
HAL Id: hal-02264385
https://hal.science/hal-02264385

Submitted on 6 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AADL Design-Patterns and Tools for Modelling and
Performance Analysis of Real-Time systems

Pierre Dissaux, Jérôme Legrand, Alain Plantec, Mickael Kerboeuf, Frank
Singhoff

To cite this version:
Pierre Dissaux, Jérôme Legrand, Alain Plantec, Mickael Kerboeuf, Frank Singhoff. AADL Design-
Patterns and Tools for Modelling and Performance Analysis of Real-Time systems. ERTS2 2010,
Embedded Real Time Software & Systems, May 2010, Toulouse, France. �hal-02264385�

https://hal.science/hal-02264385
https://hal.archives-ouvertes.fr

 Page 1/9

AADL Design-Patterns and Tools for
Modelling and Performance Analysis of Real-Time systems

Pierre Dissaux, Jérôme Legrand1

Alain Plantec, Mickael Kerboeuf, Frank Singhoff2

1: Ellidiss Technologies, 24 quai de la douane, 29200 Brest, France
2: University of Brest/LISyC/UEB, 20 avenue Le Gorgeu, 29238 Brest Cedex 3, France

Abstract: This article deals with performance
verifications of architecture models of real-time
embedded systems. We focus on models expressed
with the AADL language and verified with the real-
time scheduling theory. To perform verifications with
the real-time scheduling theory, the architecture
designers must check that their models are
compliant with the assumptions of this theory.
Unfortunately, this task is difficult since it requires
that designers have a deep understanding of the
real-time scheduling theory. In this article, we
investigate how to automatically check that an AADL
architecture is compliant to this theory. We show
how to explicitly model the relationships between an
AADL architectural model and the analytical
methods proposed by the real-time scheduling
theory. From these models, we apply a model-based
engineering process to generate a decision tool
which is able to decide from an AADL architecture
model what are the feasibility tests that the designer
can apply.

Keywords: AADL, Real-Time, Performance
analysis, Design-patterns

1. Introduction

In [6], we have proposed a set of architecture
design-patterns that allows early performance
verifications of architecture models. Architecture
models are expressed with AADL, a textual and
graphical language support for model-based
engineering of embedded real-time systems that has
been approved and published as SAE Standard AS-
5506 [1].

Performance verifications of embedded real-time
architectures can be performed with the real-time
scheduling theory. Real-time scheduling theory
provides analytical methods, called feasibility tests
which make possible timing constraints verifications.
Real-time scheduling theory foundations were
proposed in 1970 [2] and have led to extensive
researches. However, it appears that in many
practical cases no such analysis is performed with

this theory although experience shows that it could
be profitable.

Indeed this theory is not easy to understand and to
apply for many engineers. Most of the known
feasibility tests have been elaborated during the last
30 years. Feasibility tests provide a way to compute
different performance criteria such as worst case
thread response time. But each criterion requires
that the target system fulfills a set of specific
assumptions that are applicability constraints. Thus,
due to the large number of feasibility tests and due
to the large number of applicability constraints, it
may be difficult for a designer to choose the relevant
feasibility test for a given architecture to analyze.

In [6], we have proposed an approach based on
design-patterns in order to ease usability of the real-
time scheduling theory. We have defined four
design-patterns called «Synchronous data flow»,
«Ravenscar», «Blackboard» and «Queued buffer».
These design-patterns model usual communication
paradigms of multitasked real-time software. For
each design-pattern, we have identified which
feasibility tests the designer can compute to perform
the verification of his AADL architecture. This
approach had two weaknesses. First, we have
assumed that the designer is able to check that his
AADL architecture is compliant with the design-
pattern he has chosen. Second, for a given AADL
design-pattern, many feasibility tests may exist. For
example, in the case of the «Synchronous data
flow» design-pattern, we have listed 126 possible
cases in which several feasibility tests can be
applied. It implies that only defining a set of design-
patterns may not be enough to really help the
designer.

In this article, we investigate how to automatically
check that an AADL architecture is compliant to a
design-pattern and a set of feasibility tests. We show
how to explicitly model the relationships between an
architectural design-pattern and the compliant
feasibility tests. From these models, we apply a
model-based engineering process to generate a

 Page 2/9

Fig 1. From object oriented modeling to design-patterns

decision tool which is able to identify, from an AADL
architecture model, the feasibility tests the designer
is allowed to compute. Then, this decision tool helps
the designer to choose the feasibility tests that he is
allowed to apply to his AADL architecture models.

This article is organized as follows. In section 2, we
describe the set of design-patterns we consider. We
also introduce AADL, the architecture language we
promote for the modeling of both the architecture to
analyze and our set of design-patterns. Section 3
presents Platypus, the model-based engineering tool
we use to generate the decision tool. In section 4,
we show an example of the use of this tool with one
of our design-patterns: the «Synchronous data flow»
design-pattern. Then, section 5 is devoted to related
works and we conclude and present future works in
section 6.

2. AADL Real Time design-patterns

During the last decades, a lot of emphasis has been
given to software modeling techniques, in a
continuous move from traditional coding activities to
higher level of abstractions.

First step in this advancement has been the
generalized usage of Object Oriented paradigms in
modeling languages, especially through class
diagrams. Such a representation is perfect for static
data modeling and meta-modeling activities, but is
not usually appropriate to highlight dynamic
interactions of system and software architectures.

That's why components appeared in a second step,
which extend the OO model with concepts of
provided and required interfaces (black box view)
and internal composition (white box view). With
components, it becomes easier to describe
functional interactions between well identified
subsystems and to manage complex system and
software architectures in a modular way.

However, as far as real-time systems are concerned,
not only the applicative architecture must be
described, but also its interaction with the underlying
executive. This aspect is not supported by simple
component based models, thus a third step can be
identified by the availability of categorized
components. This categorization aims at providing a
stronger semantics to enrich the basic concept of
component. As an example, a thread is a component
which can be scheduled by the run-time executive.
Several standardized languages such as the MARTE
profile for UML [7] or the AADL provide a set of
categorized components that are appropriate for
real-time system and software modeling activities.

Nevertheless, although it becomes now easier to
describe real-time architectures, their validation still
remains a subject of investigation. For instance, the
lack of a single property may sometimes prevent a
"correct" real-time architecture from being properly
processed by a schedulability analysis tool.

That is why, the next step in the improvement of the
development process of real-time systems consists
in providing to the end user a set of predefined
composite constructs that match known real-time
analysis solutions. The composite constructs we
have studied correspond to the various inter-thread
communication paradigms that can be applied in an
AADL architecture and can be seen as real-time
design-patterns.

AADL is used to design and analyse software and
hardware architecture of embedded real-time
systems. Many tools provide support for the
modelling and the analysis of AADL models. Ocarina
implements Ada and C code generators for
distributed systems [16]. TOPCASED, OSATE and
Stood provide AADL modelling features [22,19,20].
The Fremont toolset and Cheddar implement AADL
performance analysis methods [21,13]. An updated
list of supporting tools can be found on the official
AADL web site: http://www.aadl.info.

We proposed four AADL architecture design-patterns
called “Synchronous data flow”, “Ravenscar”,
“BlackBoard” and “Queued Buffer”. A detailed

 Page 3/9

description of them is given in [6]. The next section
will give a short description of them.

2.1 Synchronous data flow design-pattern

With this design-pattern, threads are periodic and
communication is achieved with AADL data ports.
This architectural pattern is inherited from Meta-H
[1].

In this synchronization schema, the thread dispatch
is not affected by the inter-thread communications
that are expressed by pure data flows. Each thread
reads input data ports at dispatch time and writes
output data ports at completion time. In this simple
case, the execution platform consists in one
processor running a scheduler such as Rate Mono-
tonic [2].

2.2 Ravenscar design-pattern

The main drawback of the previous design-pattern is
its lack of flexibility at run-time. Each thread will
always execute, read and write data at pre-defined
times, even if useless. In order to introduce more
flexibility, asynchronous inter-thread communi-
cations can be proposed.

An example of such a run-time environment is given
by the Ravenscar profile. Ravenscar is a part of the
Ada 2005 standard [17]. It is a set of Ada program
restrictions usually enforced at compilation time,
which guarantee that the software architecture is
real-time scheduling theory compliant. Ravenscar is
an Ada subset where real-time applications are
composed of a set of threads and shared data.

Ravenscar assumes that threads are scheduled with
a fixed priority scheduler and that data components
are accessed with ICPP (Inheritance Ceiling Priority
Protocol) [18].

In this second design-pattern data component
access may occur at any time.

2.3 Blackboard design-pattern

Ravenscar allows a thread to allocate/release
several AADL data components. Real-time
scheduling theory usually models such a shared
resource as a semaphore to handle concurrent
access. In classical operating systems, many
synchronization design-patterns exist such as critical
sections, barriers, readers-writers, private
semaphores and various producers-consumers
synchronizations [23].

The blackboard design-pattern implements a
readers-writers synchronization protocol. At a given
time, only one writer can get the access to the

blackboard in order to update the data component,
as opposed to the readers which are allowed to read
the data component simultaneously. The usual
implementation of this protocol implies that readers
and writers do not perform the same semaphore
access, thus, it requires extra analysis.

2.4 Queued buffer design-pattern

In the blackboard design-pattern, at any time, only
the last written message is made available to the
threads.

Some real-time execution platforms provide
communication features which allow all written
messages to be stored in a buffer. AADL also
proposes such a feature with event data ports. The
Queued buffer design-pattern models such a
communication. For this design-pattern, an analysis
tool should provide some means to perform buffer
dimensioning verifications.

2.5 Pattern notation
Each design-pattern presented above is always
composed of the same items, according to the
design-pattern language we are using. These items
are described as follow:

• Name: the design-pattern name is a unique
and representative name; the only use of the
name should immediately recall the what
and the how covered by the design-pattern;

• Synoptic: gives a very general description
of what is covered by the design-pattern and
of how it is covered;

• Context: the context is one or several
situations in which the design-pattern may
apply. The context may include the kind of
problem for which the design-pattern is
supposed to give a well accepted and tested
solution.

• Keywords: a list of representative words
which may be used as representative keys
to help determine the application of the
design-pattern and help finding design-
patterns that apply to a specific project,
especially on-line.

• Predecessors: more general design-
patterns.

• Solution: the description of the technical
solution illustrated with an AADL model.

• Successors: may give some other design-
pattern names which are applicable in a
more specific context.

• References: A set of reference to other
design-patterns or information relevant to
the context and solution.

In this section, we have presented four AADL
design-patterns that are compliant with the real-time
scheduling theory. In the next section, we present

 Page 4/9

the engineering environment that we use to model
the design-patterns and the real-time scheduling
theory feasibility tests: the Platypus environment and
the STEP/EXPRESS framework.

3. The STEP/EXPRESS Data exchange
Framework

ISO 10303 provides a neutral mechanism for
describing product data throughout the life cycle of a
product, independent of any particular computer-
aided system. ISO 10303 is suitable for file
exchange and for implementing, sharing, and
archiving product databases.

3.1 Modelling with EXPRESS

For the building of a STEP data exchange
component, the EXPRESS data modeling language
is used in order to describe data which are to be
exchanged. For such a purpose, data schemas are
specified with entity descriptions and constraints.
The possibility to add constraints allows the
specification of domain rules. Constraints can be
either local or global. From a dynamic point of view,
a data set is considered as conform to an EXPRESS
schema if all local and global constraints specified
within the schema are satisfied.

As an example, consider the simple EXPRESS
model given in figure 2. This model is made of two
schemas. The first schema, named Architecture,
specifies a periodic thread concept with a deadline
and a period. Each instance of Periodic_Task is
constrained to have a period greater than its
deadline. The second schema, named
Deadline_On_Request_System, contains a global
rule which constraints further each instance of
Periodic_Task: given that a system is modeled with
a set of Periodic_Task instances, the constraint
ensures that such a system is made of at least two
threads and that for each thread, its period is equal
to its deadline.

3.2 Working with the Platypus environment

Platypus [http://cassoulet.univ-brest.fr/mme] is a
software engineering tool which embeds a modeling
environment based on the STEP standard.

First of all, Platypus is a STEP environment, allowing
data modeling with the EXPRESS language and the
implementation of STEP exchange components
automatically generated from EXPRESS models.
From this point of view, Platypus is a typical STEP
based tool with an EXPRESS editor and checker,
and a STEP file reader, writer and checker.

SCHEMA Architecture;

 ENTITY Periodic_Task;
 Deadline : Natural_Type;
 Period : Natural_Type;
 WHERE
 wr1 : Deadline <= Period;
 END_ENTITY;
END_SCHEMA;

SCHEMA Deadline_On_Request_System;
 USE FROM Architecture;

 (* all tasks must have period = deadline *)
 RULE Period_Equal_Deadline_Rule
 FOR (Periodic_Task);
 WHERE
 at_least_two_tasks :
 SIZEOF (Periodic_Task) > 1;
 period_equal_deadline :
 SIZEOF (QUERY (p <* Periodic_Task |
 p.Period <> p.Deadline)) = 0;
 END_RULE;
END_SCHEMA;

Fig 2. Modelling of a thread constraint

Platypus is also an object oriented development tool.
It is implemented inside Pharo [http://www.pharo-
project.org], a free Smalltalk environment. Thanks to
Pharo, Platypus is an hybrid tool. On one hand, it
allows very precise data specification and
manipulation of statically typed objects. On the other
hand, associated with code generators, it allows
rapid system prototyping and efficient code
maintenance. Platypus is developed to be a schema
mapping tool allowing the specification of mapping
rules between source and target schemas. Mapping
rules are designed with EXPRESS and can be
interpreted or translated to Smalltalk.

Fig 3. AADL model analyser overview

4. EXPRESS modeling of feasibility tests
and architecture

Let see now how to model both feasibility tests and
architectural design-pattern with EXPRESS. Given a
feasibility test FT, it is possible to formally specify
which applicability constraints the architecture model
has to satisfy for the feasibility test FT to be
applicable. This set of constraints can be specified in
a FT specific meta-model.

 Page 5/9

Thus, a set of meta-models can be designed, one
per feasibility test and used in order to help
designers for the checking of their real-time system
models. The figure 3 depicts a global view of our
model analyzing tool which is using these meta-
models in order to find which feasibility tests are to
be performed for AADL model.

4.1 The design of the model analyzer

Fig 4. The model analyzer conceptual

components

As shown by the figure 4, the analyzer is designed
from two main conceptual parts:

• The first part (left side of the figure 4)
consists in an AADL meta-model named
Architectures meta-model. This meta-model
specifies the AADL concepts, their
associations and constraints. The important
point is that this meta-model specifies all the
concepts needed in order to build a
simplified AADL parser and to check AADL
models. In other words, from an AADL
model, it is possible to instantiate the
Architectures meta-model and use this
instance for an analysis.

• The second part (right side of the figure 4) is
made of a set of meta-models. Each of them
is a specialization of the Architectures meta-
model and is specific to a particular
feasibility test. Such a feasibility test meta-
model specifies the constraints which are to
be satisfied for the related feasibility test to
be applicable. In other words, if an
Architectures meta-model instance built from
an AADL model satisfies all constraints
specified by a feasibility test meta-model, it
means that the related feasibility test is
applicable to the AADL model.

4.2 The prototype implementation

 Fig 5. The model checker implementation

The prototype is made of an AADL parser and of
feasibility test checkers. The AADL parser is
classically implemented from an ADDL grammar and
is made to build instances of the Architecture meta-
model. This AADL parser is dedicated to our design-
patterns: it is only able to parse AADL models that
are composed of the AADL component categories of
our design-patterns. Each test checker is
automatically built from the corresponding feasibility
test meta-model.

From a particular AADL model (see figure 4), an
AADL meta-model instance is built by the parser,
then, each test checker evaluates it. As an example,
if all constraints of the C1 meta-model are satisfied,
then, the C1 test checker result is true. It means that
the designer can use the C1 feasibility test in order
to evaluate the performance of its architecture
model.

4.3 Example of the Synchronous data flow
design-pattern

In the previous section, we have presented the
overall approach which allows a designer to decide
which feasibility tests he can apply on a given AADL
model compliant to one of the design-patterns
presented in section 2. In the sequel, we illustrate
the approach with the simplest design-pattern: the
Synchronous data flow design-pattern. First, we
present an example of feasibility test that can be
applied on the Synchronous data flow. Then, we
present the EXPRESS models which allow Platypus
to check an AADL model. Finally, we present a
screenshot of the Platypus output.

4.3.1 Performance analysis of the Synchronous
data flow design-pattern

From an AADL model compliant to the Synchronous
data flow design-pattern, we can perform
performance analysis based on real-time scheduling
theory.

 Page 6/9

The thread components of the Synchronous data
flow design-pattern are periodic threads [2] defined
by three parameters: its deadline (Di), its period (Pi)
and its capacity (Ci). Pi is a fixed delay between two
release times of the thread i. Each time the thread i
is released, it has to do a job whose execution time
is bounded by Ci units of time. This job has to be
ended before Di units of time after the thread wake
up time.

Some algebraic methods can provide a proof that a
model compliant to the Synchronous data flow
design-pattern will meet its periodic thread
performance requirements. Scheduling algorithms
allow the designer to compute scheduling
simulations of the architecture to analyze. Usually,
simulations can not lead to a proof. However, in
some cases (with deterministic schedulers and with
periodic threads for example), scheduling simulation
may lead to a schedulability proof if the designer is
able to compute a scheduling during the base period
[3].

Different kinds of feasibility tests exist for the
Synchronous data flow design-pattern [4]: tests
based on processor utilization factor (noted
C1,C2,..,Cn tests in the figure 4) and tests based on
worst case thread response time (noted R1, R2, …,
Rn tests in the figure 4).

The worst case response time feasibility test
consists in comparing the worst case response time
of each thread with its deadline. Joseph, Pandia,
Audsley et al. have proposed a way to compute the
worst case response time of a thread with pre-
emptive fixed priority scheduling by:

Eq. 1: compute worst case response time of a
periodic thread i

Where Ri is the worst case response time of the
thread i.

4.3.2 EXPRESS modeling of the Synchronous
data flow design-pattern and its feasibility tests

Let see now the EXPRESS models for the
Synchronous data flow design-pattern. Figures 6, 7
and 8 present the three EXPRESS models
(schemas) that are required to produce the decision
tool able to check if a given AADL model is compliant
to the Synchronous data flow design-pattern.

SCHEMA Architecture;
 ENTITY Generic_Scheduler;
 Quantum : Natural_type;

 Preemptive_Type : BOOLEAN;
 END_ENTITY;

 ENTITY Rate_Monotonic_Protocol
 SUBTYPE OF (Generic_Scheduler);
 END_ENTITY;

 ENTITY Periodic_Task;
 Capacity : Natural_Type;
 Deadline : Natural_Type;
 Period : Natural_Type;
 Release_Time : Natural_Type;
 Priority : Priority_Type;
 Blocking_Time : Natural_Type;
 WHERE
 wr1 : Deadline <= Period;
 END_ENTITY;
END_SCHEMA;

Fig 6. EXPRESS modeling of the architecture

A first EXPRESS schema (figure 6), called
Architecture, depicts the architecture point of
view of the design-pattern. From section 2.1, we
know that only one type of component is used in this
design-pattern: AADL thread components. Schema
Architecture defines all thread component
attributes that are required by the feasibility tests
(e.g. priority, deadline, period, …). The
Architecture schema also defines the
components that are part of the execution
environment (e.g. scheduler) and that required for
the analysis.

The third EXPRESS schema (figure 8), called Fea-
sibility_Tests, specifies the different feasibility
tests which can be applied to the Synchronous data
flow design-pattern. This schema also includes a
model of the applicability constraints of the feasibility
tests. Remember that these constraints must be met
by the AADL architecture to analyze. These
feasibility test constraints are stored in separate
schemas. For example, schema Simulta-
neous_Release_Time_Constraint and Pe-
riod_Equal_Deadline_Constraint
respectively specify that the threads of the
Synchronous data flow design-pattern are released
at the same time and that the thread deadlines are
equal to their periods. Figure 7 shows a part of these
schemas.

SCHEMA Simultaneous_Release_Time_Constraint;
 USE FROM Architectures;

 RULE Simultaneous_Release_Time
 FOR (Periodic_Task);
 LOCAL
 nbpt : INTEGER := SIZEOF (Periodic_Task);
 p1 : Periodic_Task := Periodic_Task [1];
 END_LOCAL;
 WHERE
 (* All tasks share the same release time *)
 r1 : (nbpt < 2) OR
 (SIZEOF (QUERY(p <* Periodic_Task |
 p.Release_Time <> p1.Release_Time))= 0);
 END_RULE;

j
hp(i)j j

i
ii C

P

R
+C=R .∑

∈














 Page 7/9

END_SCHEMA;

SCHEMA Period_Equal_Deadline_Constraint; …

Fig 7. EXPRESS modeling of the feasibility tests
constraints

SCHEMA Feasibility_tests;
 ENTITY Response_Time …

SCHEMA Simultaneous_And_Deadline_Equal_Period;
 USE FROM Architecture;
 USE FROM Feasibility_Tests;
 USE FROM Simultaneous_Release_Time_Constraint;
 USE FROM Period_Equal_Deadline_Constraint;

 ENTITY Test_C1 SUBTYPE OF …
 END_ENTITY;

 ENTITY Test_C7 SUBTYPE OF …
 END_ENTITY;

 ENTITY Test_S1 SUBTYPE OF …
 END_ENTITY;

 ENTITY Test_R1 SUBTYPE OF …
 END_ENTITY;

 ENTITY Test_R2 SUBTYPE OF …
 END_ENTITY;

END_SCHEMA;

Fig 8. EXPRESS modeling of the feasibility tests

4.3.3 Example of use of the decision tool

The figure 9, shows the Platypus environment
checking feasibility test applicability constraints of an
architecture. Two opened panes are presented in
this figure. The top pane shows the schema instance
editor containing three periodic threads. These three
instances are extracted from the AADL model and
constitute the current architecture. Note that the
current prototype does not handle AADL files: the
architecture model is loaded from STEP files. The
bottom pane shows the Simultaneous_Relea-
se_Time constraint and the result of its evaluation
which is true (see the .T. pointed out by the arrow).

Fig 9. A Platypus screenshot showing an Architecture
schema instance together with a constraint and the
result of its evaluation

5. Related works

This article has shown an approach to check that an
architectural model of a real-time system is
compliant to a set of constraints. Many other
approaches also investigated how to perform such
verifications.

UML together with its standard constraint language
OCL could be used for the purpose of designing and
building feasibility test checkers. But as far as we
know, our approach has not been investigated with
UML tools.

In [12], Gilles and al. have proposed a similar
constraint language for AADL. The proposed
language is called REAL (REAL stands for
Requirement Enforcement Analysis Language).
REAL is developed by Télécom-Paris-Tech and
ISAE. It is an annex of the AADL standard. This
language is then specifically designed for the
modeling of real-time architectures. REAL allows to
express various type of constraints on AADL
architecture and their authors have shown that it can
express some of the applicability constraints of the
real-time scheduling theory.

Another example of a similar move towards more
analyzable constructs built on top of a modelling
language can be found in the history of the HOOD
method [8]. The first versions of this modelling
approach defined a quite basic concept of
component (called HOOD objects) which aimed at
representing more or less an Ada 83 package. In
1995, two specializations of HOOD were specified:
HOOD 4 [9] which targets Object-Oriented
programming languages and especially Ada 95, and
HRT-HOOD [10] which goal is to comply with the
Ada Ravenscar model (now included into Ada 2005).
In both cases, the original concepts and principles of
the HOOD methodology have been kept, and
specific composite constructs have been identified in
order to support properly Ada 95 tagged types or
Ravenscar cyclic, sporadic and protected objects.

More recently, in the context of the IST-ASSERT
project, Panunzio and al proposed to integrate some
HRT-HOOD components with UML models [11]. For
such a purpose, they have proposed an engineering
process based on a meta-model called RCM (RCM
stands for Ravenscar Computational Model). In this
process, performance verifications are performed
with the MAST framework [14].

 6. Conclusion

In this article, we have presented an approach that
allows an architecture designer to automatically
check that his models are compliant with the
assumptions of the real-time scheduling theory. This

 Page 8/9

theory provides analytical methods, called feasibility
tests, which allow designers to perform verifications
on architecture models.

We showed how to explicitly model the relationships
between an architectural model and the feasibility
tests with EXPRESS. From these EXPRESS
models, we apply a model-based engineering
process to generate a decision tool which is able to
identify the compliant feasibility tests the designer is
allowed to compute.

The current decision tool is a prototype inside the
Platypus environment. In the next months, we plan
to write a new version of this decision tool that can
be embed into Cheddar [13].

Cheddar is an Ada tool which aims at performance
analysis of real-time architectures. It includes
numerous feasibility tests and most of the most
classical scheduling algorithms of the real-time
scheduling theory. Cheddar is already able to
perform verifications of AADL models but today,
Cheddar’s users have to choose which feasibility
tests to apply to their AADL models. The integration
of the decision tool proposed in this article will
increase Cheddar’s usability.

A second possible extension of the work presented
in this article would address the type of analysis the
decision tool is able to produce. Indeed, in the
current approach, we only check that a given
architecture model is conform to a given design-
pattern. If the architectural model is conforming to
the design-pattern, the tool is able to list the
compliant feasibility tests. But if not, such a decision
tool should provide model metrics [15] to designers
in order to increase their model compliance to the
real-time scheduling theory. In a second step, we
plan to investigate the relevant metrics for our
different AADL design-patterns.

7. References

|1] SAE, Architecture Analysis and Design
Language (AADL) AS 5506 ; Technical report, The
Engineering Society For Advancing Mobility Land
Sea Air and Space, Aerospace Information Report,
Version 1.0, November 2004.
[2] Scheduling algorithms for multiprogramming
in a hard real-time environnment . C. L. Liu et J. W.
Layland. Journal of the Association for Computing
Machinery, vol. 20, n° 1, pp. 46- 61, January, 1973 .
[3] On the Complexity of Fixed-Priority
Scheduling of Periodic, Real-Time Tasks. J.Y.T.
Leung and J. Whitehead. Performance Evaluation 2,
237-250 (1982).
[4] Pre-emptive and Non-Preemptive Real Time
Uni-Proces-sor Scheduling. L. George, N. Rivierre
and M. Spuri. INRIA Research Report number 2966.
September 1996.

[5] ISO, Ada reference manual ISO/IEC
8652:1995(E) with Technical Corrigendum 1 and
Amendment 1 (Draft 16).
[6] Stood and Cheddar : AADL as a pivot
Language for Analysing Performances of Real Time
Architectures. P. Dissaux and F. Singhoff. 4th
European Congress ERTS Embedded Real Time
Software, January 2008.
[7] UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems Version
1.0, OMG, 2009
[8] HOOD Reference Manual release 3.1,
HOOD User Group, Masson & Prentice-Hall, 1993.
[9] HOOD Reference Manual release 4.0,
HOOD User Group, 1995.
[10] HRT-HOOD: A Structured Design Method
for Hard Real-Time Ada Systems. A. Burns, A.
Wellings. Elsevier, 1995
[11] A Meta model-Driven Process Featuring
Advanced Model-Based Timing Analysis. M.
Panunzio, T. Vardanega. 2007, June, Proceedings
of the 12th International Conference on Reliable
Software Technologies, Ada-Europe. Geneva, LNCS
springer-Verlag.
[12] Expressing and enforcing user-defined
constraints of AADL models. O. Gilles, J. Hugues.
5th international workshop on AADL and UML. In the
proceedings of the 15th IEEE International
Conference on Engineering of Complex Computer
Systems, pages 337-348, University of Oxford, UK,
22-26 March 2010.
[13] Investigating the usability of real-time
scheduling theory with the Cheddar project. F.
Singhoff, A. Plantec, P. Dissaux and J. Legrand.
Journal of Real-Time Systems, volume 43, number
3, pages 259-295. November 2009. Springer Verlag.
ISSN:0922-6443.
[14] MAST: Modeling and Analysis Suite for
Real-Time Applications. M. González Harbour, J.J.
Gutiérrez García, J.C. Palencia Gutiérrez, J.M.
Drake Moyano. June 2001, pages 125--134, Proc. of
the 13th Euromicro Conference on Real-Time
Systems, Delft, The Netherlands.
[15] Model-driven Engineering Metrics for Real-
Time Systems. M. Monperrus, J.M. Jezequel, J
Champean, B. Hoeltzener. 4th European Congress
ERTS Embedded Real Time Software, January
2008.
[16] Rapid Prototyping of Distributed Real-Time
Embedded Systems Using the AADL and Ocarina. J.
Hugues, B. Zalila, and L. Pautet. In 18th IEEE/IFIP
International Workshop on Rapid System
Prototyping (RSP'07), Porto Allegre, Brésil, June
2007.
[17] ISO, Ada reference manual ISO/IEC
8652:1995(E) with Technical Corrigendum 1 and
Amendment 1 (Draft 16).
[18] Concurrent and Real Time programming in
Ada. 2007. A. Burns and A. Wellings. Cambridge
University Press.

 Page 9/9

[19] Using AADL for mission critical software
development. P. Dissaux. 2nd European Congress
ERTS (Embedded Real Time Software), 21-23
january 2004.
[20] SEI. OSATE : an extensible Source AADL
tool environment. SEI AADL team technical report.
December 2004.

[21] Schedulability analysis of AADL models. O.
Sokolsky, I. Lee, D. Clake. Parallel and Distributed
Processing Symposium, IPDPS, 25-29 April 2006.
[22] TOPCASED web site.
http://www.topcased.org
[23] Modern Operating Systems. A. Tanenbaum.
Prentice-Hall. 2001.

