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SIMPLE PROOF OF BOURGAIN BILINEAR ERGODIC
THEOREM AND ITS EXTENSION TO POLYNOMIALS
AND POLYNOMIALS IN PRIMES

EL HOUCEIN EL ABDALAOUI

ABSTRACT. We first present a modern simple proof of the classical
ergodic Birkhoff’s theorem and Bourgain’s homogeneous bilinear
ergodic theorem. This proof used the simple fact that the shift
map on integers has a simple Lebesgue spectrum. As a conse-
quence, we establish that the homogeneous bilinear ergodic av-
erages along polynomials and polynomials in primes converge al-
most everywhere, that is, for any invertible measure preserving
transformation T, acting on a probability space (X, B, i), for any
fel(X,u,gc¢€ LT/(X,/L) such that % + % =1, for any non-
constant polynomials P(n), Q(n),n € Z, taking integer values, and
for almost all x € X, we have,

N
0 TP a),
n=1

and 1
- Z F(TP®) 3) (TP gy,
™~

P<N
p prime

converge. Here 7y is the number of prime in [1, N].

What is hardest of all? That
which seems most simple: to
see with your eyes what is
before your eyes.

Goethe

1. INTRODUCTION

The classical ergodic theorem has many proofs which use in some
sense of-course the classical ergodic maximal inequality. The known
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2 E. H. EL ABDALAQOUI

elegant proof of the ergodic maximal inequality is due to Garcia [19].
This proof is reproduced by almost all authors in any introduction
book on ergodic theory. There is also an “Easy and nearly simulta-
neous proofs of the Ergodic Theorem and Maximal Ergodic Theorem”
established by M. Keane and K. Petersen [28]. Moreover, using the non
standard ideas of Kamae to proof ergodic theorem, Y. Katznelson and
B. Weiss produced a combinatorics proof of it [27]. In [31, Theorem
10.28, p.110], M. G. Nadkarni gives a measure free proof of Birkhoft’s
theorem, and state a descriptive version of Rhoklin lemma.

Here, our aim is to produce a simple proof of Birkhoff theorem us-
ing the oscillating method. We will further produce a simple proof of
Bourgain bilinear ergodic theorem [9]. This later theorem gives an af-
firmative answer to the question raised by H. Furstenberg [16, Question
1. p. 96]. Precisely, it assert that the homogeneous bilinear ergodic
average converge almost everywhere. For a finitary simple proof of it,
we refer to [2]. Subsequently, we will extend Bourgain homogeneous
bilinear ergodic theorem to polynomials and polynomials in primes.

Obviously, Bourgain bilinear ergodic theorem is a generalization of
Birkhoff theorem. But, as we will see, the proof of it depend heavily
on Birkhoff theorem.

Let us point out also that the Birkhoff ergodic theorem and the Hopf
ergodic maximal inequality are equivalent. For more details, we refer
to [19, Chap. 1] and the references therein.

2. SET-UP AND TOOLS

Let (X, A, T, ) a dynamical system, that is, (X, A, p) is a probability
space and 7' is a measure preserving transformation. 7T is said to be
ergodic if the measure of any invariant set A (i.e. u(AAT~(A)) = 0)
is 0 or 1. It is well-know that the reduction to the ergodic case can be
used by applying the ergodic decomposition. Therefore, in many cases,
it is suffices to study the ergodic case. We denote by L?(X, 11) the space
of square integrable functions and by Z the o-algebra of invariant sets.

In this setting, Birkhoff ergodic theorem assert that for any f €
LY (X, p), for almost all z € X, we have

(21) 3 ) —— B(1D).

The Bourgain bilinear ergodic theorem say that for any f,g € L*(X, ),
for almost all x € X, for any a,b € Z,
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(22) S g1

converge. The prime ergodic theorem established by Bourgain [7] assert
that for any f € L*(X), for almost all z € X,

1
2.3 — T?x) converge.
(2.3 ry L J7) come
p prime

Bourgain prime ergodic theorem (2.3) was strengthened to L™, r > 1,
by Wierdl. But, as pointed out by Mirek and Trojan [30], the reader
should be made aware that there is a technical gap in [40, p.331].
Therefore, the approach of Wierdl should be combined with that of
Mirek-Trojan [30] or Cuny-Weber [12]. Later, Nair extended (2.3) [33]
by proving that for any r > 1, for any non-constant polynomial @)
mapping the naturel numbers to themseleves, for any f € L"(X, u),

(2.4) 7% > [T

PN
p prime

converge almost surely in x with respect to pu.

Here, we will prove the following theorem.

Theorem 2.1. Let P(n),Q(n),n € Z be a non-constant polynomi-
als taking integer values. Let (X, A, T, ) be a measure preserving dy-
namical system. Then, for any f € L'(X,pu),g € L (X, ) such that
% + % =1, the bilinear averages

N
1 n n
LS HTa)g(Ta),
n=1
and the prime bilinear averages

1
- E F(TPP ) g(TOP)g),
7TN p<N
p prime

converge almost everywhere in x with respect to .

The proof of Theorem 2.1 is postponed to section 7. But, for the
moment, let us point out that the most important result needed is the
following strong maximal ergodic inequality, which may be of indepen-
dent interest.
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Theorem 2.2. Let P(n),Q(n),n € Z be a non-constant polynomi-
als taking integer values. Let (X, A, T, ) be a measure preserving dy-
namical system. Then, for any f € L'(X,p),g € L (X, ) such that
%+%:1, we have

sup
N>1

r'’

N
N DS
=1

< Gl £ 117
1

We start by noticing that, obviously, we have

f=E(IZ)+ f-E(fD),
Furthermore, it is easy to see that (2.1) holds for the function E(f|Z).
We thus need to establish only that the convergence holds for a func-

tions of the form f —IE(f|Z). Notice further that for such functions the
limit is zero.

The Hopf ergodic maximal inequality state that for any f € L*(X, u),

1 n
N;foT (v)

satisfy

u{x : M(f)(x)>A}§ .

It follows from the Hopf ergodic maximal inequality that it is suffices
to see that the convergence holds almost everywhere for a dense set.
Indeed, let € > 0 and f € L3(X, u1), assume that there exist a function
g for which the converge almost everywhere holds and || f — g|| < &2
Then,

,u{x : M(f —g)(x) > 5}§ £.

Whence, there exist a Borel set X, with measure great than 1 — ¢ for
which we have, for any x € X,

limsup | S0 oT(x)| <,

n=1

We thus get

N
u{limsup’%ZfOT”(x)‘ > 5}§ €.
n=1

Take a sequence (g,,) such that > e, < 400 and apply Borel-Cantelli
to see that for almost all x € X,



WITH OSCILLATION METHOD. 5

N
1
lim sup ‘N Zf oT"(x)} = 0.
n=1

Hence, for almost all x € X, we have

N
1 n
N Z foT @) 520
Notice that we have also proved that if the Hopf ergodic maximal
inequality holds then the family of functions for which the convergence
almost everywhere holds is closed.

Spectral measure and spectral tools. The notion of spectral mea-
sure for sequence goes back to Wiener who introduce it in his 1933
book [39]. More precisely, Wiener considers the space S of complex
bounded sequences g = (g, )nen such that

1
(2.5) lim

N—+o0o NV

N
=1

exists for each integer k € N. The sequence F(k) can be extended to
negative integers by setting

F(~k) = F(k).

It is well known that F' is positive definite on Z and therefore (by
Herglotz-Bochner theorem) there exists a unique positive finite measure
o, on the circle such that the Fourier coefficients of o, are given by the
sequence F'. Formally, we have

& (k) & /_ ' e g, (1) = F(k).

The measure o, is called the spectral measure of the sequence g.

This is can be linked to the spectral theory of the dynamical system.
Indeed, if T" is an invertible measure preserving transformation of the
o-finite measure space (X,.A,m), then T induces an operator Ur in
LP(X) via f — Ur(f) = foT called Koopman operator. For p = 2
this operator is unitary and its spectral resolution induces a spectral
decomposition of L*(X) [34] (see also [32] and [1]):

+o0

(2.6) L(X)=EDC(f) and of, > 0y, > -+
n=0

where

o {f;};° is a family of functions in L?(X);



6 E. H. EL ABDALAQOUI

e C(f) o span{UZ%(f) : n € Z} is the cyclic space generated by
fe L*(X);

e 0 is the spectral measure on the circle generated by f via the
Bochner-Herglotz relation

@7)  Gn) =< Upf.f >= /X f o T(@)F (x)dpu(x);

e for any two measures on the circle a and 8, > [ means 3
is absolutely continuous with respect to a: for any Borel set,
a(A) = 0 = [(A) = 0. The two measures o and [ are
equivalent if and only if a >  and g > a.

As a nice exercise, it can be seen that if the map 7' is acting ergodically
on a probability space then for almost all x € X, oy is the weak limit
of the following sequence of finite measures on the circle

2

df,

11 &
- ™ o

that is, for almost all € X, the sequence (f(7™x)) is in the space S.

The spectral theorem ensures that the spectral decomposition (2.6)
is unique up to isomorphisms. The maximal spectral type of T is the
equivalence class of the Borel measure oy . The multiplicity function
Mp:T—{1,2,---,} U{+o0} is defined oy, a.e. and

Mr(z) =) 1y, (2),

where, Y7 =T and Y; = supp (ZZ?) Vi > 2.

1
An integer n € {1,2,---,} U {400} is called an essential value of
My if op,{z € T : Mp(z) = n} > 0. The multiplicity is uniform or
homogeneous if there is only one essential value of Mp. The essential
supremum of My is called the maximal spectral multiplicity of T". The

map 7'

e has simple spectrum if L?(X) is reduced to a single cyclic space;

e has discrete spectrum if L?(X) has an orthonormal basis con-
sisting of eigenfunctions of Ur (in this case oy, is a discrete
measure);

e has Lebesgue spectrum (resp. absolutely continuous, singular
spectrum) if oy, is equivalent (resp. absolutely continuous, sin-
gular) to the Lebesgue measure.



WITH OSCILLATION METHOD. 7

The reduced spectral type of the dynamical system is its spectral type
on the LZ(X) the space of square integrable functions with zero mean.

Here, we will use the fact that the shift map on Z (S : n—n+1)
acting on Z equipped with the counting measure has a simple Lebesgue
spectrum.

As customary, the Fourier transform of f € ¢*(Z) is denoted by

f(6) =" f(m)e™™, 6 € [-m,7),

nel

and the Fourier transform of a function F' € L?([—m, 7]) is given by

™

~ 1 :
F(n) / F(0)e ™dg, Vn € 7.

"o

-7
The convolution operator * is given by

Frg()=>_ fx)g(j —x), Vf g € ().

€L

It can be easily seen that the Fourier transform operator F gives a
spectral isomorphism between (*(Z) and L*([—m,n]). This is one of
fundamental ingredient in Bourgain oscillation method.

According to the spectral isomorphism, we have

FHFG) = F\(F)» F\(G), VF,G € L*(T).

Therefore the convolution can be seen as multiplication from spectral
point of view.

3. CLASSICAL PROOF OF BIRKHOFF’S ERGODIC THEOREM

We start by noticing that the closer of the subspace C' = { g—go

T, g€ L2(X,,u)} is dense in the space {f —E(f|A), f € L2(X,,u)}.

Indeed, let ¢ be a continuous linear on L?(X, u1). So, ¢ is given by the
multiplication by some h € L?(X, 1) and we have

o(f) = / F (@) du(z).

Assuming that ¢(g—goT) = 0, for any g € L*(X, u), we get h = hoT ™1,
that is, h is an invariant function. Hence, by ergodicity, h is constant
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almost everywhere. We thus get, by the nice properties of conditional
expectation,

o(f — E(f]A)) = / F (o) hdp(z) — / E(f|A)hdu(z)
_ / f (o) () — / E(f7|A)dp(x)

~ [ f@hduto) - [ Rauta

for all f € L2(X, j1). Whence C = {f —E(f|A), f € L*(X, u)}- Now,
it is straightforward that if g € L> then, for almost all x € X, we have

1
Z g goT)(T"x) —— 0
n—-+4o00
0
To finish the proof, we notice that L> is dense in L'. |

Remarks.

(1) One can obtain the proof of ergodic Birkhoff theorem without
using ergodic maximal ergodic if the L2-convergence holds with
some speed. Meanly, if

Z foT™() —E(fIT)|| <Cry(N),

2

and for any p > 1, > o, ¥([p"]) < 400, To accomplish the
proof in this case, it suffices to use Etamedi’s trick [15].

(2) The Hopf ergodic maximal inequality take different forms in
Analysis. It is known also as Hard-Littlewood maximal in-
equality [23, Theorem 8], [24, Th. 326] (for more historical back-
ground, see the introduction in [4]), Kolomogrov-Doob inequali-
ties [41, Chap. 14 p.137-138], [22, Theorem 2.1., Theorem 2.2, p.
14-15], Carleson-Hunt maximal inequalities [11], [25], [29], [21].
We refer further to [36, Chap. 2]

We end this section by pointing out that here, by exploiting Etamedi’s
trick, we will prove only that the almost everywhere convergence holds
for a sequences of the form N,, = [p™], m € N, for any p > 1. Such
sequence is denoted by S,.
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4. CALDERON TRANSFERENCE PRINCIPLE AND THE MAXIMAL
ERGODIC INEQUALITIES FOR HIGH DIMENSION

The sequence of complex number (a,) is said to be a good weight in
LP(X, ), p > 1 for linear case, if, for any f € LP(X, ), the ergodic

averages
L

N Z a; f(T7x)
j=1

converges a.e. (almost everywhere). We further say that the maximal
ergodic inequality holds in LP(X, i) for the linear case with weight (a,,)
if, for any f € LP(X, i), the maximal function given by

Za] TJ ‘

M(f)(x) = sup

N>1

satisfy the weak-type inequality
wfe s M(f)@) > A} <],

for any A > 0 with C is an absolutely constant.

It is well known that the classical maximal ergodic inequality (Hopf
maximal inequality) is equivalent to the Birkhoff ergodic theorem [19].

The previous notions can be extended in the usual manner to the
multilinear case. Let & > 2 and (73)%_, be a maps on a probability
space (X, A, u) W thus say that (an) is good weight in LPi(X, p),
pi > 1,1 = .k, with ZZ 1p = 1, if, for any f; € LPi (X, p),
1=1,--- .k, the ergodlc k-multilinear averages

N k ‘
v 2o L[ Ai(To),
j=1  i=1
converges a.e.. The maximal multilinear ergodic inequality is said to

hold in Lpi(leJ’)7 Di > 17 1= 17 7k7 with Zf;lpli - 17 1f7 for any
fie LP(X,pu),i=1,--- k, the maximal function given by

M(fi,--, fi)(x) =

satisfy the weak-type inequality

k
wfe o M@ >} <IN,
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for any A > 0 with C is an absolutely constant.

It is not known whether the classical maximal multilinear ergodic
inequality (a, = 1, for each n) holds for the general case n > 3. Nev-
ertheless, we have the following Calderén transference principal in the
homogeneous case.

Proposition 1. Let (a,) be a sequence of complex number and assume
that for any ¢, € (*(Z), we have

N 2ol vt =)

H sup
N>1

)< el 191l

0z

where C' is an absolutely constant. Then, for any dynamical system
(X, A, T, ), for any f,g € L*(X, pu), we have

1 & -
N;anf(T"x)g(T )| <clfllle

27

H sup
N>1

We further have

Proposition 2. Let (a,) be a sequence of complex number and assume
that for any ¢, € (*(Z), for any X > 0, for any integer J > 2, we
have

HlSJSJ © SUPN>1 %Zleam(ﬁn)wj—n)‘ >>‘H

<C H(z)HZZ(Z)AHleQ(Z)’

where C' is an absolutely constant. Then, for any dynamical system
(X, A, T, ), for any f,g € L*(X, ), we have

,u{a: € X : sup
N>1

Ly 171 o]
¥ 2l (I2)g(T )| > 2} < R

The proof of Propositions 1 and 2 is similar to that given in [37, p.
135]; we include it for the reader’s convenience.

Proof of Propositions 1 and 2. Let N € N and J a positive
integer such that J > N. For any =z € X, put

_Jf@me) o< in| <,
(4.1) Pa(n) = {0 ot
and,

_ (@) o< |n| <,
42 Yalm) = {0 if not.
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Therefore ¢, 1), € (*(Z), we further have

J J
(43) (el = D 1@ 2), and [l = D 9T "0)
—J —J

We thus get, by our assumption,

J—N

sup
N>N>1

5 el )~ )|

—(J=N)

(4.4) < CJ > f(T"x)QJ > |g(rma)).

Integrating and remembering that 7" is a measure preserving transfor-
mation, we obtain

z/sup

U~ N>N>1

(4.5) < C/ \l > f(T"fU)zJ > Lo =) Pdpa(x)

Using Cauchy-Schwarz inequality, we can rewrite (4.5) as follows.

Z a, f(T™)g
< oJ / Z (1) Z |g(T72)[*dp(x)

< C(/Z \f(T"x)}zu(l‘)) </Z \g(T‘"x)}2u(w)) :

@7 <o+ 0|9l

3 2 o (T)g(T ) dn()

dp(z)

(2(J = N)+1) / sup

N>N>1

Letting J — +00, we get

[ sw \NZanfT" o(1")

N>N>1

(4.8) < 0\\f\\2\\9H2-

()
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Now, letting N — +00, we obtain the desired inequality. Thanks to
Beppo Levi’s monotone convergence theorem. The proof of Proposition
2 being left to the reader. [ |

It is easy to formulate a k-multilinear’s version of Proposition 1 and
2, for any k > 3. For the proof of it, we refer to [14, Appendix].

We end this section by recalling the maximal ergodic inequality for
the shift map on Z. As we shall see, this maximal inequality is due
essentially to Hardy-Littlewood. Indeed, it is a direct consequence
of Hardy-Littlewood maximal theorem (see for example [42, Theorem
13.15, p.32]. Nowadays, this later theorem has several proofs. Never-
theless, almost all recent books reproduced the simple and beautiful
proof due to F. Riesz [35] in which he used his “rising sun lemma” to
get the weak Hardy-Littlewood maximal inequality. It turns out that
this later inequality is equivalent to weak maximal ergodic inequality .
For more details and historical facts, we refer to [36, Section 2.6].

Here, from [23], we need exactly the following discrete maximal in-
equality.

Lemma 1. ( [23, Theorem 8.]). Let r > 1, and (a,) be a sequence of
positive number. Then, for any J > 1, we have

J 1 T . . J .
> (max (g 2 ) <2(7=) X

xr= n=m

A straightforward application of Lemma 1 yields the following strong
maximal inequality.

Lemma 2 (Maximal inequality for the shift on integers.). Let r > 1
and f € (P(Z). Then

s <2l

N>1 r r

L&
— flx+n)
Py

5. MODERN PROOF OF BIRKOFF ERGODIC THEOREM

The modern proof of Birkoff ergodic theorem is due essentially to
Bourgain and it is based on the oscillation method [5], [6], [7], [8] (see
also [37].). This later method goes back to Gaposhkin [17], [18]. But,
it was developed by Bourgain to prove several version of generalized
ergodic pointwise theorem. It turns out that the oscillation method
has a deep connection with Martingale theory, Harmonic analysis and
BMO-H? spaces theory which is linked to Carlson measures (see for
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instance [26] and [20, Chap. 7, p.117]). Here, using Calderon’s corre-
spondence principal [10] (see also [4]) and a simple spectral argument,
we will prove the following:

Theorem 5.1. Let (X, B, 1) be a probability space and f € L*(X, p).
Then, for any increasing sequence (Ny) of positive integers, for any
K > 1, we have

K 1 N 1 Nyt
w |y 2 S0 - )|, < VE| Sl

k=1 NkSNSIf)VkH an:;f( ) Ni1 nz::l f(T") 2 17112
NES,

where C' is an absolutely constant.

As before the proof of Theorem 5.1 will follows from the following
theorem.

Theorem 5.2. Let ¢ € (%(Z) . Then, for any increasing sequence (Ny,)
of positive integers, for any K > 1, we have

K 1 N 1 Ngt1
su — n+x)— rT+n ‘
;‘ ngNglz)ka an_:lf( ) Ny nz—:l A ) 2(2)
- NeS, - -
(5.1) < OVEK| fllezz,

where C, is an absolutely constant.

The proof of Birkhoff ergodic Theorem will follows from Theorem
5.1 by virtue of the following corner stone lemma in the method of
oscillation . We state it in a more general form than needed here,
since we believe that this lemma is of independent interest and will
be useful for additional applications'. For sake of completeness, we
present its proof (see also [5, Proof of Theorem 5.], [8, p.204, and
p.209], [37, Theorem 4.], [13, Lemma 3.1] ).

Lemma 3 (Corner stone lemma of oscillation method.). Let p >
1 and (fn)n>1 be a sequence of measurable square-integrable functions
on a o-finite measure space (X, A, p). Assume that there is a sequence
(Ck)k>1 such that for any increasing sequence of positive integers (Ni),
for any K > 1, we have

L« As T observed in [5], this approach should rather be considered as a general
method than the solution to some isolated problems.”
J. Bourgain (28/02/1954-22/12/2018.)
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< CK, and,

(1) ZH sup kaH‘ »

z\/,€<1\/<1\fk+1

(2) ?—>0 as K — +00.
Then the sequence (fn)n>1 converges almost everywhere.

Proof. We proceed by contradiction, assuming that (f,),>1 does not
converge for almost all z € X and, since p is o-finite, we assume also
that p(X) is finite. Therefore, the Borel set A of = such that (f,(2))n>1
does not converge has a positive measure which we denote by «. For

any € € Q% , put
A = {a; €X : YN eN,In,m> N st |fule) = fulz)] > g}.

Then, A. is a measurable set. Furthermore, p(A.) o> 0, by
E—r

our assumption. Therefore, for small enough € > 0 we can assert that

o def
n(Ae) > 55 = 8.

We proceed now to construct by induction a sequence (Vi) for which
we will prove that (2) can not be satisfied. Let N; = 1 and assume
that N, has been chosen. Therefore, by the definition of A., for all
x € A, there exist n,m > Ny such that | f,(z) — fm(z)| > e. We thus
deduce that for any M > max {n,m}, there exist s € N such that
N < s < M and

| fo() = far(z)] >
Since, otherwise, we would have

| fa(@) = fn(@)] < |Ful@) = far(@)] + | (@) = far(2)] <&
Let us put now

Letting M — +o00, we see that u(By, p) — 1(A:) = 8 > 0. We

can thus choose M large enough such that u(By, a) > % déf Put

N1 = M. This finish the construction of the sequence (Ny) for which
we have, for any k € N, for any € By, n,,,, SUDN,<n<N,,, | fi(z) —

N ™M

N ™

Bn,.m = {z €A, : sup ‘fN(ZL’) — fM(ZL’)‘ >
Ny<N<M

Iy, +1(a:)} > 5. Applying now the Markov inequality trick to see that

p > U(BNkakH)‘gp > 7-51)'
p 2p 2P

H sup ‘fk(x> - kaH(x)‘
N <N<Ngiq
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Whence, for any K € N*,

(5.2) » Z H sup = [N

Nk<N<Nk+1

£
> W'_v
p 2

which contradict our assumption (2) and the proof of the lemma is
complete. O

we need also the following lemma.

Lemma 4. Let g be a positive integrable function of the circle. Then,
there is a constant C, such that

" 1 in
(5.3) /_ﬂ]\sflelg)p N(;e QT %(9)> d9<c/

Indeed, we have

Lemma 5. Let g be a positive integrable function of the circle. Then,
there is a constant C, such that

54 Y / ’%(i e — 1[—%#%1(9)) ’2d9 <G, /W g9(0)do.
NeS, n=1

—Tr

Proof. By Jensen-Fubini theorem, we are going to prove the following

G@L/ZhaﬁywﬂmwwﬂnWWSQKp@w

For that, let 6 be given such that # # 0. Then, there exist K > 0
such that p~ K+ < % < p~ B+ Write

50 S [H(E peno)]

Nes,
23\N( me—lk%*%ﬂ”)r

NesS,
~ >0
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To estimate the first sums, we write

2

| %#%)(9))

= (el

]

==

1 [M]=
3

NeSp NEeSp
x>0 ~ =16
(5.7) <) N6,
NESp
720

since |1 — | < |z|, for any x € [—7, 7). We thus get

58 Y \%(fj “1gap®)]

Nes,
>0

K 400
< Z p2E—R) Zp—% < Zp—zk.
k=1

E<K+1 k=1

We proceed now to the estimation of the second sum. Likewise, write

> (e - geno)f = Xy e

Nes,
 <10] ~ <0l

1

The inequality (5.9) follows from the classical inequality:

. € >
s | —
9 sl

,for0 <z <.

RS
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Consequently, we obtain

(5.10) > ’%(ﬁ:eme - 1[_%’+%)(9)> ’2 <} paEh

Nesp k>K

& <I9]
_ § —2k

k>1

Summarizing, we have proved that there exist a constant C(p) such
that

(2 (e s <co)

This combined with (5.5) yields the desired inequality. The proof of
the Lemma is complete. O

We are now able to proceed to the proof of Theorem 5.2.

Proof of Theorem 5.2. As in the proof of Lemma 4, we will prove
that there exist a constant C, such that

+00 1 & 1 Nit1 9
]; ‘ Nk;:gml }N nz::lf(n + ) — Neos nz::l flz+n)| 2
NES,
(5.11) < CprHZ2(Z)'

By the spectral isomorphism theorem, let us denoted by gy the image
of 1[_=z =), for each N. Therefore, we can rewrite (5.11) as follows

+o0 1 N

sup [ > f(n+a) — gn(a)+
k=1 NpSNSNpq n=1

NeS,

Ny,
1 k+1 9

(gN(x> — INgis (LL’)) - Nk—l—l Z f(SL’ + n) — YNpp1 (LL’))‘

<1y

2(z)
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But
+o0 1 N 1 Niy1 9
sup — (n+ z) flz+
o1 Nk<1\r<N,€Jr1 Nz:: Nk+1 ; )} 2(2)
1 & 2
S (s ([AY 0 -t +
k=1 z€Z Nkﬁjévé”kﬂ n=1
P

}gzv(x) — gy (7 } + ‘Nk-i-l ilf (x+n)—gn, (T )}2) )

2

<o 3], o0 [¥ 2000t

Pt NkSJ\J[V§1\;k+1 (z)
“+oo 9
5.12 n ‘ su 2) — gu. x} ,
(5.12) ; W gn(T) = g, (7) e2(z>>
NeS,

by virtue of the following basic inequality
la+b+c]* < 3(@2 + b +c2>, for any a,b, c € R,

and since, for any = € 7Z,

Ngt1 1 N
r+n L ’g su — n+x)— x)|.
)NM > fwem =@ < s |53 o) - ox(
NeS,

Now, observe that the first sum in (5.12) is bounded by Lemma 4.
Indeed, by the spectral isomorphism, we have

2

400 1 N
s |3 fn+2) - gn ()]
—1 NkSJ\ITVES‘S{\;kJrl n=1 02(7)
400 1 N 9
inf
<2 2 HNZe Rl .
k=1 Np<N<Npyq n=1 f
es,,

<> H— 2”9—1[—%,%}(9))‘

NeS,
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we further have

> ¥ 5 -igeso)|

2
E>1 Np<N<Npyq L2(oy)
NeS,

< Coll flleecz)

since o is absolutely continuous with respect to the Lebesgue measure.

We proceed now to estimate the second sum. For that, notice that
we have

sup gn(z) — gNkH(fE)‘ = sup gn * (QN,c - gNkH)(l")}-
Ngs=N=Ng g Nps=N<Ng g
NEeS, NeS,

Indeed, by the spectral transfer, we have

Flon * (95, = 9nes)) = L-g43) (1[—Nik,+§k} — 1 Nk+17+Nk+ﬂ>
]

Nit1

= ftf] T U gyt
= ‘F(gN_gNk+1)’

It follows that,
2

Z H sup  |gn (@) — gN;Hl(ZL')}

N <N<Nj 2(z)
NéES,
2
= Z ’ sup gN(SL’) * (gNk - gNk+1)(x)’ o
E>1 NeSNSNpig ¢(2)
= NES,
(513) < Cp Z HgNk — YNp4q ||§2(Z)

k>1

By the maximal inequality for the shift on integers (Lemma 2). Indeed,
for any f € (*(Z), we have

H sup ii\f: flx+n)—gnx* f(x)

Nes, | N

2(2)
N—

:HSEE’N

ZHNZL{ noS"sf—gnx*f

NeS,

62

N-1

N [E5 St 0]

NeS, n=0

LA(r) ~
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The last inequality is due to Lemma 5 and the spectral transfer iso-
morphism.

Now, observe that (5.13) implies the desired estimation about the
second sum, since, again, by the spectral transfer,

> lgw = gve e = [ 1[—@#@}“%2@)
k>1 k>1

< og([-mm) = 1],
We thus conclude that (5.11) holds, that is,

Niq1

Z Z HNZSM mgemg2

L2
=1 Np<N<Npyq (@7)
NeS,

< CP‘Uf([_Tr’ 71-))

It still to prove (5.1). For that, we apply the triangle inequality and to
finish the proof, we apply Cauchy-Schwarz inequality to obtain

5

Nk<N<Nk+1

k:+1

1 N
;f( z+n)) Nk+1;fx+nm

N1 1
3
S@(;‘Nkiggikﬂ an—l—x Nk+1;fn+x )
< CVE| o
The proof of the theorem is complete. O
Remarks.

a) Notice that our proof can be considered as a simple proof of
Theorem 2.6 in [26] and Corollary 6.4.3 in [38, chap.4, p.152].
Notice also that the proof in the later reference is inspired by
the Regularization Spectral Principal due to Talagrand.

b) Let us further point out that the mazimal ergodic inequality play
a curial rule.

6. PROOF OF BOURGAIN BILINEAR ERGODIC THEOREM

The proof of Bourgain bilinear ergodic theorem will follows form the
ergodic theorem. Indeed, By the fondamental Bourgain observation
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(see Equation (2.15) in [9]), for any f, g € (*(Z), we have

L
N ; x+n)g(x —n)
T 1 N
(6.1) = / f0) (N > gle— n)e_i(m‘”)e) e 0 dp.
Put
go(z) = g(x)e™ Vo € Z.

Then, for any 6 € [—, +7), (go(x)) € (*(Z). Applying Jensen inequal-
ity, it follows that

N N1
N gl =) = e S fGa gt =
(6.2) = /lf(e) ii (x—n)— — Ni (x —n) | 2" do
. N 0 N n=1 ge Nk+1 n=1 ge .

do.

(L BSOSy

Squaring and using Cauchy-Schwarz inequality combined with Parseval
inequality, we obtain

2

1 N N1
sup — r+n)g(x —n) x+n)glr—n
Loy Z )g( Nkﬂ ; £( )
NesS, B
(6.3)
1 1 N 1 Ni41 2
< 2 su — r—n)— r—mn)| db.
o AT 0 SULCE IR SPTCE

NES,
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Integrating, we rewrite (6.3) as follows

3 fatmg(a—n)

n=1

sup
NEp<N<Npq
NeS,

Ni41 2
1

Ty 2 [+ mlgta =)

2(z)

1 1 al
< f||2/ ‘ sup | D> ga(x —n)
H 2 0 Np<SN<Ngyq N ;
NeS,
Ni41
) 2
_ Z go(x — n)’ 0.
N 2 2@
Applying (5.2), we get
+00 1 al
swp | > @+ n)gle —n)
1 || NeSN<Nppq N n=1
Nes
(6.4) 1 ™ 2
> f(a:+n)g(év—”)‘
k+1 1 &)

< G|l ll9ltw-

It follows (again by the CauchySchwarz inequality) that for any for any
K>1,

K L
sup — f(x+n)g(x —n)
k=1 NkSNGSNk+1 N ;
(65) 1 Nit1
—— > fe+m)gla—n)
k1 S e @)

< OVE||flp@lalte-

In the same manner, by applying Theorem 5.2 combined with Caucy-
Schwarz inequality, we can see that for any K > 1, for any h € (*(Z)
such that Hh”gz(z) =1, we have
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K 1 N
3 < | L3 s+ migle—n)
k=1 NpSNSNgy1 n=1
NES,
(6.6) . Ni
- fle+n)g(z—n),h
Nk+1 n=1 22(7)

< Cp\/?HfH@(Z)HQHZZ(Z)’

Now, using carefully similar arguments to that in the proof of Propo-
sition 1 and 2 combined with Cauchy-Schwarz inequality and Riesz
representation theorem, we conclude that, for any F, G € L*(X),

K N
1
(6.7) sup  |= Y F(T"z)G(T ")
; NkSNSNk+1 N;
P
1 Ni41
- F(T"2)G(T ")
Mo 2 P |

< CVE||F||2| G,

and this achieve the proof.

7. PROOF OF BILINEAR ERGODIC THEOREM ALONG POLYNOMIALS
AND POLYNOMIALS IN PRIMES (THEOREM 2.1).

For the proof of Theorem 2.1, we need the following two lemmas.

Lemma 6. Let g € (*(Z) and let (Ny) be any sequence of positives
integers such that 2N, < Ngy1, k = 1,2,--- .. Then, for any non-
constant polynomial Q) mapping natural numbers to themselves, for any
K > 1, we have

K 1 N 1 Ny
o N T+ &) - T+ Q(n ‘
g) NkSNSIJ)VkJrl N;g( Qn)) Nit1 ; gl +Qn)) ©(2)
NES,

(7.1

~—

< C,C(K)||glle@),
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and
sup |— Y glz+Q(p)-
k=1 NkSNSNk+1 ﬂ-N p<N
€S, p prime
3 gl Q)]
T n
T Ny41 P<Npit g 2(2)
p prime
(7.2) < C,C(K)||9llez)
C(K)

where C, is a constant depending only on p and N — 0 as K —
+00.

The second lemma is an extension of the Hardy-Littlewood maximal
inequality (Lemma 1), we state it as follows.

Lemma 7. Let r > 1 and g € ¢"(Z). Then, for any non-constant
polynomial () mapping natural numbers to themselves, we have

N
1
sup | — T+ n ‘
s |5 2ot @],
(7.3) < C|gller @),
and
1
sup |— T+ ‘
[ su0 | > ol o],
p prime
(7.4) < Cllgller@),

where C is an absolute constant.

The proof of the Lemma 6 and Lemma 7 is based essentially on the
Hardy-Littlewood circle method. For their proof, we refer to [6], [7], [33,
Lemmas 4 and 5] and the expository article [37].

Now, we proceed to the proof of Theorem 2.1. Applying the same
arguments as in the proof of BBET, we obtain, for any f, g € (*(Z),

N 2ot Pgte — P(n)

(7.5) = / N0 (% > gla - P(n))e—“w—f’("))@) e**0dp.
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Whence
s |37 e+ P)gle — Pn)
Neg, 1 n=l
1 Ngt1
N 2 o Pl = P(o)
(7.6)

N Ny

L 1 1

< 0 su — r— P(n)) — — r— P(n))|do,
</ O s | S ole = o)~ 3

NeS,

where gg(z) = g(z)e®*?, Va € Z.

Now, let K > 1 and for each k = 1,2,--- , K, let hy, € £*(Z) such that
Hth 2@ = 1. Then, by applying Lemma 7.1 combined with Cauchy-
Schwarz inequality, we get

K 1 N
>, 52—
NES,
1 Ngt1
T 2 1@ = PO,
T 1 N
</ FON s |y Samte P
Nes,
de (z — ) ||z )|>d9
(7.7) < C CE)| flle@]gllew-
This gives
K 1 N 1 Ni+1
sup (= ) g(z— P(n)) - g(z — P(n))|
k=1 ng]\lfvegé\;kﬂ N ; Nk+1 ; 02(Z)
(7.8) < C,CE) || flewl9llew,

Thanks to Riesz representation theorem. We thus get that the con-
vergence almost every holds for F,G € L*(X, ). Applying the same
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machinery, we obtain the proof of bilinear ergodic theorem along poly-
nomials in primes. To finish the proof of Theorem 2.1, we need to
establish Theorem 2.2

8. PROOF OF THEOREM 2.2

Let us denote the bilinear maximal function by

M(f,g) = sup
N>1

N 2o Pgte = P(n)|

Therefore, obviously, M maps (*°(Z) x {>(Z) to £>°(Z). We thus need
to see that M maps (1(Z) x £>(Z) to £*(Z). For that observe that if
f et Z),g € ("(Z),r > 1. Then, by applying the same reasoning as
before combined with Holder inequality, we have

N T
Jsvug Z x+ P(n))g(x — P(n))
= HfHel(Z / SUP de (z — d9>r’
1 1 N "
8D <GSl [ gy St~ P

Therefore, by the maximal inequality, we obtain

up |+ S f + P(w)gla — P(w)|
(8.2) < G| fle@| glle -

The case r = +o0o can be handled in the same manner. To finish the
proof, we apply the bilinear interpolation.

For the general case, exploiting the fact that spectral type of the shift
map on Z has a simple spectrum (see [4, Theorem 4.2]), it can be seeing
that the rotated version of Lemma 6 and Lemma 7 holds, that is, for
any 0 € [—m, ), for any polynomial R(n) taking integer values, for any
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f,g € (*(Z), we have

Zemw (2 +Q(n) -

sup
N<N=<Np1q
P

k=1

Ngt1
1

D DURICRReID)]

n=1
(8.3) < C,O(K)| gllew,

and

2(2)

Z gz + Q(p)) -

€5p p prlme

1 .
S g+ Q)|
7TNk+1 P<Nji1
p prime

(8.4) < C,C(K)||glle),
C(K)
K

K
Z H sup
k=1

Np<N<Npig

2(z)

where C,, is a constant depending only on p and —0as K —

+00.

Remarks. A careful bilinear interpolation gives that the convergence
almost everywhere holds for r,r’ > 1 such that 1 < %—i— % < % We no-
tice that since the Fourier transform play a role of spectral isomorphism
the range of % + % can be related to inequalities in Fourier analysis as
established by Beckner [3], many, the Young’s inequalities on convolu-
tions. We hope also that this his direction will be explored in future.

Question.

A- Our investigation leads us to conjecture that for any S, R in the
weak-closure of a given measure-preserving transformation T,
for any f € L"(X,p),g € L" (X) such that 1 <L+ L <3 the
bilinear ergodic average

- >S5 ag(s),

converge almost everywhere.

B— We ask also whether the bilinear maximal inequality and the
convergence almost everywhere for the smooth class of functions
holds, that is, for any ¢, two smooth functions on real line,
can one prove or disprove that for a given measure-preserving
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transformation T, for any f € L"(X,u),g € L™ (X) such that
1< %+ % < %, the bilinear average

N
1
7V:j{:(f(7ﬂ¢on1x)g(7ﬂwow]z),
n=1

converge almost everywhere, where as customary, [z is the in-
teger part of x.
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