
HAL Id: hal-02264350
https://hal.science/hal-02264350

Submitted on 6 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of Code-Level and System-Level Timing
Analysis for Early Architecture Exploration and

Reliable Timing Verification
C Ferdinand, R Heckmann, D Kästner, K Richter, N Feiertag, M Jersak

To cite this version:
C Ferdinand, R Heckmann, D Kästner, K Richter, N Feiertag, et al.. Integration of Code-Level and
System-Level Timing Analysis for Early Architecture Exploration and Reliable Timing Verification.
ERTS2 2010, Embedded Real Time Software & Systems, May 2010, Toulouse, France. �hal-02264350�

https://hal.science/hal-02264350
https://hal.archives-ouvertes.fr

Integration of Code-Level and System-Level Timing Analysis for

Early Architecture Exploration and Reliable Timing Verification

C. Ferdinand1, R. Heckmann1, D. Kästner1, K. Richter2, N. Feiertag2, M. Jersak2

1: AbsInt Angewandte Informatik GmbH, Science Park 1, D-66123 Saarbrücken, Germany

2: Symtavision GmbH, Frankfurter Straße 3b, D-38122 Braunschweig, Germany

e-mail: ferdinand@absint.com, heckmann@absint.com, kaestner@absint.com,

richter@symtavision.com, feiertag@symtavision.com, jersak@symtavision.com

Abstract: Developers of safety-critical real-time
systems have to ensure that their systems react
within given time bounds. Sophisticated tools for
timing analysis at the code-level, controller-level
and networked system-level are becoming state-of-
the-art for efficient timing verification in light of
ever increasing system complexity. This trend is
exemplified by two tools: AbsInt’s timing analyzer
aiT, which can determine safe upper bounds for the
execution times (WCETs) of non-interrupted tasks,
and Symtavision’s SymTA/S tool, which computes
the worst-case response times (WCRTs) [7, 11, 16].
of an entire system from the task WCETs and in-
formation about possible interrupts and their pri-
orities. The two tools thus complement each other
in an ideal way. They have recently been coupled
to further increase their utility. Starting from a
system model, a designer can now seamlessly per-
form timing budgeting, performance optimization
and timing verification, considering both the code
of individual functions, as well as function and sub-
system integration. The paper explains and exem-
plifies various use cases and tool flows.

Keywords: Schedulability analysis, timing analy-
sis, worst-case timing verification, architecture ex-
ploration

1. Introduction

Today’s innovations in many market sectors (au-
tomotive, aerospace, rail, consumer, medical,
telecommunication, automation, etc.) are, to a great
extent, based on electronics and real-time software.
The increasing integration complexity of software-
based systems leads to performance bottlenecks
and turns real-time software design into a complex
task. This increases the risk of timing problems that
may degrade or compromise the system functional-
ity but are more and more difficult to detect and
even harder to resolve. If they are found late in the
design, their resolution can be very costly or even
delay a project. A second risk results from wrong

dimensioning or configuration decisions early in
the development, which may cause resource bottle-
necks in later phases which then are very difficult
to correct.

In this paper, we present technological solutions for
both problems in an integrated view. Integration
of techniques and tools is key to efficiently support
the development. We work out the requirements for
each step and the integration. Then, we present re-
cent progress in the field of static code and schedul-
ing analysis techniques. In specific variations, these
techniques can be used for both, early exploration
and late verification. And their common abstrac-
tion levels provide a seamless integration. Finally,
we outline a methodology that can be aligned with
established automotive and aerospace development
processes.

2. Requirements

Ideally, the system is designed such that it provides
sufficient computing power and network band-
width, and at the same time is cost efficient and
(depending on the application) provides the neces-
sary safety level. To achieve this, timing must be
taken into account in mainly two phases during the
development cycle.

Early-stage architecture exploration includes
selecting network topology, processors, software-
to-controller-mapping and the integration and op-
timization thereof. This requires predictions of soft-
ware execution times and system integration ef-
fects that arise when several software parts share
one hardware component (CPU). These predictions
need not be highly accurate. Instead, a quick pre-
diction and the ability to evaluate and compare
(many) different alternatives is the key requirement
in early stages.

Late-stage verification includes finding the worst-
case scenarios and determining how often they can
occur. This requires a reliable verification of code
execution times, response times, and end-to-end la-

ERTS2 2010 – May 19–21, 2010 – Toulouse Page 1/9

mailto:ferdinand@absint.com
mailto:heckmann@absint.com
mailto:kaestner@absint.com
mailto:richter@symtavision.com
mailto:feiertag@symtavision.com
mailto:jersak@symtavision.com

Figure 1: Automotive Development Process (V-
Model) and the role of timing analysis

tencies to find the critical corner case scenarios of
system execution in the presence of complex pro-
cessor architectures, multi-tasking operating sys-
tems, and network protocols. Here, detecting the
worst-case situations and (optionally) the probabil-
ity of their occurrence is mandatory.

For an efficient, integrated flow, these tech-
niques ideally share a common abstraction level
that is efficient (in early stages) and expressive (for
later stages) enough but can also be deliberately
configured in their specific use for a specific design
stage. Furthermore, the accuracy must be suitable
for the development stage at hand. And finally, they
must provide interfaces between code level and sys-
tem level as well as between early-stage exploration
and late-stage verification.

3. Timing in the System Development Process

The automotive system development process typi-
cally follows the V model (Figure 1). In an early
system development phase, basic system design de-
cisions are made. Timing analysis is of particular
value for

• hardware selection and dimensioning, in partic-
ular of processors,

• mapping of tasks to processors (in case of multi-
processor or distributed systems),

• configuration of the task scheduler (static,
priority-based or time-sliced scheduling, num-
ber of tasks etc.).

As many implementation details are not fixed, this
phase relies on execution time estimates and bud-
gets. Tool support is needed to quickly determine if
the intended budgets will lead to an overall schedu-
lable and real-time capable solution.

During the implementation phase the focus shifts
to the actual implementation of the set of software
tasks on the target processors. Typically this is an
iterative approach where individual software tasks
are tested, debugged, and integrated. As more and
more software tasks are implemented, the accept-
able processor loads are often reached earlier than
expected. In that case, timing analysis is needed for
code execution time optimization and fine-tuning
the scheduler configuration.

In the system verification phase, timing analysis is
of particular value for

• code and system timing verification,

• proving availability and functional safety,

• calculating reserves for future extensions.

Development processes in the aerospace industry
typically follow a cascade model (Figure 2). This ap-
proach is heavily process-oriented, which fits well
to the idea of execution-time budgets. The same ba-
sic roles of timing analysis during the development
process can be identified as in the automotive pro-
cess.

Like in the automotive process, there is an initial de-
velopment phase that includes processor selection
and dimensioning, the mapping of tasks to proces-
sors, and scheduler configuration. This phase bene-
fits from the usage of exploration tools that provide
early estimations of the timing behavior.

The aviation industry in particular puts special em-
phasis on reliability issues. All parts of an aircraft,
including software and its realization in hardware,
must be certified. This includes proofs that no tim-
ing constraints are violated. Therefore the demon-
stration of upper bounds of worst-case execution
and response times is mandatory as part of system
verification.

As can be seen, timing analysis is needed for both
exploration and verification for both the V model
and the cascade approach. The task of comparing
different mappings, of budgeting, and of property
checking can be found in both flows. Estimation is
the key enabler for an efficient application in early-
stage exploration. System designers can now focus
on their key questions such as processor selection
and system configuration, while deferring the deci-
sions on code and operating system details to later
stages.

Development standards in both the automotive
and aerospace domain (in particular DO-178B,
IEC 61508 and the new revisions DO-178C, or
ISO 26262) increasingly emphasize ensuring soft-
ware safety. They require to identify functional

ERTS2 2010 – May 19–21, 2010 – Toulouse Page 2/9

Figure 2: Aerospace Development Process (Cas-
cade) and the role of timing analysis

and non-functional hazards and to demonstrate that
the software does not violate the relevant safety
goals. Examples for non-functional safety-relevant
software characteristics relevant for DO-178B and
IEC 26262 WD are runtime errors, execution time
and memory consumption. Depending on the crit-
icality level of the software, the absence of safety
hazards has to be demonstrated by formal methods
or testing with sufficient coverage.

4. Timing Analysis Tools

For both, code execution and system scheduling
analysis, static analysis techniques exist. These
were originally designed for late-stage verification
by providing worst-case analysis for task execution
times, response times, and end-to-end latencies.
In this paper we focus on two commercially exist-
ing tools: AbsInt’s aiT Worst-Case Execution Time
(WCET) Analyzer [4] and Symtavision’s SymTA/S
Scheduling Analysis Tool Suite [7]. These are es-
tablished standards for a growing number of verifi-
cation tasks, including issues of functional safety.

Both underlying techniques provide an efficient
level of abstraction from hardware and from op-
erating system details and are applicable before
the final target platform is available. In fact, both
have already been used in exploration projects in
their original form. However, as mentioned above,
early architecture exploration requires less accu-
racy, does not rely on worst-case analysis, but calls
for quick comparisons of “what-if” experiments.
Therefore, these technologies have been developed
further to better meet the requirements for early-
stage exploration.

4.1 Code Level

“Code level” refers to the “un-preempted” execu-
tion times of sequential code pieces such as OS
tasks and processes. Of particular interest for di-
mensioning and verification are the worst-case ex-
ecution times (WCET). WCET estimations for such
code pieces can be obtained from the AbsInt tools
TimingExplorer [5] (specialized to early-stage ar-
chitecture exploration) and aiT [4] (specialized to
late-stage system validation). Both tools employ
static analyses that produce results valid for all ex-
ecutions with all possible inputs. In contrast, hard-
ware simulation, emulation, or direct measurement
with logic analyzers can only determine execution
times for selected inputs. Achieving sufficient cov-
erage using such methods can be quite expensive,
and they still cannot be used to infer the execution
times for all possible inputs in general. (A survey
of methods for WCET analysis and of WCET tools is
given in [17].)

Since the timing behavior of the code differs on dif-
ferent hardware, aiT and TimingExplorer operate
on binary executables, which are the main input of
the tools. They also read source code to be able
to refer to it in their user interactions. In addition,
they read annotations that might be manually writ-
ten or automatically generated by code generators
or external source-code analyzers, and a hardware
description detailing the target architecture (mem-
ory layout, cache properties, etc.).

The difference between the two tools is that aiT
is targeted towards validation of real-time systems
and therefore aims at high precision and closely
models the underlying hardware, while Timing-
Explorer is intended to be used in early design
phases for exploring alternative system configura-
tions during the search for a suitable processor con-
figuration (core, memory, peripherals, etc.) for a
project.

aiT is sound in the sense that it computes a safe
over approximation of the actual WCET. Depend-
ing on the target processor this can lead to high
analysis times (typically up to several minutes for
a task). Such analysis times are acceptable in the
verification phase, but are undesirable for configu-
ration exploration. Moreover as opposed to verifica-
tion for which soundness is of utmost importance,
for dimensioning hardware an over approximation
is not always necessary. As long as TimingExplorer
reflects the task’s timing behavior on the architec-
ture and allows comparison of the timing behavior
on different configurations, slight under approxima-
tions are acceptable. Therefore some precision is

ERTS2 2010 – May 19–21, 2010 – Toulouse Page 3/9

traded against ease of use, speed and reduced re-
source needs leading to the possibility to quickly
explore the timing behavior of one’s software on a
wide selection of potential hardware configurations
(without the need to acquire all this hardware).

Execution time estimation using TimingExplorer
can be started in early design phases once (rep-
resentative) source code of (representative) parts
of the application is available. This code can come
from previous releases of a product or can be gener-
ated from a model within a rapid prototyping devel-
opment environment. The available source code is
compiled and linked using representative standard
compilers for each of the cores considered as poten-
tial target processors. Each resulting executable
is then analyzed with the TimingExplorer for the
corresponding core. For each core, the user has
the possibility to specify memory layout and cache
properties. The result of the analysis is an estima-
tion of the WCET (worst-case execution time) for
each of the analyzed tasks given the processor con-
figuration.

Since TimingExplorer is based on static analysis, it
does not require that the explored architectures are
available or even exist at all. There are instances
of TimingExplorer for a variety of parameterizable
cores that represent typical architectures of inter-
est. To be applicable in early design phases, the
cache and memory mapping is completely parame-
terizable so that the user can experiment with dif-
ferent configurations. It is possible to set the cache
size, line size, replacement policy and associativity
independently for the instruction and data cache.
Furthermore, one can choose how unknown cache
accesses are to be treated – as cache hits or cache
misses. With respect to the memory map, one can
specify properties for memory areas, such as the
time it takes to read and write data to the area,
whether write accesses are allowed or the area is
read-only, if accesses are cached, etc. To see the ef-
fect of these settings on the WCET, one simply has
to rerun the analysis after modifying the settings.
The questions developers will be able to answer are
like "what would happen if I take a core like the
ABCxxxx and add a small cache and a scratch pad
memory in which I allocate the C-stack or a larger
cache" or "what would be the overall effect of hav-
ing an additional wait cycle if I choose a less expen-
sive Flash module",

On the other hand, the aiT tool is intended to be
used in the late development stage during the vali-
dation of the timing behavior of the developed sys-
tem. It computes a safe upper bound for the worst-

case execution time (WCET) of a task, assuming no
interference from the outside. Effects of interrupts,
IO and timer (co-)processors are not reflected in the
predicted runtime and have to be considered sepa-
rately within system-level timing analysis.

aiT and TimingExplorer employ static program
analysis by abstract interpretation [3] to get infor-
mation on the values in the processor registers and
memory cells, on cache contents, and on the behav-
ior of the processor pipeline [9, 13]. This informa-
tion is used to obtain WCET bounds for basic blocks.
On the other hand, integer-linear programming is
employed for finding a possible worst-case path and
an upper bound for the overall WCET [10, 14].

The results of aiT and TimingExplorer are re-
ported as annotations in call graphs and control-
flow graphs, and as report files in text format and
XML format. The overall WCET bounds/estimations
for sequential code pieces can also be communi-
cated to the system-level analyzer SymTA/S, which
computes worst-case response times from the se-
quential WCETs, taking into account interrupts and
task preemptions. Details on the integration be-
tween aiT/TimingExplorer and SymTA/S are pre-
sented in Section 5.

Integration in the Development Process:

Worst-case execution time analysis can be inte-
grated seamlessly into the development process
and is not only applicable at the validation stage
but also at the development stage. One advantage
of static analysis methods is that no testing on phys-
ical hardware is required. Thus the analyses can be
called just like a compiler from a workstation com-
puter after the linking stage of the project. As an
example, aiT and TimingExplorer feature batch ver-
sions which facilitate the integration in a general
automated build process. This enables developers
to instantly assess the effects of program changes
on the worst-case execution time.

Certification and Tool Qualification:

Making sure that an application is working properly
means addressing many different aspects.

In the validation stage the goal is to verify that the
worst-case execution time bounds of the applica-
tion are not exceeded. To be amenable for certifica-
tion according to DO-178B, the analysis tools them-
selves have to be qualified. The qualification pro-
cess can be automated to a large degree by Quali-
fication Support Kits. The qualification kits for aiT
and TimingExplorer consist of a report package and
a test package. The report package lists all func-
tional requirements and contains a verification test
plan describing one or more test cases to check

ERTS2 2010 – May 19–21, 2010 – Toulouse Page 4/9

each functional requirement. The test package con-
tains an extensible set of test cases and a scripting
system to automatically execute all test cases and
evaluate the results. The generated reports can be
submitted to the certification authority as part of
the DO-178B certification package.

4.2 System Level

On the system-level, a different approach has to be
applied. Usually the code is not fully implemented.
Therefore, the system model is typically a mix of a
detailed model based on a predecessor system, and
code execution time estimates for the parts which
have not been implemented yet. The analysis focus
is not reliable worst-case timing, but quick what-if
analysis of different software mappings and system
configurations.

The system-level timing analysis methodology dis-
tinguishes two system scopes:

1. networked systems, with emphasis on the par-
titioning of functions to network nodes and net-
work configuration,

2. single controller systems, with emphasis on soft-
ware scheduling and software execution.

The input to system-level timing analysis is a model
of the actual system, specifically:

• Software modules

• Communication signals and semantics

• CPUs

• Buses

• Mapping of software to CPUs, CPU configura-
tion and scheduling

• Mapping of signals to buses or memories, bus
configuration and scheduling

• Timing constraints

System Dimensioning and Configuration:

When developing a real-time system controller, a
key question is the optimal choice of CPU / CPU
configuration (cache, memory ...). Such decisions
have to be based on software execution time bud-
gets, with execution time estimation to determine
the feasibility, bottlenecks and reserves when im-
plementing software according to those budgets.

As explained, code-level and system-level verifica-
tion techniques can be reused also in early de-
sign phases, using predecessor systems and proto-
types [12]. The major difference in the early phase
is a combination of SymTA/S for virtual configura-
tion and budgeting and TimingExplorer for estima-
tion.

The starting point is a function architecture which
has to be implemented on an ECU. An initial sched-
ule can be generated based on the function peri-
ods and dataflow. Standard function modeling tools
provide this synthesis capability. The initial sys-
tem configuration is then imported into SymTA/S. In
the automotive domain, this increasingly happens
through the standardized AUTOSAR format. As far
as available from previous systems, code execution
times are imported. At this point, it is possible to
perform exploration for a reference CPU already
known from a previous design, to see the impact of
additional code. At this stage, the following degrees
of freedom can be explored:

1. change the execution time for the new code

2. change the scheduler configuration

3. in case of a multiprocessor controller or mul-
ticore CPUs, change the allocation of code to
CPUs / CPU cores

The changing of execution time needs automation
support, since the number of possible values is very
large and manual exploration would be inefficient.
SymTA/S uses evolutionary optimization and sensi-
tivity analysis for this purpose. The other changes
can be performed manually, because the reorder-
ing or remapping of code usually is severely con-
strained by other design considerations. An engi-
neer will therefore consider such an option very
carefully. SymTA/S makes it easy to execute each
change, once the decision to explore it has been
made.

In a second stage, the impact of changing the ECU
can be explored. SymTA/S supports an automatic
speed-up / slow-down exploration of the CPU speed,
which linearly reduces respectively increases the
execution time of each runnable.

System Timing Verification:

The system model described above is augmented
with a more detailed view on the observable timing
behaviour in specific situations. Each piece of code
is characterized locally using either WCET anal-
ysis or measurement (depending on the required
level of safety). This locally observable timing is
then combined into a global timing verification us-
ing scheduling analysis [7, 8].

When static code analysis is used on the code level,
this analysis provides safe upper bounds for worst-
case code execution times (WCETs). In the inte-
grated tool flow described in this paper, WCETs of
tasks, interrupts and runnables are calculated in
aiT and passed to SymTA/S using the XTC mech-
anism (Section 5.1). This approach has been de-

ERTS2 2010 – May 19–21, 2010 – Toulouse Page 5/9

veloped during several research projects, most re-
cently ALL-TIMES [6].

Alternatively, tracing allows to measure the exe-
cution time of code. This is only as good as the
test cases by which the system has been exercised.
However, with a good test-suite, a lot of information
can be obtained about the system, including statis-
tical data and visualizing the execution around the
time when an error occurred.

Independent of the code-analysis technique, code
execution times obtained by any of the code-level
techniques are compared against the code exe-
cution time budget defined in the initial design
phases. If the obtained value is smaller than the
budget, then the verification is complete for that
code, and we move on to the next piece of software,
noting the “headroom” observed for this runnable
or task. The headroom is the amount that the bud-
get exceeds the execution time and is spare compu-
tation time.

Otherwise, if the execution time value exceeds the
budget, corrective action is required:

• If the execution time was obtained using WCET
analysis, then aiT offers techniques to reduce
over-estimation, such as context expansion or
loop count constraining. Assuming they are
correctly applied, these features bring the es-
timated WCET down toward the true WCET,
which may be less than the budget.

• A second approach is to actually reduce execu-
tion times by optimising the software. Both aiT
and trace tools such as Gliwa T1 report identi-
fied worst-case paths. Therefore, it is easy to
identify which parts of the software consume
most time. This information ensures that poten-
tially expensive optimisation efforts are only de-
ployed where they will have maximum benefit
for reducing the execution time of the software.

• A complementary approach is to increase the
budget. This is promising in particular if anal-
ysis of other code has shown significant head-
room in their budgets, meaning that the budgets
can be re-balanced. SymTA/S sensitivity anal-
ysis and exploration allow such budget experi-
ments to be performed, to determine whether
or not the overall system remains schedulable.

The mentioned technologies for code- and system-
level exploration (SymTA/S Architecture Explorer
and aiT TimingExplorer) are well suited to support
these processes in the design phase. System verifi-
cation is performed during system integration. In-
creasingly, this includes the verification of the tim-
ing properties of the system, which is supported by

Figure 3: Code and System Analysis in Exploration
and Verification

the combination of SymTA/S System Verifier and aiT
WCET analyzer.

5. Tool Integration

Both mentioned technologies have their specific ap-
plications (code-level and system-level) but at the
same time they fit well together (see Figure 3). In
the established use for verification, worst-case ex-
ecution time analysis provides timing data for in-
dividual task execution (as a sub-system property)
that is required by system scheduling analysis. The
other way round, SymTA/S can provide detailed
constraints for parts of the software.

The new exploration variants of the tools offer new
flow options. TimingExplorer can provide first ex-
ecution time estimates for an early code-level ex-
ploration, while the SymTA/S Architecture Explorer
can provide execution time budgets for the hard-
ware and software selection at the system level.

For this data exchange, AbsInt and Symtavision
have realized a data exchange mechanism and for-
mat called XTC (eXtensible Timing Cookie), devel-
oped in the course of the INTEREST project and ex-
tended in the ALL-TIMES project.

5.1 XTC

The system-level tool SymTA/S by Symtavision com-
municates with the code-level tools aiT and Timing-
Explorer by AbsInt, T1 by Gliwa via the XTC 2.0 in-
terface (see figure 4). XTC 2.0 is also used for the
tool coupling between T1 and aiT/TimingExplorer.
XTC 2.0 is the ALL-TIMES evolution of XTC 1.0,
which was developed in the FP6 INTEREST project
as an interface between SymTA/S and aiT. XTC 2.0
is, as it’s predecessors, open and can be , and has
been, adopted by other tools not mentioned here.

XTC means ”eXtensible Timing Cookies”. The main
idea behind these ”Timing Cookies” is derived from

ERTS2 2010 – May 19–21, 2010 – Toulouse Page 6/9

Figure 4: XTC connection between system level and
code level

two observations:

1. The envisioned flow between SymTA/S and the
code-level tools is essentially cyclic, suggesting
a request-response mechanism.

2. Each tool requires a (potentially large) set of
data about the system under design, but the in-
tersection of these data sets is small.

Timing Cookies have been introduced to avoid
the duplication of the sophisticated user-interfaces
available in each tool. The concept of Timing Cook-
ies allows users to keep entering the required infor-
mation in the appropriate place, and to store the in-
formation for the next round of communication be-
tween the tools. This is similar to repeatedly visiting
a web site that requires certain user information.
Such information is typically stored in a cookie and
retrieved when the user visits the site again, hence
the name ”Timing Cookie”. A Timing Cookie is an
XML file consisting of two main sections:

1. One common section that describes the analysis
request when the cookie is sent from a system-
level to a code-level tool, and additionally holds
the response to that request when the cookie is
returned from the code-level tool to the system-
level tool.

2. A cookie section per communicating tool to hold
each tool’s local information required for servic-
ing a request and for putting the response in its
appropriate context.

As shown in Figure 4, SymTA/S launches a request
to one of the code-level tools for code execution
time information. This request is tagged with a
unique ID and sent to the code-level tool in a Timing
Cookie. If necessary, the code-level tool queries the
user for additional required information. The code-
level tool answers the request by sending a Timing
Cookie with a response back to SymTA/S, and stores
the information needed to service the request in its
private part of the cookie. This code-level tool spe-
cific information is included in subsequent requests,

so that the code-level tool can use the information
already gathered without the need to ask the user
again. The starting point for the XTC development
within ALL-TIMES was XTC 1.0, the result of the
FP6 INTEREST project, which provided a simple re-
quest and response mechanism. With XTC 1.0, only
information about worst-case execution times and
maximum stack usage could be exchanged. The
new XTC 2.0 developed since then also includes
iteration bounds of loops, response times, activa-
tion patterns aligned with the upcoming AUTOSAR
4.0 [1] and TIMMO [15] event model descrip-
tions, and scheduling overheads (activation and ter-
mination overhead, context-switch overhead, and
context-switch cache penalties). Data are now an-
notated with their source (e.g. static analysis, trac-
ing, simulation, or configuration).

5.2 ATF

ATF was developed in the All-Times project to al-
low exchange of trace, or trace related, informa-
tion between tools. ATF stands for ”All-Times Trace
Format”. In addition to the trace ATF also pro-
vides basic information on the traces system and
it’s elements. ATF has some similarities to the pre-
viously described XTC. In contrary to XTC the ATF
is not based upon a request-response mechanism.
ATF was designed to allow any tracing tool to in-
tegrate with any trace evaluation tool. A possible
tool-flow can be seen in figure 5. ATF supports
different types of bus protocols and operating sys-
tems. These are explicitly listed in the ATF schema
and contain important OS types like OSEK [2] and
AUTOSAR-OS [1].

ATF is an XML file format that has been developed
within the ALL-TIMES project. Its purpose is to al-
low different software timing tools to exchange tim-
ing traces. A timing trace is a sequence of times-
tamped events that indicates how a system (in this
case a software application) behaves over time. For
one example, suppose that one event corresponds
to the start of one task and another event corre-
sponds to the start of another task and the tasks are
supposed to run in strict alternation. A timing de-
fect could be manifested as one of the tasks running
twice in succession without the other task running
in between. Even though this might be very rare
and virtually impossible to capture using conven-
tional debugging techniques, collecting and then
searching a timing trace can highlight exactly when
the problem occurs. For another example, suppose
that events correspond to the start and end of all
the tasks and interrupt service routines (ISRs) in
the application. A timing trace enables measure-

ERTS2 2010 – May 19–21, 2010 – Toulouse Page 7/9

Figure 5: Example for multiple trace processing
tools interacting using ATF

ment of the execution time for each task and ISR
individually, separating time spent actually execut-
ing a task from time spent while that task is not
executing but waiting for an interrupt to complete.
Timing traces are a vital part of modern software
development, debugging and verification. By hav-
ing an open, publicly documented exchange format
for traces, the ALL-TIMES partner tools allow shar-
ing of trace data not only with each other but also
with any other tools that can import or export ATF.

The tracing environment (system description) can
be configured in the ATF. Each ATF can contain mul-
tiple traces from multiple tracing tool vendors. The
trace data has been separated from the actual sys-
tem description. This allows for a single event to
describe a user event as well as a task activation.
Some additional information on the tracing over-
head can be provided in the ATF.

6. Conclusion

We have presented requirements and a methodol-
ogy for exploring different hardware architectures
and configurations and obtaining timing estima-
tions in early stages of system design, and for veri-
fying / certifying systems in later stages.

We explained the methodology using the standard
scheduling analysis tool SymTA/S and WCET anal-
ysis tool aiT. We also gave an introduction into the
technological background of the execution time and
scheduling analysis, in particular w.r.t. the applica-
bility in early and late phases.

7. Acknowledgment

Collaboration between AbsInt GmbH and Symtavi-
sion GmbH has been supported by the FP7 projects
INTERESTED and ALL-TIMES. AbsInt’s work has

additionally been supported by the FP7 project
PREDATOR.

8. References

[1] AUTOSAR Development Partnership. Automotive
Open System Architecture (AUTOSAR). URL: http:
//www.autosar.org, 2003.

[2] Continental Automotive GmbH. OSEK/VDX. URL:
http://www.osek-vdx.org.

[3] P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In
Proceedings of the 4th ACM Symposium on Prin-
ciples of Programming Languages, pages 238–252,
Los Angeles, California, 1977.

[4] C. Ferdinand and R. Heckmann. Worst-case
execution time – a tool provider’s perspec-
tive. In 11th IEEE International Symposium on
Object/component/service-oriented Real-time dis-
tributed Computing ISORC 2008, Orlando, Florida,
USA, May 2008.

[5] C. Ferdinand, R. Heckmann, D. Kästner, and S. Nen-
ova. Architecture exploration and timing estima-
tion during early design phases. Embedded World
Congress, Nuremberg, Mar. 2010.

[6] J. Gustafsson, B. Lisper, M. Schordan, C. Ferdi-
nand, P. Gliwa, M. Jersak, and G. Bernat. ALL-
TIMES – a European project on integrating timing
technology. In T. Margaria and B. Steffen, editors,
Leveraging Applications of Formal Methods, Veri-
fication and Validation, Third International Sympo-
sium, ISoLA 2008, Porto Sani, Greece, October 13-
15, 2008. Proceedings, volume 17 of Communica-
tions in Computer and Information Science, pages
445–459. Springer, 2008.

[7] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter,
and R. Ernst. System level performance analysis –
the SymTA/S approach. IEEE Proceedings on Com-
puters and Digital Techniques, 152(2), Mar. 2005.

[8] M. Joseph and P. K. Pandya. Finding response
times in a real-time system. The Computer Journal,
29(5):390–395, 1986.

[9] M. Langenbach, S. Thesing, and R. Heckmann.
Pipeline modeling for timing analysis. In Proceed-
ings of the 9th International Static Analysis Sym-
posium SAS 2002, volume 2477 of Lecture Notes
in Computer Science, pages 294–309. Springer-
Verlag, 2002.

[10] Y.-T. S. Li and S. Malik. Performance analysis of em-
bedded software using implicit path enumeration.
In Proceedings of the 32nd ACM/IEEE Design Au-
tomation Conference, 1995.

[11] K. Richter. Compositional Scheduling Analysis Us-
ing Standard Event Models – The SymTA/S Ap-
proach. PhD thesis, Technical University of Braun-
schweig, Germany, 2005.

ERTS2 2010 – May 19–21, 2010 – Toulouse Page 8/9

http://www.autosar.org
http://www.autosar.org
http://www.osek-vdx.org

[12] K. Richter, M. Jersak, and R. Ernst. Learning early-
stage platform dimensioning from late-stage timing
verification. In Design, Automation and Test in Eu-
rope, DATE 2009, Nice, France, April 20-24, 2009,
pages 851–857. IEEE, 2009.

[13] J. Schneider and C. Ferdinand. Pipeline behavior
prediction for superscalar processors by abstract
interpretation. In Proceedings of the ACM SIGPLAN
Workshop on Languages, Compilers and Tools for
Embedded Systems, volume 34, pages 35–44, May
1999.

[14] H. Theiling and C. Ferdinand. Combining abstract
interpretation and ILP for microarchitecture mod-
elling and program path analysis. In Proceedings
of the 19th IEEE Real-Time Systems Symposium,
pages 144–153, Madrid, Spain, Dec. 1998.

[15] TIMMO Consortium. TIMMO – Timing Model. URL:
http://www.timmo.org, 2009.

[16] K. Tindell. Adding time-offsets to schedulability
analysis. Technical Report YCS 221, University of
York, 1994.

[17] R. Wilhelm, J. Engblom, A. Ermedahl, N. Hol-
sti, S. Thesing, D. Whalley, G. Bernat, C. Ferdi-
nand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The
worst-case execution-time problem—overview of
methods and survey of tools. ACM Transactions on
Embedded Computing Systems, 7(3):1–53, 2008.

9. Glossary

aiT: AbsInt’s Timing analyzer

CPU: Central Processing Unit

ISR: Interrupt Service Routine

RTOS: Real-Time Operating System

SymTA/S: Symbolic Timing Analysis for Systems

T1: Tracing tool by Gliwa

WCET: Worst-Case Execution Time

WCRT: Worst-Case Response Time

XML: Extensible Markup Language

XTC: XML Timing Cookie

ERTS2 2010 – May 19–21, 2010 – Toulouse Page 9/9

http://www.timmo.org

	Title
	Abstract
	Keywords
	Introduction
	Requirements
	Timing in the System Development Process
	Timing Analysis Tools
	Code Level
	System Level

	Tool Integration
	XTC
	ATF

	Conclusion
	Acknowledgment
	References
	Glossary

