalities: the possibility of
meeting a property in at least one stable state (PoP) and the
necessity of meeting a property in all stable states (NoP). Let
p be a Boolean function on states (p : SX → B) standing for
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a property, the PoP and NoP inference problems are defined
as follows:

Find a control input µ fulfilling the constraints of Φ such that:

∃s ∈ SX :STBLFµ(s) ∧ p(s). (PoP) (8)
∀s ∈ SX :STBLFµ(s) =⇒ p(s). (NoP) (9)

Different control inputs may be suitable as solutions. For
instance, gaining stable state 010 for Boolean network of
Figure 1 with parameters defined in (7) can be obtained with
the following control inputs:{

u0
2,1 = 0, u1

3,2 = 1, d1
3 = 1, d0

3 = 1
}{

u0
2,1 = 0, u1

3,2 = 1, d1
3 = 1, d0

3 = 0
}{

u0
2,1 = 0, u1

3,2 = 1, d1
3 = 0, d0

3 = 0
}

The plurality of solutions raises the question of their inter-
pretation for identifying the root factors causing the expected
effects. The causal factors are defined as the essential actions
shifting the dynamics to the objective whereas the casual
factors behave neutrally and do not interfere with the objective
whatever their valuation. Focusing on the active parameters,
only u0

2,1 = 0 matters for shifting the dynamics to gain 010
(first solution) since it is shared by all solutions, and without
this assignment the system reprogramming fail to reach the
expected objective. The other parameters becoming active are
casual because they can be set to 0 or 1 without deviating the
dynamics to the result.

The set of causal control parameters forms a core K∗

defined as a minimal active parameter set under the inclusion
which is equivalent to the entailment order for cubes. Consid-
ering the example, the core K∗ = {u0

2,1} is included in all
other active parameter sets.

Several cores may be found for a given problem. For
example, three different cores {d1

3}, {u0
2,1}, {u1

3,2} enable the
loss of equilibrium 110. Hence, the inference algorithm aims
at finding all the cores in regards to a reprogramming query
formulated by the possibility or the necessity of meeting a
property at steady-state.

A. Abduction based core inference

Inferring a core corresponds to the determination of control
parameters producing an expected effect. In logic finding
causes from effects is an abduction problem. Abduction is
a method of reasoning proposing hypotheses that provide the
best explanation for observable facts in regards to knowledge
of the problem constituting the theory [10], [11], [12]. In
propositional logic, a cube C is an abductive explanation of
a formula f formalizing the facts with respect to another
formula Φ representing the theory if and only if: C ∧ Φ |= f
and C is consistent with Φ (ie., Φ ∧ C is satisfied). Finding
a parsimonious hypothesis introduces the notion of minimal
solution that usually corresponds to a prime implicant. Within
this framework, the possibility and the necessity of property (8,
9) must be formulated as abduction problems in propositional
logic by considering that p is a propositional formula. However
(8) and (9) properties are not formulated as propositions. In

Lemma 1, Possibility (10) and Necessity (11) restate this
formulation in propositional logic.

Lemma 1: Find a cube Cµ such that:

(Cs ∧ Cµ) ∧ Φ |= (STBLFu ∧ p); (PoP) (10)
Cµ ∧ Φ |= (STBLFu =⇒ p); (NoP) (11)

where Cs and Cµ are consistent with Φ, V (Cµ) =
U, V (Cs) = X and the stability condition is defined as:

STBLFu
def
==

n∧
i=1

(xi ⇐⇒ fi(x1, . . . , xn, u1, . . . , um))

respectively define the PoP (8) and NoP (9) problems as
abductive problems in propositional logic.

Proof 1 (Lemma 1): To prove the equivalence of PoP (10)
and NoP (11) problems with Definitions (8,9) based on propo-
sitional logic, we need to demonstrate that 1) the stability
condition can be formulated as a propositional formula 2) we
can find an equivalent formulation for these Definitions using
abduction on propositional formulas.

1) Stability condition defined by a propositional formula.:
By definition (1), the stability condition for a BCN involving
control parameters u = (u1, . . . , um) is defined as: ∀ 1 ≤
i ≤ n : xi = fi(x, u). As the set of equations is finite, the
condition can be rephrased as:

n∧
i=1

(xi = fi(x, u)).

As the equivalence p1 ⇐⇒ p2 is satisfied if and only
if I(p1) = I(p2), the equality can be formulated by an
equivalence, finally defining the stability condition as:

n∧
i=1

(xi ⇐⇒ fi(x, u)) .

Now we examine the equivalent formulation of PoP and NoP
definitions given in (8,9) using abduction on propositional
formulas and leading to Definitions (10, 11).

2) PoP defined as an abductive problem in propositional
logic.: Definition (8) can be reformulated by introducing the
entailment as:

∃s ∈ SX : (Cs ∧ Cµ) ∧ Φ |= STBLFµ ∧ p,

where Cs and Cµ are the minterms of a state s and a
control input µ respectively. As STBLFµ ∧ p contains state
variables and control parameters an implicant C fulfilling
C ∧ Φ |= STBLFµ ∧ p can be divided into C = Cs ∧ Cµ.
C can be possibly completed by missing variables if needed.
Cs is the minterm of an interpretation s ∈ SX . Therefore
determining the existence of an implicant C involving the
variables of X and U is equivalent of proving the existence of
its interpretation (ie., (C |= f) ⇐⇒ (∃s, s ∪ µ |= f)). Thus,
the existential quantifier of s can be removed.
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3) NoP defined as adbuctive problem in propositional
logic.:

( =⇒ ) Definition (9) of NoP can be expressed using
formula entailment as:

∀s ∈ SX : (Cs ∧ Cµ) ∧ Φ |= (STBLFµ =⇒ p),

where Cs and Cµ are the minterms of s and µ respectively.
We define P = (STBLFµ =⇒ p) and s−i a state s deprived
of its ith component.

Let Cµ be a solution, for all states s there exists a state
(s−i,¬si) such that both fulfil the following Cs∧Cµ∧Φ |= P
and (C(s−i,¬si) ∧ Cµ ∧ Φ |= P respectively as the property
holds for all states. By applying the consensus theorem [11],
we deduce that Cs−i ∧ Cµ is also an implicant by removing
si since it appears positively and negatively in two implicants.
As this simplification can be applied for all states s ∈ Sx, we
finally have:

∀s−i : (Cs−i ∧ Cµ) ∧ Φ |= P.

By following the same reasoning for all s−i states with the
deprivation of sj , j 6= i, we deduce the same conclusion for
s−{i,j},∀j 6= i. This can be repeated until no variables exist
(C∅). As C∅ = 1 by definition, we thus conclude that:

Cµ ∧ Φ |= P.

(⇐= ) Conversely, assume that Cµ∧Φ |= P with V (Cµ) =
U we deduce that for all C such that C is consistent with Φ
we have C ∧ Cµ ∧ Φ |= P . As for all s ∈ SX , Cs only
involves variables of X and Φ is a constraint on parameters
with variables of U then V (Cs) ∩ V (Φ) = ∅. Two satisfiable
cubes with distinct variables are necessary consistent. Thus,
we conclude that: ∀s ∈ SX : (Cs ∧ Cµ) ∧ Φ |= P.

In conclusion, for NoP, the solution can always be deter-
mined by focusing on control parameters only. �

In Example (7), the components of the problem for gaining
state 010 (Figure 2, µ1) are:

STBLFu = x1 ⇐⇒
(
x2 ∧ u0

2,1

)
∨ x3

∧ x2 ⇐⇒ ¬(x3 ∨ ¬u1
3,2)

∧ x3 ⇐⇒
(
(¬x2 ∧ x1) ∨ ¬d1

3

)
∧ d0

3

for the stability condition, Φ = d0
3 ∨ d1

3 for the exclusive
activity of d3, and p = ¬x1 ∧ x2 ∧ ¬x3 for the minterm of
s = 010. For the loss of stable state 101 (Figure 2, µ2), only
the property differs, now defined as: p = ¬(x1 ∧ ¬x2 ∧ x3)
corresponding to the negation of the minterm of 101.

B. Related works

BCN was recently introduced in systems biology to provide
the theoretical foundations and computational methods for
investigating cell fate reprogramming and therapeutic target
discovery. In [13] the authors apply a stuck-at fault model
to simulate drug intervention in an acyclic growth factors
pathway by a generate-and-test method. stuck-at fault model
mimics the defects on combinatorial logic circuit that cor-
respond here to malignant mutations. Based on this model,

authors identify drug actions for single mutations by correct-
ing all possible single faults. This framework was improved
by [14] using a Max-SAT based method dedicated to acyclic
networks in order to directly compute the control parameter
values and final states. Inferring the drug targets on a network
is also developed by [15] using algebraic techniques (Gröbner
basis) in order to modify the system dynamics for creating or
avoiding particular stable states. In [16], the authors propose a
heuristic method with the same goal but focused on the control
of key-nodes stabilizing “motifs” identifying sub-networks.
Finally, we have introduced the principle of the abductive
inference of cores for drug target discovery in [17] which is
significantly extended here, in particular with the formalization
and the generalization of the TN-actions as control freezing,
and with a more efficient method for the core inference.

Our approach follows a similar orientation of these works by
using BCN for modelling disease and drug actions. By com-
parison, the target discovery is modelled in an original way as
an abductive problem. The resulting framework supports any
kind of networks including cycles with actions applied on both
nodes and arcs and find multiple targets qualifying the parsi-
monious TN-actions (cores) reprogramming the system. The
proposed algorithm infers the causes of expected properties
met at stable states and we formalize their query in a general
setting using propositional formulas with the Necessity and
Possibility modalities.

IV. CORES COMPUTATION

For a formula f specifying the stability condition and
the property, core inference consists in finding a satisfiable
implicant C∗ fulfilling C∗ |= f that minimizes the number of
active control parameters (by convention negative ones, ¬ui)
with respect to the inclusion. The resulting core K∗ is trivially
deduced by collecting the negative control parameters of C∗.
Computing the set of all cores is an NP-Hard problem. In this
section, we present two algorithms enabling the computation
of cores and study their scalability on randomly generated
Boolean networks for PoP and NoP reprogramming. Both
algorithms are adapted from methods developed for prime
implicants computation, the first is based on 0 - 1 Integer
Linear Programming (0 -1 ILP) and presented in [18] and the
second is based on a recursive approach of sum-of-products
minimization applied on a binary decision diagram (BDD)
representing the formula and adapted from [19].

A. ILP-Core inference algorithm

The method, called ILP-CORE, operates on a formula f in
CNF and computes the set of all the cores K∗ using 0 − 1
Integer Linear Programming (0 -1 ILP). A 0 -1 ILP problem is
formulated as:
Minimize

∑h
j=1mj .yj subject to

∑h
j=1Wi,j .yj ≤ vi for

1 ≤ i ≤ r, y ∈ {0, 1}h, where y is the unknown vector of size
r, m, v vectors, W matrix are the parameters of the problem
and h the number of variables.

The method is based on the translation of the constraints
related to core definition into 0 -1 ILP constraints such that a
solution y is a binary representation of an implicant C∗. The
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algorithm is outlined in Algorithm 1 and the main steps are
fully described in the proof of Theorem 1.

Function ILP-CORE(f : CNF formula)

(minm.yT ,Wy ≤ v) = Describe constraints on
core as 0 -1 ILP problem ;
// C∗ |= f minimizing the number of

negative control parameters.
K∗ = ∅;
repeat

y = Solve (minm.yT ,Wy ≤ v) with a
0 -1 ILP solver ;

if a solution y is found then
K∗ = Collect the negative control
parameters from y;
K∗ = K∗ ∪ {K∗} ;
Exclude all solutions K,K∗ ⊆ K by

adding constraints to Wy ≤ v ;
end

until No solution y is found;

return K∗ // the set of all cores
end
Algorithm 1: Outline of the ILP-CORE algorithm.

Theorem 1: The ILP-CORE algorithm finds all and only the
cores.

Proof 2 (Theorem 1): The proof of the Theorem lies
in the translation of the different constraints related to the
determination of the cores in integer linear constraints.

1) Translation of constraints on C∗ to linear constraints::
The main issue of the method is to translate the required
constraints applied on C∗ as a set of linear constraints.

Let f = C1 ∧ C2 ∧ . . . ∧ Cr be the input formula in CNF
where each Ci is a clause, we define Lf =

⋃r
i=1 Ci the set

of literals appearing in f . We associate to each literal lj ∈
Lf a {0, 1}-variable denoted ylj meaning that the vector y is
indexed by the literals of Lf .

a) Objective function.: Let N̄ be the set of control
parameters occurring negatively in Lf , ie., N̄ = {uj ∈ U |
¬uj ∈ Lf}, as each core should minimize their occurrences,
the objective function is the sum of these negative control
parameters: ∑

uj∈N̄

y¬uj

.
b) Clauses defined by inequalities.: By definition of

abduction, if there exists an implicant C∗ of a formula f which
is consistent with a theory, then C∗ is satisfiable and thus also
f . A formula in CNF is satisfiable if and only if all its clauses
are satisfiable and a clause is satisfiable if and only if at least
one of its literal is satisfiable. Therefore, an implicant of this
formula is a cube formed by taking at least one literal from
each clause. This condition is formulated by a constraint for
each clause, such that:

∀Ci :
∑
lj∈Ci

ylj ≥ 1

c) Satisfiability of C∗ defined by inequalities.: As the
implicant C∗ is satisfiable, it cannot contain both a literal and
its negation leading to an antilogy. Let P = {vj ∈ X ∪ U |
vj ∈ Lf ∧ ¬vj ∈ Lf} be the set of variables occurring both
positively and negatively in Lf , then we have the following
constraints excluding at least the positive or the negative literal
for the variables of P :

∀vj ∈ P : yvj + y¬vj ≤ 1

2) Conversion of y into a core K∗.: y is a binary repre-
sentation of a cube C∗ where ylj = 0 means that lj does
not belong to C∗ and ylj = 1 means that lj is contained in
C∗, namely C∗ = {li | yli = 1}. A core K∗, being the set
of negative control parameters in C∗, is deduced from y as
follows:

K∗ = {uj ∈ U | y¬uj = 1}.

3) Exclusion of all sets including the core as further
solutions.: The application of the algorithm computes one
solution y from which a core K∗ is deduced. Thus, we need
to exclude it and any set including it to find other solutions.
For this, we add the constraints such that a solution cannot
contain exactly the same negative control parameters as the
found core. Therefore the sum of the y values of the negative
control parameters belonging to the core must be less than
its cardinality. This linear constraint is expressed from K∗ as
follows: ∑

uj∈K∗
y¬uj ≤ |K∗| − 1.

The method is then iterated until no more core is found to
finally provide the set of all cores. �

To properly specify the PoP and NoP resolutions, the
method is called with different formulas specifying the query.
Applied to PoP (10), the complete formula is passed as pa-
rameter since literals of C∗ contain control parameters as well
as variables identifying the state. For NoP (11), as C∗ must
contain control parameters only, each clause is then restricted
to control parameters by removing the literals involving state
variables (ie., xi ∈ X). The constraints on control parameters
Φ are already in CNF form by definition (Section II-D).

ILP-CORE(CNF(STBLFu ∧ p) ∧ Φ) (PoP)
ILP-CORE(CNF(STBLFu =⇒ p)↓U ∧ Φ) (NoP)

We have tested the scalability of the ILP-CORE method
for core inference by considering an arbitrary property (p =
x1∧x2) on random monotonous Boolean networks of different
node-size having all their agents controlled (except markers
x1 and x2). To fit to biological networks requirements, the
interaction graph is scale-free with an average degree about 3.
We computed the mean standard deviation of the computation
time for 20 tests for PoP experiments and NoP experiments
until networks of size 8, then 10 tests for NoP experiments on
networks with larger sizes. We also measured the number of
clauses of the formula in CNF representing the constraints
and the observations. The computation5 stopped when the

5performed on a HP EliteBook 820 G2 Intel Core (2.30 GHz i5-5300U
CPU with 16 Go of memory).
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# agents
Computation Time (sec.) CNF size

Mean Std. dev. Mean Std.dev
10 0.0296402 0.0150994 26.1 13.1385
20 0.0530403 0.0415523 30.8 42.8186
30 0.767525 2.24556 167.1 8.32814
40 0.0795605 0.0220037 227.25 7.34757
50 1.38763 4.48424 287.9 10.9732
60 1.35175 5.7259 347.3 13.6925

TABLE I
MEAN AND STANDARD DEVIATION OF COMPUTATION TIME FOR CORE

INFERENCE WITH ILP AND NUMBER OF CLAUSES IN THE CNF FORMULA
FOR POP

# agents
Computation Time CNF size
Mean Std. dev. Mean Std.dev

6 0.0826805 0.0472362 34.9 14.9628
7 0.146641 0.13613 71.55 34.2936
8 0.634924 0.629443 197.6 106.937
9 3.69098 3.64535 534.2 185.472

10 18.1445 18.1445 1272.9 810.262
11 188.473 (1) 294.761 3539.7 1996.91
12 - - - -

TABLE II
MEAN AND STANDARD DEVIATION OF COMPUTATION TIME FOR CORE

INFERENCE WITH ILP AND NUMBER OF CLAUSES IN THE CNF FORMULA
FOR NOP

computation of cores from a formula exceeded 15 minutes.
The experimental results shown in Table I show that the
algorithm is highly scalable for the PoP resolution. However,
the NoP resolution is much more costly and it is limited in the
size of networks it can handle (see Table II for experimental
results, the numbers in parenthesis represent the number of
networks for which no solutions were computed after a 15′

period). This can (at least partly) be explained by the explosion
in the number of clauses of the CNF formula. Note that wide
standard deviation are correlated to an absence of solution.

B. BDD-Necessity procedure

Cores computation for NoP with ILP is limited by the
explosion in the number of clauses of the CNF formula.
To circumvent this limitation, we have developed an alter-
native method based on prime implicants computation us-
ing reduced ordered Binary Decision Diagrams (ROBDDs).
ROBDDs enable a compact and canonical representation of
Boolean functions (for background knowledge on ROBDD,
see [20] or [21]). This method, called BDD-NECESSITY,
consists in representing the formula as a Positive Reduced
Ordered Binary Decision Diagram (PROBDD) and computing
the prime implicants on this representation.

A PROBDD is a decision tree reduced by three reduction
rules: merging of isomorphic subgraphs, elimination of nodes
whose both edges points to the same node and elimination
of nodes whose high edge point to the terminal node 1 and
low edge point to the terminal node 0. The first two rules
are common to the ROBDD representation while the last
reduction rule is specific to our computation. At worst, the
PROBDD and ROBDD representation are equivalent but, in

numerous cases, this supplementary reduction rule reduces the
size of the representation of the formula without impairing
the computation of cores. Indeed, the rule eliminates positive
control literals, that are not part of cores (by definition of cores,
that contain only negative control parameters). For instance,
the ROBDD and PROBDD of the formula f specifying the
observations and constraints for the necessity of p = ¬x1

with Boolean network F presented in Figure 1 are shown in
Figure 3.

f = (¬d0
1 ∨ d1

2 ∨ d1
3) ∧ (¬d0

1 ∨ ¬d0
2 ∨ d1

3) ∧ (¬d0
1 ∨ ¬d0

2 ∨ ¬d1
3)

∧ (¬d0
1 ∨ d1

2 ∨ ¬d1
3) ∧ (¬d0

2 ∨ d1
1 ∨ ¬d1

3) ∧ (d1
1 ∨ d1

2 ∨ ¬d1
3)

∧ (¬d0
1 ∨ ¬d0

3 ∨ ¬d1
2) ∧ (¬d0

1 ∨ ¬d1
2 ∨ d1

3) ∧ (¬d0
3 ∨ d1

1 ∨ ¬d1
2)

∧ (d1
1 ∨ ¬d1

2 ∨ d1
3) ∧ (d0

2 ∨ d0
3 ∨ d1

1 ∨ ¬d1
2 ∨ ¬d1

3)

∧ (d0
1 ∨ d1

1) ∧ (d0
2 ∨ d1

2) ∧ (d0
3 ∨ d1

3)

d01

d11 d11

d02 d02

d12 d12

d03 d03

d13

1 0

d01

d11

d02

d12

d03

0 1

Fig. 3. Formula f and its ROBDD (left) and PROBDD (right) representation.
Dashed arrows represent low edges and full arrows represent high edges.

Then, the prime implicants are computed on this represen-
tation of the formula (see [19] for a description of prime
implicants computation on ROBDD). The principle underlying
the algorithm is that all paths of a ROBDD from the root to
the terminal node 1 can be seen as cubes constituting a disjoint
cover of the function. A set of implicants of the function can
then be found by computing all paths such that a variable is
present as its negative literal in the implicant if the path go
through its outgoing edge labeled low, as its positive literal
if the path go through its outgoing edge labeled high and is
absent of the cube if the path does not go through a node
representing the variable. Therefore, computing the prime im-
plicants from this representation consist in recursively dividing
the PROBDD into three sets: the low set, corresponding to the
prime implicants containing the negative literal, the high set,
containing the positive literal and the don’t care set that do
not contain the variable. The don’t care set is obtained by
the computation of the conjunction of the low and high sub-
PROBDD. Then, the low set and the high set are deprived
of the don’t care set and the same operations are recursively
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# agents
Computation Time
Mean Std.dev

8 0.212161 0.0936584
10 1.45237 0.555331
12 15.1898 5.64182
14 71.3143 45.4836
16 435.971 178.016

TABLE III
MEAN AND STANDARD DEVIATION OF COMPUTATION TIME FOR CORE

INFERENCE WITH BDD-NECESSITY

applied on the three obtained sets. The recursion ends when the
input ROBDD is a constant and the base cases are as follows:
the prime set is empty if the input PROBDD is constant 0
and the prime set includes only the empty set when the input
ROBDD is constant 1. From the graphical representation of
the set of primes, the cores correspond to the sets of low edges
in 1-paths. The result of such computation for the ROBDD and
PROBDD of Figure 3 are shown in Figure 4.

d01

d11 d11

d02 d02

d12 d12

d03 d03

d13

1 0

d01

d11

d02

d12

d03

0 1

{{d0
1}, {d0

2, d
0
3}} {{d0

1}, {d0
2, d

0
3}}

Fig. 4. Graphical representation of the prime implicants of the BDDs in
Figure 3 (top) and their corresponding cores (down). Dashed arrows represent
low edges, full arrows represent high edges and dotted arrows represent don’t
care edges.

In Table III, we show the results of the experimental
measures of the mean and standard deviation of the cores’
computation time of the BDD-Necessity.These results show
that the BDD-Necessity procedure is better suited then the
procedure based on ILP for the computation of cores for NoP.
BDD Necessity can handle Boolean networks until size 16
with a control on all variables definitions, which represent an
increase of 45% compared to the ILP method.

In summary, the resolution of PoP queries on formulas in
CNF containing numerous variables but few clauses can be
efficiently computed with ILP method, while the resolution of
NoP queries, based on formulas which contain fewer variables
but larger number of clauses, is more efficient on compact
representations of formulas, such as BDDs.

V. APPLICATION TO BREAST CANCER

This section shows the application of TN-actions inference
for the study of breast cancer. Mainly, cancer cells differ from
normal cells by their uncontrolled proliferation and apoptotic
evasion. Accordingly, targeted drugs aim at inducing apoptosis
or stop the proliferation of cancer cells [22]. We therefore
developed a model (Section V-A) focusing on the regulation of
division and apoptosis. We infer the causal TN-actions leading
to a loss or gain of apoptosis (Section V-B) and then analyse
the results (Section V-C).

A. Aptoptosis/Cell Division Boolean network

The model focuses on the regulation of cell division
and apoptosis by the EGFR signalling pathway and a
BRCA1/TP53 DNA damage response module. These genes
have been identified as central in the process of tumor for-
mation in breast cancer [23], [24]. The model incorporates
the positive and negative interactions between nuclear TP53
and MDM2 described by [25], the main messengers of the
PI3K/AKT and MAPK signalling following EGFR activation
described by [26] and adds BRCA1 and PARP1 regulation
of DNA damage. These pathways are gathered into a unique
Boolean network through the lens of their role in the regulation
of the G1/S transition and the triggering of apoptosis in
case of DNA damage. The corresponding Boolean network6,
constructed from published litterature and signalling pathways
databases (KEGG [27] and Signor [28]), is shown in Figure 5
and the molecular mechanism for each interaction is detailed
and referenced in the conference version of this article [29]).
The Boolean dynamics is bistable characterizing two cellular
functions in normal cells: either (1) the cell enters division by
activation of the G1/S transition and inhibition of apoptosis,
or (2) it enters in apoptosis and arrest the cell cycle.

B. Inference query

As network reprogramming effects biomarker profile
changes, it is required to 1) identify the biomarkers discrim-
inating phenotypes and 2) define the reprogramming queries
based on these biomarkers for causal genes and drug actions
inference.

Since the proliferative activity of cells depends on the bal-
ance between division and apoptosis, we selected CYCLIN D1
and BAX as biomarkers as they are the key effector of the
G1/S transition of cell division and initiation of apoptosis [30],
[31]. The pair (CYCLIN D1,BAX) distinguishes four pheno-
types: apoptosis, division, quiescence (apoptosis balanced by
division) and dormancy (neither apoptosis nor division) [32]
through to the following signatures: (0, 1) for apoptosis, (1, 0)
for division, (1, 1) for quiescence and (0, 0) for dormancy.
Dormancy and quiescence are cellular states described in
Cancer associated to a misbalance between apoptosis and
proliferation and whose signaling mechanisms remain poorly
known [33].

6For the sake of simplicity, the names of genes (by convention written in
upper case letters) can also denominate the proteins they encode.
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EGFR = ¬BRCA1
ERK1/2 = EGFR

PI3K = ¬PTEN ∧ EGFR
AKT = PI3K

GSK3β = ¬AKT
MDM2 = AKT ∧ TP53

TP53 = ¬MDM2 ∧ (BRCA1 ∨ ¬PARP1)

PTEN = TP53
PARP1 = ERK1/2

BRCA1 = ¬CYCD1
BCL-2 = AKT

BAX = ¬BCL-2 ∧ TP53
CYCD1 = (¬GSK3β ∧ ERK1/2)∨

(¬BRCA1 ∧ PARP1)

EGFR

ERK1/2 PTEN PI3K

PARP1 MDM2 AKT

TP53 BRCA1 GSK3β

BAX BCL-2 CYCD1
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Fig. 5. Boolean network with its regulatory graph representing the activatory
(headed arrows) and inhibitory (blunted arrows) interactions, and stable states
(at bottom).

Since cancer cells are characterized by their inability to
trigger apoptosis, the reprogramming query for the inference of
causal genes corresponds to the loss of apoptosis. Conversely,
as drugs induce apoptosis in cancer cells, the reprogramming
query for the inference of drug actions corresponds to the
gain of apoptosis. Apoptosis is formalized as a property by
the minterm of (0, 1) signature: p = ¬CYCD1 ∧ BAX. The
loss of apoptosis thus corresponds to the necessity of ¬p since
the apoptosis must not occur in any stable state. To recover this
marking, the query can be either the necessity or the possibility
of p. We have tested both and the solutions providing stable
states are the same.

Finally, the genetic events are modelled by control param-
eters as follows: the loss of expression of a gene following
loss-of-function mutations or other genetic events such as gene

deletion corresponds to D0-freezing; gene over-expression
following gain-of-function mutations or other genetic events
such as gene amplification are represented by D1-freezing; and
the loss of interactions between two molecules is interpreted as
U0-freezing. The Boolean network (Figure 5) is automatically
completed with control parameters by following the rules set
out in Section II-D. Notice that U1-freezing does not seem
interpretable in terms of biological events and not used here.

- Health → Cancer: necessary loss of apoptosis -

N
O

D
E

A
C

T
IO

N

Single D-freezing
BRCA1 = 0

TP53 = 0
PI3K = 1
AKT = 1

BCL-2 = 1
MDM2 = 1

Double D-freezing
GSK3β = 0, ERK1/2 = 1

PTEN = 0, EGFR = 1
GSK3β = 0, EGFR = 1

A
R

C
A

C
T

IO
N

Single U0-freezing
TP53 BAX

Double U0-freezing
BRCA1 EGFR, TP53 PTEN
BRCA1 EGFR, BRCA1 CYCD1
BRCA1 EGFR, BRCA1 TP53
BRCA1 EGFR, PTEN PI3K
BRCA1 EGFR, GSK3β CYCD1

- BRCA1 mutation (Cancer) → Cell death: possible gain of apoptosis -

N
O

D
E

A
C

T
IO

N

Single D-freezing
BRCA1 = 1
PARP1 = 0

ERK1/2 = 0
EGFR = 0

A
R

C
A

C
T

IO
N

Single U0-freezing
ERK1/2 PARP1
EGFR ERK1/2

Double U0-freezing
PARP1 CYCD1, PARP1 TP53

TABLE IV
FREEZING ACTIONS CAUSING THE GAIN OR LOSS OF APOPTOSIS.

C. Analysis of the results.

We inferred the actions from combination of D0/D1-
freezing on all variables (molecules) except markers and the
U0-freezing on all interactions separately to compare them.
The computed TN-actions are shown in Table IV. The TN-
actions for the gain of apoptosis have been inferred from the
model with BRCA1-deficiency (BRCA1 = 0).

Applied to the loss of apoptosis with D−freezing, the
method retrieves the main driver genes identified in breast
cancer namely BRCA1, TP53, PI3K and EGFR [34], [35].
Moreover, it segregates tumor suppressor genes (ie., frequently
affected by gain-of-function mutations in cancers) from onco-
genes (ie., frequently affected by loss-of-function mutations
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in cancers) [36], [37]: D0-frozen genes all correspond to
tumour suppressors and D1-frozen genes to oncogenes. For
the gain of apoptosis after application of BRCA1 deficiency,
the single D-freezing inferred actions recover the necessity
of blocking PARP1, the synthetic lethal partner of BRCA1.
The pair BRCA1/PARP1 are called synthetic lethal partners
because the use of PARP inhibitors in patients with BRCA1-
deficiency prevents any possibility of DNA-repair resulting
in permanent DNA damage inducing apoptosis of the cancer
cell [38], [39]. Finding such partnerships is critical for anti-
cancer treatment [40] but since the cancer target differs from
the drug target, they are hard to recover experimentally and
computationally.

The algorithm also predicts double D-freezing actions for
the necessary loss of apoptosis which suggest that overex-
pression of EGFR alone would not be sufficient to provoke a
cancerous phenotype and must be combined with either loss
of PTEN or GSK3β. The validation of such result is less
obvious than the former and is based on the concomittent
overexpression of EGFR and loss of PTEN/GSK3β. Work
in [41] confirms the existence of a co-occurence of EGFR
over-expression and loss of PTEN in 20% of the tumors
of the studied population. Moreover, authors also show that
PTEN loss is associated to resistance to EGFR inhibitors.
This work suggest the existence of the predicted cooperation
between these genes. The authors of [42] show that in cell lines
resistant to erlotinib (an EGFR inhibitor) the inactive form
of GSK3β (p-GSK3β) is upregulated and the downstream
pathways that should be inhibited by its active form are
activated. The authors suggest that combinatorial treatment
targeting both EGFR signalling and the pathways including
GSK3β (Wnt/mTOR) may circumvent the resistance to drugs.
Testing such suggestion would require further development of
the model by including Wnt/mTOR signaling crosstalk.

It is also predicted that EGFR inhibition would be synthetic
lethal with BRCA1 mutations. This is supported by the obser-
vation that the proliferation properties of BRCA-deficient cells
are sensitive to EGFR inhibition by erlotinib [35]. We found
no published work suggesting that ERK1/2 inhibition in such
cells would be synthetic lethal.

In summary, in the studied model the method accurately
predicts cancerous genes and drug targets and segregate onco-
genes from tumor suppressors. The inference also recovers
cooperative gene mutations and synthetic lethal partnerships.
The double freezing results provide some insights on the
necessary cooperative combination of perturbations that are
difficult to assess experimentally [43], [44]. Moreover by
inferring cores, the method separate causal genes to casual
ones (passengers) and determine frequent drivers as well as
rare ones which is more difficult to obtain by statistical
analysis that prioritize genes from the frequency of their
occurrence [45]. Usually, drivers are classified in subtypes
where a specific drug target is associated for each subtype.
In the proposed approach the drug target may be directly
inferred from the application of the TN-actions corresponding
to drivers on the initial Boolean network. Finally, arc inference
(U0−freezing) refines the results on nodes (D0−freezing) and,
to the best of our knowledge, the resulting predictions are not

experimentally confirmed.

VI. CONCLUSION

In this article, we have proposed a Boolean control network
framework to model perturbations of biological networks.
Based on this framework, we have designed a new abduction
based inference method that identifies the minimal causes for
reprogramming the behavior of the network. A library called
ACTONETLIB was developed in Mathematica to support the
application on concrete cases. It has been validated on a breast
cancer model and has shown that the method can retrieve
driver genes and drug targets.

A perspective of this work is to include the notion of
resistance in the inference. Two sorts of resistances were
established: the primary arising prior to a classical treatment
and the secondary which is an adaptive negative response to a
treatment. As the method infers all the causes responsible for a
biomarker profile shift, the primary resistance is interpreted in
our framework as the variation of the input Boolean network
of a patient in comparison to a generic one in which the drug
targets were deduced. In this context, we need to specialize the
network to a patient. The issue for the secondary resistance is
more complex and necessitates to predict the further alterations
of the network once a TN-action is applied. The prediction of
secondary resistance requires to extend the BCN model by
including the notion of temporal sequence of control inputs
instead of a single control input.
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Célia Biane is currently a post-doctoral fellow in Inria, Irisa, Univ. Rennes.
She holds a PhD in computer science of Paris-Saclay University, Univ. Evry
and master’s degrees in neurosciences (Sorbonne University) and systemic and
synthetic biology (Paris-Saclay University, Univ. Evry). Her research interests
focus on the development of computational methods for systems biology and
medicine and knowledge-based modelling of biological systems.

Franck Delaplace is a full professor since 2005
at Paris-Saclay University, Univ. Evry. After a PhD
related to high performance parallel computation,
he joins the Evry University in 1994. In 2000,
he realized a scientific retraining in computational
biology and bioinformatics. His current research
topics concern the analysis of dynamical properties
of biological networks, and computational network
medicine.


