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INTERFACE FLUCTUATIONS IN NON EQUILIBRIUM

STATIONARY STATES: THE SOS APPROXIMATION

ANNA DE MASI, IMMACOLATA MEROLA, AND STEFANO OLLA

Abstract. We study the 2d stationary fluctuations of the interface in the SOS
approximation of the non equilibrium stationary state found in [4]. We prove

that the interface fluctuations are of order N1/4, N the size of the system. We
also prove that the scaling limit is a stationary Ornstein-Uhlenbeck process.

1. Introduction

The non equilibrium stationary states (NESS) for diffusive systems in contact
with reservoirs have been extensively studied, one of the main targets being to
understand how the presence of a current affects what seen in thermal equilib-
rium. In particular it has been shown that fluctuations in NESS have a non local
structure as opposite to what happens in thermal equilibrium. The theory of
such phenomena is well developed, [1], [5] but mathematical proofs are restricted
to very special systems (SEP, [6], KMP, [8], chain of oscillators,[2] ....).

The general structure of the NESS in the presence of phase transitions is a
very difficult and open problem not only mathematically, also a theoretical un-
derstanding is lacking. However a breakthrough came recently from a paper by
De Masi, Olla and Presutti, [4], where they prove that the NESS can be computed
explicitly for a quite general class of Ginzburg-Landau stochastic models which
include phase transitions.

The main point in [4] is that the NESS is still a Gibbs state but with the original
hamiltonian modified by adding a slowly varying chemical potential. Thus for
boundary driven Ginzburg-Landau stochastic models the analysis of the NESS is
reduced to an equilibrium Gibbsian problem and, at least in principle, very fine
properties of their structure can be investigated which is unthinkable for general
models.

In particular we can study cases where there are phase transitions and purpose
of this paper is to give an indication that the 2d NESS interface is much more
rigid than in thermal equilibrium.

The analysis in [4] includes a system where the Ising model is coupled to a
Ginzburgh-Landau process. In the corresponding NESS the distribution of the

Key words and phrases. Non equilibrium stationary states, Interfaces, SOS model.
Dedicated to Joel for his important contributions to the theory of phase transition and

interfaces.
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Ising spin is a Gibbs measure with the usual nearest neighbour ferromagnetic
interaction plus a slowly varying external magnetic field.

In particular in the 2d square ΛN ∶= [0,N] × [−N,N] ∩Z2 the NESS µN(σ) is
µN(σ) = 1

ZN

e−βHN (σ), σ = (σ(x) ∈ {−1,1}, x ∈ ΛN)

HN(σ) =H ising(σ) + ∑
x∈ΛN

bx ⋅ e2

N
σ(x), H ising(σ) = ∑

x,y∈ΛN

∣x−y∣=1

1σ(x)≠σ(y) e2 = (0,1)

where b > 0 is fixed by the chemical potentials at the boundaries.

We assume β > βc, thus since the slowly varying external magnetic field
bx ⋅ e2

N
is positive in the half upper plane and negative in the half lower plane, we expect
the existence of an interface, namely a connected “open line” λ in the dual lattice
which goes from left to right and which separates the region with the majority of
spins equal to 1 to the one with the majority of spins equal to -1.

The problem of the microscopic location of the interface has been much studied
in equilibrium without external magnetic field and when the interface is deter-
mined by the boundary conditions: + boundary conditions on Λc

N ∩ {x ⋅ e2 ⩾ 0}
and − boundary conditions on Λc

N ∩ {x ⋅ e2 < 0}.
It is well known since the work initiated by Gallavotti, [7], that in the 2d Ising

model at thermal equilibrium the interface fluctuates by the order of
√
N , N the

size of the system.
In this paper we argue that at low temperature (much below the critical value)

and in the presence of a stationary current produced by reservoirs at the bound-
aries the interface is much more rigid as it fluctuates only by the order N1/4.

We study the problem with a drastic simplification by considering the SOS
approximation of the interface. Namely we consider the simplest case where the
interface λ is a graph, namely λ is described by a function sx, x ∈ {0, ..,N} with
integers values in Z. The corresponding Ising configurations are spins equal to -1
below sx and +1 above sx. Namely σ(x, i) = 1 if i ⩾ sx and σ(x, i) = −1 if i ⩽ sx.

The interface is then made by a sequence of horizontal and vertical segments
and the Ising energy of such configurations is ∣λ∣. We normalise the energy by
subtracting the energy of the flat interface so that the normalised energy is

N∑
x=1
∣sx − sx−1∣ = ∣λ∣ −N

i.e. the sum of the lengths of the vertical segments.
The energy due to the external magnetic field is normalised by subtracting the

energy of the configuration when all sx are equal to 0. This is (below we set b = 1)

2
N∑
x=0

∣sx∣∑
i=1

i

N
≈

N∑
x=0

s2x
N
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Thus we get the SOS Hamiltonian

HN(s) = 1

N

N∑
x=0

s2x +
N∑
x=1
∣sx − sx−1∣ (1.1)

We prove that the stationary fluctuations of the interface in this SOS approxi-
mation scaled by N1/4 convergence to a stationary Ornstein-Unhlenbeck process.

The problem addressed in this article is the behavior of the interface in the
NESS and the aim is to argue that its fluctuations are more rigid than in thermal
equilibrium as indicated by the SOS approximation. Thus in the SOS approxi-
mation we prove the N1/4 behavior in the simplest setting of Section 2.

More general results similar to those in [9] presumably apply. We cannot use
directly the results in [9] because their SOS models have an additional constraint
(the interface is in the upper half plane). Our proofs have several points in
common with [9], but since we work in a more specific setup with less constrains,
they are considerably simpler and somehow more intuitive.

2. Model and results

We consider ΛN = {0, ...,N} × Z and denote the configuration of the interface
with s = {sx ∈ Z, x = 0, . . . ,N}. The interface increments are denoted by ηx =

sx − sx−1 ∈ Z, x = 1, . . . ,N .
Let π a symmetric probability distribution on Z aperiodic and such that

∑
η∈Z

eaηπ(η) < +∞ ∀∣a∣ ⩽ a0, for some a0 > 0 (2.1)

We denote σ2 the variance of π and as we shall see the result does not depend on
the particular choice of π but only on the variance σ2.

For s, s ∈ Z define the positive kernel

TN(s, s) = e− s
2+s2
2N π(s − s). (2.2)

Call TNf(s) the integral operator with kernel TN . TN is a symmetric positive
operator in ℓ2(Z), and it can be checked immediately that it is Hilbert-Schmidt,
consequently compact. Then the Krein-Rutman theorem [11] applies, thus there
is a strictly positive eigenfunction hN ∈ ℓ2(Z) and a strictly positive eigenvalue
λN > 0:

∑
s′
TN(s, s′)hN(s′) = λNhN(s), ∑

s

h2N(s) = 1, (2.3)

The eigenvalue λN < 1, and λN → 1 as N →∞, see Theorem 3.1.

We then observe that the Gibbs distribution νN with the hamiltonian given in
(1.1) and with the values at the boundaries distributed according to the measure
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hN(s)e s
2

2N can be expressed in terms of the kernel TN and the double-geometric
distribution

π(η) = 1

V
e−∣η∣ V =∑

η

e−∣η∣

In fact

νN(s) = 1

ZN

h(s0)e s
2
0

2N e−
1

N
∑N

x=0 s
2
x

N∏
x=1

e−∣sx−sx−1∣

V
h(sN)e s

2

N

2N

=
1

ZN

hN(s0)e− 1

2N
∑N

x=1(s
2
x+s2x−1)

N∏
x=1

π(ηx)hN(sN) (2.4)

=
1

ZN

hN(s0) N∏
x=1

TN(sx−1, sx)hN(sN) (2.5)

with ZN the partition function.
Call

pN(s, s′) ∶= hN(s′)
λNhN(s)TN(s, s′) (2.6)

pN defines an irreducible positive-recurrent Markov chain on Z with reversible
measure given by h2N(s). We call PN the law of the Markov chain starting from
the invariant measure h2N(s).

Observe that νN(s) in (2.5) is the PN - probability of the trajectory s, indeed
from (2.6) we get

νN(s) = 1

ZN

hN(s0) N∏
x=1

TN(sx−1, sx)hN(sN) = λNN
ZN

h2N(s0)
N∏
x=1

pN(sx−1, sx)
(2.7)

which proves that ZN = λ
N
N and that ν(s) = PN(s).

We define the rescaled variables

S̃N(t) = s[tN1/2]

N1/4 , t = 0,1, ..,N1/2, [] = integer part

then S̃N(t) is extended to t ∈ [0,1] by linear interpolation, in this way we can con-
sider the induced distribution PN on the space of continuous function C([0,1]).
We denote by EN the expectation with respect to PN .

Our main result is the following Theorem.

Theorem 2.1. The process {S̃N(t), t ∈ [0,1]} converges in law to the stationary

Ornstein-Uhlenbeck process with variance σ/2. Moreover lim
N→∞

λ
√
N

N = e−σ/2.

The paper is organized as follows: in Section 3 we give a priori estimates on the
eigenfunctions hN and on the eigenvalues λN , in Section 4 we prove convergence
of the eigenfunctions hN and identify the limit, in Section 5 we prove Theorem
2.1.
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3. Estimates on the eigenfunctions and the eigenvalues

Theorem 3.1. The operator TN defined in (2.2) has a maximal positive eigen-
value λN and a positive normalized eigenvector hN(s) ∈ ℓ2(Z) as in (2.3) with the
following properties:

(i) hN is a symmetric function.
(ii) ∥hN∥∞ ⩽ 1 for all N .

(iii) There exists c so that 1 −
c√
N
⩽ λN < 1.

Proof. That hN(s) is positive follows by the Krein-Rutman theorem, [11], also
λN is not degenerate, its eigenspace is one-dimensional. The symmetry follows
from the symmetry of TN , since hN(−s) is also eigenfunction for λN .

The ℓ∞ bound follows from

∥hN∥2∞ = sup
s

hN(s)2 ⩽∑
s

hN(s)2 = 1. (3.1)

The upper bound in (iii) easily follows from

λN ⩽∑
s,s

π(s − s)hN(s)hN(s) ⩽ 1
2
∑
s,s

π(s − s) (hN(s)2 + hN(s)2) ⩽ 1
having used that ∑s hN(s)2 = 1.

To prove the lower bound in (iii) we use the variational formula

λN = sup
h

∑s,s′ TN(s, s′)h(s)h(s′)
∑s h(s)2 (3.2)

By choosing h with ∑s h(s)2 = 1, and using the inequality e−x ⩾ 1 − x, we have a
lower bound

λN ⩾∑
s,s

π(s − s)h(s)h(s) − 1

N
∑
s,s

s2π(s − s)h(s)h(s) (3.3)

Observe that, since ∑s h(s)2 = 1,
1

N
∑
s,s

s2π(s − s)h(s)h(s) ⩽ 1

2N
∑
s,s

s2π(s − s) (h(s)2 + h(s)2)
⩽

1

2N
∑
s

s2h(s)2 + 1

2N
∑
η,s

(s + η)2π(η)h(s)2

=
1

N
∑
s

s2h(s)2 + σ2

2N

Thus

λN ⩾∑
s,s

π(s − s)h(s)h(s) − 1

N
∑
s

s2h(s)2 − σ2

2N
(3.4)
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For α > 0, we choose h(s) = hα(s) ∶= Cα e−αs
2/4, with Cα = (∑s e

−αs2/2)−1/2.
Observe that for α → 0

∣√α∑
s

e−αs
2/2
− ∫ e−r

2/2dr∣ ⩽ Cα ∣√α∑
s

(αs2e−αs2/2 − ∫ r2e−r
2/2dr∣ ⩽ Cα

Thus

∑
s

s2hα(s)2 = α−1 +O(α) as α → 0. (3.5)

We next prove that

∑
s,s′
π(s − s′)hα(s)hα(s′) ⩾ 1 − ασ2

4
(3.6)

To prove (3.6) observe that hα(s)hα(s + τ) = hα(s)2e−ατ2/4−αsτ/2, then
∑
s,s′
π(s − s′)hα(s)hα(s′) =∑

s

hα(s)∑
τ

π(τ)hα(s + τ)
=∑

s

hα(s)2∑
τ

π(τ)e−ατ2/4e−αsτ/2
Using again that e−z ⩾ 1 − z and the parity of hα and of π we get

∑
s

hα(s)2∑
τ

π(τ)e−ατ2/4e−αsτ/2
⩾∑

s

hα(s)2∑
τ

π(τ)(1 − α
4
τ 2)(1 − αsτ

2
) = 1 − ασ2

4

which proves (3.6).
We choose α = N−1/2 and from (3.4), (3.5) and (3.6) we then get

λN ⩾ 1 −
1√
N
(σ2

4
+ 1) − σ2

2N
+O(N−3/2), (3.7)

which gives the lower bound. �

Given s let sx be the position at x of the random walk starting at s, namely

sx = s +
x

∑
k=1

ηk where {ηk}k are i.i.d. random variables with distribution π. By

an abuse of notation we will denote by π also the probability distribution of the
trajectories of the corresponding random walk and by Es the expectation with
respect to the law of the random walk which starts from s.

We will use the local central limit theorem as stated in Theorem (2.1.1) in [12]
(see in particular formula (2.5)). There exists a constant c not depending on n
such that for any s:

∣π( n

∑
k=1

ηk = s) − p( n

∑
k=1

ηk = s)∣ ⩽ c

n3/2 (3.8)

where

p( n

∑
k=1

ηk = s)) = 1√
2πσ2n

e−
s
2

2σ2n
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By iterating (2.3) n times we get

hN(s) = 1

λnN
Es(e− 1

2N
∑n

x=0 s
2
x hN(sn)) (3.9)

Theorem 3.2. There exist positive constants c,C (independent of N) such that

hN(s) ⩽ C

N1/8 exp{ − cs2

N1/2 } (3.10)

Proof. Below we will write h(s) for the eigenfunction hN(s), and λ for λN .
Because of the symmetry of h, it is enough to consider s > 0. From (3.9) we

get

h(s) ⩽ 1

λn
[Es(e− 2

2N
∑n

x=0 s
2
x)]1/2[Es(h2(sn))]1/2 (3.11)

To estimate Es(h2(sn)) we use (3.8),

Es(h2(sn)) = ∑
sn

π( n

∑
k=0

ηk = sn − s)h2(sn)
⩽ ∑

sn

p( n

∑
k=0

ηk = sn − s)h2(sn) + c

n3/2∑
sn

h2(sn)
⩽ [ 1√

2πnσ2
+

c

n3/2 ]∑
sn

h2(sn)
⩽

K√
n
∑
s′
h2(s′) = K√

n
(3.12)

where K is a constant independent of N .
Thus for n =

√
N we get

h(s) ⩽ 1

λ
√
N

√
K

N1/8 [Es(e− 1

N
∑n

x=0 s
2
x)]1/2 (3.13)

For α ∈ (0,1) we consider

z = inf{x ∶ sx ⩽ s(1 − α)} (3.14)

and we split the expectation on the right hand side of (3.13)

Es (e− 1

N
∑n

x=0 s
2
x) ⩽ Es (e− 1

N
∑z−1

x=0 s
2
x1[z⩽n]) +Es (e− 1

N
∑n

x=0 s
2
x1[z>n])

⩽ Es (e− s
2(1−α)2

N
z1[z⩽n]) + e− s

2(1−α)2(n+1)
N

(3.15)

Calling Mx ∶= sx − s, and Λ(a) = logE(eaη) for ∣a∣ ⩽ a0, see (2.1), we get that
eaMx−xΛ(a) is a martingale, so that

1 = Es(eaMz∧n−z∧nΛ(a)) ⩾ Es(eaMz−zΛ(a)1[z⩽n]) (3.16)

Also Mz ⩽ −αs and thus, choosing a < 0, we have aMz ⩾ −aαs, so that:

E(e−zΛ(a)1[z⩽n]) ⩽ eaαs.
7



Since Λ(a) = 1
2
σ2a2 +O(a4) choosing a = −√2(1−α)s

σN1/2 we get

Es(e− (1−α)2s2N
z1[z⩽n]) ⩽ e−

√
2α(1−α)s2

2σN
1/2

Recalling (3.15), we have

Es (e− 1

N
∑n

x=0 s
2
x) ⩽ e−

√
2α(1−α)s2

2σN1/2 + e−
s
2(1−α)2(n+1)

N

For n =
√
N we thus get for there is a constant b so that

[Es(e− 1

N
∑n

x=0 s
2
x)]1/2 ⩽ e− bs

2

N
1/2 (3.17)

From (iii) of Theorem 3.1 there is B > 0 so that λ
√
N ⩾ B, thus from (3.13) and

(3.17) we get (3.10). �

4. Convergence and identification of the limit

We start the section with a preliminary lemma.

Lemma 4.1. There is b > 0 so that

∑
s,s

π(s − s) (hN(s) − hN(s))2 ⩽ b

N1/2 . (4.1)

Proof. Using that ∑s hn(s)2 = 1 we have

∑
s,s

π(s − s) (hN(s) − hN(s))2 = 2∑
s,s

π(s − s)h2N(s) − 2∑
s,s

π(s − s)hN(s)hN(s)
= 2 − 2λN − 2∑

s,s

(1 − e−(s2+s2)/2N)π(s − s)hN(s)hN(s)
(4.2)

By (iii) of Theorem 3.1 2(1 − λN) ⩽ 2c√
N
. By using that 1 − ex < x and that

∑s s
2hN(s) ⩽ c′, by Theorem 3.2 we have

2∑
s,s

(1 − e−(s2+s2)/2N)π(s − s)hN(s)hN(s) ⩽ 1

2N
∑
s,s

(s2 + s2)π(s − s)[h2N(s) + h2N(s)]
⩽
σ2

2N
+
c′

2N

From this (4.1) follows.
�

Define for r ∈ R

h̃2N(r) = N1/4h2N([rN1/4]), [] = integer part (4.3)

Proposition 4.2. The following holds.

(1) The sequence of measures h̃2N(r)dr in R is tight and any limit measure is
absolutely continuous with respect to the Lebesgue measure.
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(2) The sequence of functions h̃N(r) ∶= N1/8hN([rN1/4]) is sequentially com-
pact in L2(R).

Proof. As a straightforward consequence of Theorem 3.2, we have that

h̃2N(r) ⩽ Ce−c r2 (4.4)

It follows that for any ǫ there is k so that ∫∣r∣⩽k h̃
2
N(r)dr ⩾ 1 − ǫ, which proves

tightness of the sequence of probability measures h̃2N(r)dr on R. From (4.4) we
also get that any limit measure must be absolutely continuous.

To prove that the sequence (h̃N(r))N⩾1 is sequentially compact in L2(R) we
prove below that there exists a constant C such that for any N and any δ > 0:

∫ (h̃N(r + δ) − h̃N(r))2 dr ⩽ Cδ2 (4.5)

Assume that π(1) > 0, then
∫ (h̃N(r + δ) − h̃N(r))2 dr =∑

s

(hN(s + [δN1/4]) − hN(s))2

=∑
s

⎛
⎝
[δN1/4]
∑
i=1
(hN(s + i) − hN(s + i − 1))⎞⎠

2

⩽
[δN1/4]
π(1) ∑s

[δN1/4]
∑
i=1

π(1) (hN(s + i) − hN(s + i − 1))2

⩽
[δN1/4]2
π(1) ∑s,s π(s − s) (hN(s) − hN(s))

2
⩽
cδ2

π(1)
The condition π(1) > 0 can be relaxed easily by a slight modification of the above
argument.

From (4.4) and (4.5), applying the Kolmogorov-Riesz compactness theorem

(see e.g. [10]), we get that h̃N is sequentially compact in L2(R). �

We next identify the limit.

Proposition 4.3. Any limit point u(r) of h̃N(r) in L2 satisfies in weak form

u(r) = 1

λ
Er(e− 1

2 ∫
1

0
B2

sdsu(B1)) (4.6)

where Bs is a Brownian motion with variance σ2 and with B0 = r furthermore

λ = lim
N→∞

λ
√
N

N which exists.

The unique solution of (4.6) (up to a multiplicative constant) is u(r) = exp{−r2/2σ}
and λ = e−σ/2.
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Proof. Given r call rN = [rN1/4], iterating (2.3)
√
N times (assuming that

√
N

is an integer) we get

h̃N(r) = 1

λ
√
N

N

E
N
rN
( exp { − 1

2
√
N

√
N

∑
x=0

s2x
N1/2 } h̃N(N−1/4s√N)) (4.7)

where EN
rN

is the expectation w.r.t. the random walk which starts from rN .

sx = rN +
x

∑
k=1

ηx, x = 1, ..,
√
N (4.8)

By the invariance principle,

st
√
N − rN

N1/4 Ð→ σBt t ∈ [0,1] (4.9)

in law, where Bt is a standard Brownian motion which starts from 0.
Take a subsequence along which h̃N converges strongly in L2(R) and call u(r)

the limit point. Choosing a test function ϕ ∈ L2(R), and denoting πn(s) =
π (∑n

k=1 ηk = s), we get along that sequence

N−1/4∑
s′
ϕ(N−1/4s′)EN

s′ ( exp{ − 1

2
√
N

√
N∑

x=0
( sx

N1/4 )2} ∣̃hN(N−1/4s√N) − u(N−1/4s√N
∣)

⩽ N−1/4∑
s′
ϕ(N−1/4s′)EN

s′ (∣̃hN(N−1/4s√N) − u(N−1/4s√N
∣)

= N−1/4∑
s,s′
ϕ(N−1/4s′)π[√N] (s − s′) (∣̃hN(N−1/4s) − u(N−1/4s)∣)

⩽ N−1/4∑
s′
∣ϕ(N−1/4s′)∣ (∑

s

π[
√
N] (s − s′) ∣̃hN(N−1/4s) − u(N−1/4s)∣2)

1/2

⩽ (N−1/4∑
s′
∣ϕ(N−1/4s′)∣2)

1/2

(N−1/4∑
s′
∑
s

π[
√
N] (s − s′) ∣̃hN(N−1/4s) − u(N−1/4s)∣2)

1/2

= (N−1/4∑
s′
∣ϕ(N−1/4s′)∣2)

1/2

(N−1/4∑
s

∣̃hN(N−1/4s) − u(N−1/4s)∣2)
1/2

⩽ C∥ϕ∥L2∥h̃N − u∥L2 Ð→
N→∞

0.

(4.10)
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Since the exponential on the right hand side of (4.7) is a bounded functional
of the random walk, from (4.9) we get (along the chosen sequence),

lim
N→∞

E
N
rN
( exp{ − 1

2
√
N

√
N∑

x=0
( sx

N1/4 )2}u(N−1/4s√N))
= lim

N→∞
E
N
0 ( exp { − 1

2
√
N

√
N∑

x=0
(sx + rN
N1/4 )2}u(N−1/4s√N))

= E0(e− 1

2 ∫
1

0
(σBs+r)2dsu(σB1 + r)) (4.11)

where E0 is the expectation w.r.t. the law of a standard Brownian motion starting
at 0 and the limits are intended in the weak L2 sense.

Since h̃N is converging strongly in L2 (along the subsequence we have chosen)
and the expectation on the right hand side of (4.7) has a finite limit, we get that

the limit of λ
√
N

N must exists.

Observe that for a standard Brownian motion {Bs}s∈[0,1] we have that

exp{ − 1
2 ∫

t

0
(σBs + r)2ds − ∫ t

0
(σBs + r)dBs}, is a martingale.

Furthermore by Ito’s formula

−σ∫
1

0
(σBs + r)dBs = −

1

2
(σB1 + r)2 + r2

2
+
σ2

2

Thus

1 = E(exp{ − 1
2 ∫

1

0
(σBs + r)2ds −∫ 1

0
(σBs + r)dBs})

= E(exp { − 1

2 ∫
t

0
(σBs + r)2ds − 1

2σ
(σB1 + r)2 + r2

2σ
+
σ

2
})

that implies

e−
r
2

2σ = eσ/2E(e−∫ 1

0
(σBs+r)2dse−

1

2σ
(σB1+r)2)

Comparing with (4.6) we identify u(r) and λ. �

We thus have the following corollary of Proposition 4.2 and Proposition 4.3.

Corollary 4.4. The sequence of measures h̃2N(r)dr in R converges weakly to the

gaussian measure g2(r)dr where g(r) = (πσ)−1/4e−r2/2σ.
Moreover for any ψ,ϕ ∈ Cb(R) and any t ∈ [0,1]
lim
N→∞

1

λ
√
N

N

1

N1/4∑
s

h̃N(N−1/4s)ψ(N−1/4s)

E
N
s ( exp { − 1

2
√
N

[t
√
N]
∑
x=0

s2x
N1/2 } h̃N(N−1/4s[t√N])ϕ(N−1/4s[t√N]))

= eσ/2 ∫ ψ(r)g(r)Er(e− 1

2 ∫
t

0
(σBs)2dsϕ(σBt)g(σBt))dr (4.12)
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where Er is the expectation w.r.t. the law of the Brownian motion starting at r.

Proof. From Proposition 4.3 we have that any subsequence of h̃N(r) converges in
L2(R) to ce−r2/2σ but since ∥h̃2N∥L2 = 1 we get that c must be equal to (πσ)−1/4.
This together with (1) of Proposition 4.2 concludes the proof.

The proof of (4.12) is an adaptation of (4.10) and (4.11). �

5. Proof of Theorem 2.1

Recall that PN and EN denote respectively the law and the expectation in
C([0,1]) of the process S̃N(t) = N−1/4s[tN1/2] induced by the law of the Markov
chain with transition probabilities given in (2.6) and initial distribution the in-

variant measure h̃2N(r)dr.
Proposition 5.1. The finite dimensional distributions of S̃N(t), t ∈ [0,1], con-
verge in law to those of the stationary Ornstein-Uhlenbeck.

Proof. For any k, any 0 ⩽ τ1 < .. < τk ⩽ 1 and any collection of continuous bounded
functions with compact support ϕ0, ϕ1, ..ϕk, setting ti = τi − τi−1, i = 1, .., k, τ0 = 0
we have

EN(ϕ0(S̃N(0))ϕ1(S̃N(t1))...ϕk(S̃N(tk))) = N−1/4 ∑
r0∈N−1/4Z

h̃N(r0)ϕ(r0)λ−k√N
N

E
N
r0

⎛
⎝e
− 1

2
√

N
∑
[t1
√

N]
x=0

s
2
x

N
1/2 ϕ1(r1)EN

r1
(e− 1

2
√

N
∑
[t2
√

N]
x=0

s
2
x

N
1/2 ϕ2(r2)

....EN
rk−1(e− 1

2
√

N
∑
[t
k

√
N]

x=0
s
2
x

N
1/2 h̃N(rk)ϕk(rk))..)⎞⎠

where ri = N−1/4[ri−1 +∑[ti√N]
x=1 ηx]. Then from a ripetute use of (4.12) we get

lim
N→∞

EN(ϕ0(S̃N(0))ϕ1(S̃N(t1))ϕ2(S̃N(t2))...ϕk(S̃N(tk)))
= ekσ/2 ∫ g(r0)ϕ(r0)Er0(e−∫ t1

0
σBsϕ1(σBt1)...e−∫ t

k

0
σBsϕk(Btk)g(Btk))dr0

�

To conclude the proof of Theorem 2.1 we need to show tightness of PN in
C([0,1]); this is a consequence of Proposition 5.2 below, see Theorem 12.3, eq.
(12.51) of [3].

Proposition 5.2. There is C so that for all N ,

EN ((S̃N(t) − S̃N(0))4) ⩽ Ct3/2. (5.1)
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Proof.

EN ((S̃N(t) − S̃N(0))4)
= λ−

√
N

N ∑
s

hN(s)EN
s (e− 1

2
√

N
∑[N

1/2
t]

x=0
s
2
x

N
1/2 (S̃N(t) − sN−1/4)4 hN(s[N1/2t]))

⩽ λ−
√
N

N ∑
s

hN(s)EN
s ((S̃N(t) − sN−1/4)4 hN(s[N1/2t]))

⩽ Cλ−
√
N

N ∑
s,s′
hN(s)hN(s′)π[N1/2t](s − s′) ∣ s − s′t1/2N1/4 ∣

4

t2 (5.2)

where πn(s) = π (∑n
k=1 ηk = s). By Proposition 2.4.6 in [12], if π is aperiodic with

finite 4th moments, as in our case, we have the bound

πn(s) ⩽ C

n1/2 (
√
n

∣s∣ )
4

, ∀s ∈ Z. (5.3)

From this estimate it follows that the right hand side of (5.2) is bounded by

⩽ t2C ′λ−
√
N

N ∑
s,s′
hN(s)hN(s′) 1√

tN1/2
= C ′t3/2λ−

√
N

N N−1/4 (∑
s

hN(s))
2

,

By (3.10) we have that ∑s hN(s) ⩽ N1/8, and the bound follows. �
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