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RainBio: Proportional visualization of large sets in biology

Lamy Jean-Baptiste, Tsopra Rosy

mL3 mL2 mL1 pL1 pL2 pL3 MsS1 MS2 MS3 stro3 stro2 strol | RainBio
(500) (500) (500) (500) (500) (500) (500) (500) (500) (500) (500) (500)

Visualizing sets in biology

with rainbow boxes

w7 .

66 '8 1 s . : 3 u n 1

1 v93 - : ! s . 2 lr27 - ' 112 sets
2 1 1 444 i s | 140 a | i
75 63 I & 22 1027 distinct elements
48 & 118 276 non-empty exclusive
25 i | : : : : ' : : H intersections

Box clustering: | - +
249
26 boxes shown

At least 8 elements per box

Fig. 1. RainBio displaying the comparison of 12 sets, after clustering. Each set includes the most expressed genes on a
mammary tissue sample. Sets are displayed in columns and are ordered by similarity, showing that there are 4 types of
tissue. The dataset has 276 non-empty exclusive intersections. Here, the 26 biggest ones are represented by colored
boxes. Box color indicates the intersection degrees. The height of the box is proportional to the number of elements after
clustering, while the darker bar on the right is proportional to the number of elements before clustering (i.e. exclusive
elements). For example, there are 249 genes common to all sets, and 118 shared by stro tissues, of which about 30% are
exclusive to the three stro tissue samples.

Abstract —Set visualization is a well-known task in information visualization. In biology, it is used for comparing visually sets of genes or
proteins, typically using Venn diagrams. However, limitations of the Venn diagram are well-known: they are limited to 6 sets and dif cult to
read above 4. Many other set visualization techniques have been proposed, but they have never been widely used in biology. In this
paper, we introduce RainBio, a technigue for visualizing sets in biology and aimed at providing a global overview showing the size of the
main intersections, in a proportional way, and the similarities between sets. We adapt rainbow boxes, a technique for visualizing small
datasets, to the visualization of larger sets, using element aggregation and intersection clustering. We present the application of RainBio
to three datasets, with 5, 6 and 12 sets. We also describe a small user study comparing RainBio with Venn diagrams, involving 30
students in biology. Results showed that RainBio led to signi cantly fewer errors on 6-set dataset, and that the majority of students
preferred RainBio. RainBio is proposed as a web-based tool for up to 15 sets.

Index Terms—Gene set comparison, Set visualization, Venn diagram, Bioinformatics.

F

1 INTRODUCTION would like to visualize the genes speci c to each sample, or shared
Set visualization is a well-known task in information visualizatiorRy tWo or more samples. Here, genes are the elements and samples
It considers some elements and several sets containing one or nffethe sets. (b) Genes (or proteiews) are identi ed as biomarkers
of these elements. The sets may represent categories of elem&it& given disorder using several methods. Biologists would like
shared properties, or subsets of elements associated with a gkfefompare the results obtained with the various methods and/or
condition. While the problem is intuitively simple, the number of® compare the methods between themselves. Here, genes are the
possible set combinations increases exponentially with the numéments and there is one set per method.
of sets, and thus the visualization becomes rapidly complex beyond Currently, the Venn diagram is the most used approach to
4 sets. A large literature exists on set visualizatjon [1] and maM{pualize gene sets in biology. However, it has well-known
technigues have been proposed. limitations [2], [3]: it is dif cult 'to generate auton.]au.ca}lly. and to

In biology, set visualization is commonly used for comparinf;ead when the number of setg increases. In praf:t|ce it is limited to 6
visually sets of genes or proteins. Usual datasets have a higits: Other more recent set wsgahzgﬂon techmques, such as UpSet
number of elementse(g. thousands of genes) but a small-tol4]. are less commonly used in biology, possibly because they
medium number of sets. The two typical situations are: (a) Gerfdéen focus on detailed data mining. On the contrary, biologists
(or proteins, or gene clusters) are isolated in several biologi@Mmetimes expect a quick “one-screen” overview of the entire

samples €.g.various species, tissues or health statuses). Biologiétataset or a “big picture” easy to publish in scienti ¢ journals.
Recently, we introducedainbow boxeqb|, [6], a technique

ariginally able to visualize 2-25 elements and 5-100 sets. Figure

Authors were with the LIMICS, Université Paris 13, Sorbonne Universi

Inserm, 93017 Bobigny, France. shows an example of rainbow boxes displaying a small dataset
E-mail: jean-baptiste.lamy@univ-paris13.1r, rosy.tsopra@aphp.fr on planets. The elements are shown in columns, and the sets are
Manuscript received XXX, 2018. represented by rectangular boxes placed below column headers.
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Table 1
Classi cation of set visualization techniques (E: element-centric, S:
set-centric, (x): the approach is proportional but either displays only
aggregated data (Set O'Gram) or does not relate visually all proportional
intersections to their corresponding sets (Radial Sets, PowerSet)).

T
c
S 2z 3
[$) z = =2
Fig. 2. Example of rainbow boxes showing the 8 planets of the solar é g = =2
system (elements/columns) and 7 properties (sets/boxes), e.g. the set of ) g °o E ¢
“Big” planets contains Jupiter, Neptune, Saturn and Uranus. Technique Category P o &»n ©O
Eulerdiagram Euler/Venn E - - X
Venn diagram Euler/Venn S - - X
. Proportional Venn d. Euler/Venn S X - X
Each box covers the columns corresponding to the elements |jneSets overlays E - . X
belonging to its set. The column order is computed using a heuristic Bubble Sets overlays E - - X
optimization algorithm (hence planets are not ordered as usual in BiSét node-link E - -
- . . . Circular itemsets node-link S - - X
Figure[2). This glgorlthm tries to order the columns so as the  gicentric diagram node-link s . . X
elements belonging to each set are contiguous. When it is not Linear diagram matrix E - - X
possible to have them contiguous for a given set, a “hole” is present Mosaic diagram matrix E - - X
: . : Rainbow boxes matrix E X X X
in the corresponding box and a small thread links the two parts of Radial Sets apgregation s ) - X
the box €.g.in Figure[2, the “Has @ box has one hole). Colors are Set O'Grams aggregation s ®x - X
added to column headers and boxes: rainbow colors are associatedConSet aggregation+matrix S - X -
with column headers, ranging across the spectrum, and the color of UPSet aggregation+matrix S X - -
box is the mean of the colors of the columns it covers. Finall Aggreset aggregationtmatrix S X X o
aboxis . > : Y, PowerSet aggregation S % - X
boxes are stacked vertically, with the largest boxes at the bottom~™RainBio clustering+matrix S X X X

Two boxes can be next to each other, as long as they do not occupy
the same columns. Rainbow boxes have already shown their utility
in pharmaceutical domaif|[6]. Later, we proposed a proportiori8IWhich elements are aggregated and only sets are individualized.
version of rainbow boxes$ [7] for representing arti cial neurons. Table[1 shows the classi cation of the techniques mentioned below.
In this paper, we present RainBio, a rainbow boxes-based too| Euler and Venn diagrams are one of the oldest approaches
for set visualization in biology. The main focus of RainBio is td8l- They are often used to teach set theory. In Euler diagrams,
provide a global overview or a “big picture” of a datased, to eaqh set is_represented by a closed-area _[3]. '!'he areas overlap in
visualize the main intersections and the potential set similarities {A1i0US regions that represent the (exclusive) intersections of the
a diagram that can be displayed on a single screen of typical s@S- A Venn diagram is a kind of Euler diagram showing all the
without the need for scrolling. Our main contributions are: (a) wé 1 possible combinations of overlaps, wherés the number
adapt rainbow boxes to the visualization of large datasets (in terRisSets. In aproportional Venn diagram, the size of the various
of elements), supporting up to 15 sets and 40,000 elements,érsig'ons is proportlonal to thg number qf elements in ealch regions.
we propose to cluster set intersections, which is a new approd@hneuler([9] is a tool drawing such diagrams using circles, and
in large set visualization, (c) we achieve the exact proportiorfdYenn another tool drawing quasi-proportional Venn diagrams [10]
visualization of 6 sets, which was not reported yet, (d) we compaf&ing closed shapes made of several circles. The automatic drawing
our approach with others on several datasets and we present a sAfdffese diagrams is still a challenge above 4 séts [3].
user studyersusvenn diagrams. In biology, many venn d|agram.-bgsed tools have bgen proposed:
The rest of the paper is organized as follows. Se¢fjon 2 preseft§neVenn [11] (Venn diagram, limited to 3 sets), BioVenn [12]
background on set visualization and describes the typical ta§REoPOrtional Venn diagram, limited to 3 sets), VennMaster [13],
required for biologists. Sectidf) 4 presents how we adapted rainbldl] (approximately proportional Venn diagram), Jvenn[15] (Venn

boxes to the visualization of large sets. It also describes interactiviizdram. limited to 6 sets), Interactivenn [16] (Venn diagram,

and implementation details. Sectfgn 5 illustrates the use of Raing{g!ted to 6 sets, allows the analyze of set unions interactively),

on three biological datasets. Sectidn 6 argumentatively compa¥ggnPiagramWek; [17] (Venn and Euler diagrams, limited to 5 sets)
RainBio with other approaches. Sect[dn 7 describes a user sty Vennpainte( [18] (Venn diagram and nested Venn diagram, up
comparing RainBio with Venn diagrams on 5 and 6-set datasdfS Sets). Most use Edward-Venn diagrams [19].

Finally, sectiorf B discusses the results, the limits of our approach Overlay-based techniques are suited for datasets including a
and proposes perspectives. spatial component. Examples are LineSeétg [20], which display

elements as points in the space, and sets by lines joining these
points, and Bubble Sets [21], which display sets as bubbles
including the corresponding elements. Extended LineSets [22]
are a variant of LineSets for non-spatial datasets, such as biological
Alsakallah et al. [1I] reviewed techniques for overlapping sepathways.

visualization. They distinguished 6 approaches: (1) Euler and Venn BiSet [23] is an improvement of node-link diagrams, in which
diagrams and their variants, (2) overlays on a map, (3) nodee edges are bundled together to facilitate their reading and their
link diagrams, (4) matrix-based techniques, (5) aggregation-basednipulation. Circular itemsets [24] is another node-link technique,
techniques, and (6) scatter plot-based techniques. Another possitihéch represents intersections in concentric circles. The sets are
classi cation [4] is to distinguish element-centric approaches, jpositioned on the outer circle, then the intersections of 2 sets
which elements are shown individually, and set-centric approachase positioned on the second ciroté. Bicentric diagram|[25]

2 RELATED WORKS
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Table 2

The typical tasks identi ed for set visualization in biology. The table indicates in which situations each task was encountered (comparison of several
samples and/or comparison of several methods, as detailed in introduction), and the corresponding tasks in Alsallakh et al. classi cation [1].

# Task Samples Methods Alsallakh
1 How many elements belong to all sets? X X B10
2 How many elements belong only to a given Xe? X X B12
3 What is the seX that contains the highest number of elements belonging to no other set? X X B12
4 What is the biggest exclusive intersection (in general or limited to dggfee X - B10, B7
5 What is the number of elements in a given exclusive intersection? X - B8, B10
considers two groups of two concentric circles. (B) tasks related to sets and (C) tasks related to element attributes.

Linear diagram is a matrix-based diagram [2],|[26], introducelor identifying tasks in biology, we rst gathered published papers
by Leibniz in 1686([2F]. Elements are displayed in columns arid bioinformatics [16], [36] and biology [37]-[40] presenting Venn
sets in rows. A piece of horizontal line is drawn in each cell aliagrams. These papers do not contain task descriptions, but we
the intersection of an element that belongs to a set. Thus, a sebiracted the diagrams and the insights mentioned in the text
represented by one or more horizontal segments. Colors are usueiliyng the gures. Then, we derived questions and tasks from these
added to identify the lines of a given set. Mosaic diagram [28], [29)sights, and we mapped them to Alsalla&hal. classi cation.
is a space- lling variant of linear diagram. Rainbow boxe’s [5], [6For example, in[[16], a sentence introduces a Venn diagram and
can be seen as an evolution of linear diagram, despite the fact titen states that “all methods retrieved 38 common proteins”. We
they move away from matrices, by allowing the representation dérived this into task #1, “How many elements belong to all sets?”.
several sets in a single row. They also permit a proportional variale also reviewed the task classi cation proposed for biological
[7]. pathway visualizatior [41]; although mostly graph-based, pathway

In Radial Sets[[30], only aggregated information on sets ¥sualization sometimes involves set visualizatiery(task R3 in
displayed, using bubbles and histograms organized in a rif@l]). Finally, we completed this information with our expertise
Another aggregation-based technique is Set O'Grdms [31].iftthe eld, to identify 5 typical tasks for gene set visualization
represents sets in a bar chart, the height of each bar indicating ithdiology (Table[2). All ve tasks belong to category B (tasks
cardinality {.e. number of elements) of the set. Bars are divided irelated to sets). This was expected, since the elemientgdnes)
several segments, each segment containing the elements that bedosagoo numerous to be visualized individually (for category A),
to a xed number of setse(g.elements belonging to a single set, tand there is no per-element attributes (for category C). The number
2 setsetg). This technique heavily relies on interaction for relatingf tasks in Tabl¢ |2 is limited and they cover only four tasks in
the various segments and identifying intersections. Alsallakh et al. classi cation: B7 (identify the set involved in a

Several techniques combine matrix-based visualization with thertain intersection), B8 (identify set intersections belonging to
display of aggregated values using charts. CoriSét [32] representspeci ¢ set), B10 (analyze and compare set and intersection
set intersections as pies and sets as a permutation matrix. Thelinalities) and B12 (analyze and compare set exclusiveness).
tool is interactive, allowing reordering the rows and columns &ome tasks in Tab[g 2 correspond to several tasks in Alsadiaith
the matrix. It also displays fan diagrams, a simpli ed form otlassi cation,e.qg.for task #4, after nding the biggest intersection
the Venn diagram, for subsets of the data. UpSgt [4] combin@l0), a biologist usually wants to know which sets it involves
a matrix-based approach, showing the various set combinati¢Bg).
similarly to a linear diagram, with aggregated values, such as
a bar chart showing the cardinality of each intersection. It al
supports advanced interactive queries for the creation of u
de ned aggregations. For each set, the user can restrict

In addition, task B11 (analyze and compare set similagity,
?ﬁrough a similarity measure) is probably of interest for biologists.
h{)'\/vever, since this task is not supported by the Venn diagram

. o . . I'F they commonly use, it is not expressed as such in papers.
visualization to eleme_nts b_elo_nglng, or not, to th_at set. Final iologists often identify similarities between set through the nding
UpSet supports the V|§ual!zat|on of element attribuies fet- of the largest intersections. When comparing gene sets from several
typed data). AggreSe [33] is another approach for set-typed d@ ples, a large intersection between two or more sets means
It creates aggregations for set intersections, set pairs and set degfﬁﬁ?’the ,corresponding samples share many genes, and thus are
and r.ep.resents the callrdingli.ty of each gggregation..Aco-qccurregﬁ%"ar with regard to those genes. On the contrar,y, the small
matrix is used for visualizing set pairs. Interactive options Afifitersection between two or more sets does not necessarily imply

pravided for selec.tlon and lering. . . the absence of similarity, because most set visualization techniques
PowerSet [34] is based on Treemdps [35], and displays mterng

. . ; . cluding Venn diagrams) actually represertlusiveintersections,
tions as rectangles, the area being proportional to the intersectian jaments belonging to the intersection of some aatsnot

cardmallty_. Intersections are sorted by degiiae I(ng number_ of belonging to any other intersection of a highest degree. For example,
sets they involve). Over- and underrepresented intersections I8 setss, ands, may have a small (exclusive) intersection, while

highlighted with colors. PowerSet allows distinguishing very we eing similar because the intersectiorsofs, and another sat;

the main |_ntersect|_on§, .bUt the identi cation of sets is more dif Cu"is large. Consequently, biologists are usually more interested in the
since a given set is divided into several, unrelated, rectangles. largest intersections than in the smallest ones

Alsallakh et al. tasks related to inclusion, hierarchy, pairwise
3 REQUIREMENT AND TASKS ANALYSIS intersection and subset selection seems less important in biology.
Alsallakhet al. [1] proposed a task classi cation for set visualizaThe limited task coverage suggests that the needs of biologists are
tion. It includes 3 main categories: (A) tasks related to elemendstually focused on rather speci c tasks.
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Many existent tools can be used to perform tasks B7, B8, | SetB(6) | SetA(7) | SetC(7) [ SetD )|

B10 and B12, including the Venn diagram and UpSet, the latter B 5 1

supporting a very wide range of tasks. However these tools are not . : 3

speci cally optimized for the needs of biologists. We identi ed 1

the main characteristics of the ideal set visualization approach
in biology: (a) It should be set-centric, because the number of
elements is often very high (several thousand or more). (b) It
should provide a global “one-screen” overview, and thus shoufdy. 3. RainBio showing a trivial 4-set dataset.
avoid displaying one intersection per row/column because the
number of intersections increases exponentially with the number
of sets. (c) It should facilitate the identi cation of set similaritiescolumnsA and B. The box is labeled with the cardinality of
This can be done through a proportional visual approach, in whithe exclusive intersectioof the sets in its combination. We call
similar sets have similar shapes, like in the proportional Veraxclusive intersectionf some sets, the elements belonging to the
diagram, and/or through a set similarity measurement, typica#igt intersectiorand not belonging to any other set. Exclusive
by reordering the rows or the columns of a matrix according ibtersections correspond to the regions of the Venn diagram; for
similarity. clarity, we will refer to them as “intersections” in the following,
Table[] indicates how the various approaches support thés@pposition to “standard intersections”. The height of the box is
characteristics. No approach satis es all the criteria listed abopgoportional to the cardinality of the intersection, and the color of a
Near misses are the proportional Venn diagram (but it canrigax indicates the intersection degree. When they are too numerous,
be generated exactly above 4 sets), rainbow boxes (but elembpxes are clustered: smallest boxes are removed and their elements
centric and thus unable to display large sets), ConSet, UpSet anel moved to taller boxes (this will be described in sedtioh 4.2).
AggreSet (but they provide limited global overview, due to their Consequently, the set membership of an intersection is encoded
“one intersection per row” approach). spatially, by the horizontal position of the corresponding box.
Another particularity of biological datasets should be takebhe cardinality of an intersection is also encoded spatially, by
into account in the design: when a given gene is presenttie vertical dimension of the box. Finally, intersection degree
two samples, each sample has its own copy of the gene (amcencoded by both the box color and vertical position (with
not a single copy shared by all samples). Consequently, whetersections of higher degree at the bottom). The rest of the
considering proportional set visualization, one may consider an asggtion gives a detailed description.
proportional to the number of gene copies, rather than proportional A set dataset can be formalized as a set of ts
to the number of distinct genes.g.a gene present in two samplesS ;; S,;:::; Si; :::; Sn g, wheren is the number of setsi( 2). Sets
would occupy an area twice larger than the area occupied by a gghean be ovglapping,e. a given element may belong to several

present in a single sample. Existing proportional visualizatiosgts.E = S; is the set of all elements. The intersection
including proportional Venn diagram) do not take into accoun i2f1;:::ing -
Ehis pointg prop 9 ) of one or more sets i8 is the set of elements that belong to the

. standard intersection of those sets and that belong to no other sets
In the present work, we propose to adapt rainbow boxés . o L
. . . N S. The functionX () computes the exclusive intersection:
in order to produce a new set-centric proportional approach,

supporting set similarity and overview, targeting the typical tasks X(c S)= T xn S

we identi ed in biology and considering the number of gene copies X2¢  y2Snc

for proportionality.
LetC = fc S :X(c) 6= be the set of combinations of

S with a non-empty intersection. When the number of such
4 ADAPTING RAINBOW BOXES FOR THE VISUAL - combinations is low, all of them can be displayed in a separate box,
IZATION OF LARGE SETS and clustering is not needed. For a given box, identi ed by its set
mbination, the box functioB () returns the elements represented
that box. Without clustering, the elements in a box are simply
fRe exclusive intersectiof® = X .
" In order to have proportional rainbow boxes, the height of the
for a set combinationis H; = max(jB (c)j k;Hmin ) Where

When comparing sets in biology, the number of elements 58
usually high and the number of sets is limited. This woul
result in rainbow boxes with 1000-10,000 columns and 2-6 box
which is impractical: a standard screen cannot show so many
columns simultaneously. Consequently, in this section we ada o Mitle 1 i 4
rainbow boxes to the visualization of datasets with a high numdBr(C)i is the cardinality of the box is a scaling factor, inversely
of elements, by displaying aggregated data instead of Showmré).po.monal to the.number of elementskn It allows malnta|.n|ng
each element individually. We also propose a novel method faimilar global height, whatever the number of elements!is

intersection clustering, we de ne a new color scheme and we afdth® minimum allowed heightdmi prevent boxes being too
interactivity. small whenB (c)j is very low. Each box is labeled with the number

of elements it representse. jB (c)j, provided that the box is tall
enough to include a label.

Finally, we de ne a new color scheme for rainbow boxes. The
The general principles we propose for visualizing large sets d@olor of the box for set combinatiomdepends on the number of
RainBio are the following (see example in Fig{ite 3). Each colunsets inc: we use a gradient of hues, from blue (a single set) to red
corresponds to a set, and each box to a set combination. The fibg maximum number of sets). Thus, hotter colors are attributed
covers the columns corresponding to the sets in its set combinattanpoxes involving more sets. In addition, boxes are organized
e.g.the box for the set combinatidi; B g will occupy the two vertically by colors: “hotter” boxes involving more sets are lower.

4.1 Columns and boxes
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| SetB(6) | SetA(7) | SetC(7) [ SetD )| hole in a box is equal tél .. This prevents holes in taller boxes, to
' ‘ ; the detriment of the smallest ones.

: | 2 | For a given set orded, the total hole cost is the sum of the
4 | 3 number of holes multiplied by the corresponding box height. It is
: : : computed by the functioh de ned as follows:
2 X
h(0) = He i21 =findO;s 2 c)g
c2C s

Fig. 4. Same dataset as Figure |3} after clustering (witht = 2).

9 9 9 ) Si+1 62 A i 6= max(l)
whereind(O; s ) is a function that returns the index of a given set
in the orderO (starting at index 1). The optimization process aims
When the number of intersections is too high, it is not possible g nding the best orde®© = argmin (h(0)).
display one box for each while keeping a readable visualization. In \when the number of columns is below 10, column order can
this case, we propose to cluster intersections. We de ne a clusterifg optimized with a brute force algorithm that tests all possible

thresholdt 1. Intersections with at leastelements are used asgrders. When the number of columns is above 10, we proposed a
“seeds” and will be associated with a box. In addition, intersectioRgetaheuristic algorithm [43].

involving a single set are always selected as seeds, for two reasons:
(a) they are associated with boxes of length one, which cande¢ Adding interactivity
have holes, and (b) it ensures that all elements will be clustenegeractivity was added for two purposes. First, we used detail-on-
in at least one box, consequently, no element disappears duidieénand to display additional information. When the mouse cursor
clustering. LetCs = fc  S:jX (c)j t_jcj =1g be the set of s over a box, a popup label displays the sets involved in that box
seed combinations. and the number of elements. This is especially interesting for boxes
Set combinationsl 2 C n Cs have less than elements in that are too small to display a label. When the user clicks a box,
their intersection and will not have their own box. The elements @ new window is open, listing the elements in this box. If several
their intersectionsx (d) will be displayed in the boxes of the intersections were clustered, the list is organized by intersections.
seed combinations that are the biggest available subsefs ofyhen the mouse cursor is over a column header, a popup label
Consequently, with clustering, boxes display subsets of elemegigplays the number of intersections, before and after clustering,
that are somewhat in-between exclusive and standard intersecii@flving the corresponding set.
For a set combinationin Cs, the corresponding box displays not  Second, two options have been added for ltering out boxes.
only the exclusive intersection of but all elements that belong The rst one consists of controlling clustering. We added a panel on
to the standard intersection ofand that do not belong to anotherthe right of rainbow boxes (shown in Figure 1). It displays various
box associated with a set combination that is a (strict) supersetsgtistics, such as the total number of elements and sets, and allows

4.2 Intersection clustering

c. The box fgnction is now: S controlling the clustering threshotdwith the two buttons “-" and
<ifc 2 Cs: xn BEY:P2Cs c g “+". Buttons can be held down in order to display the various steps
B(c S)= . therwi xae of clustering as an animation. The minimum allowed valuet fisr
* otherwise . |

the lower one that produces at most 64 boxesye limited the

B(c) can be computed recursively, starting with the large¥tsualization to at most 64 boxes. . . .
combinations:. The height of boxes is proportional j® (c)j, the The second Ite.rlng option aims at selecting boxes involving
number of elements after clustering. In addition, we add a sm&l€ or several particular sets. We added a checkbox for each set,
dark bar on the right of the box, whose height is proportional {8 the column header. By default, they are unchecked. When a
iX (©)j, the number of exclusive elements(before clustering). checkbox is checked, boxes corresponding to set combinations that
This bar indicates “how exclusive” the box is. It is deliberatelfl® Nt involve this set are faded (see example Figyre 8). When
subtle, in order to limit visual clutter. It uses the color value visuZieveral checkboxes are checked, their effect is additive: all boxes
variable, while the color hue is used to indicate the intersectigft do notinvolve all the selected sets are faded.
degr_etla. Tho_se two visual yarlables are _selectlve accordlng4t% Complexity
Bertin's semiology of graphics [42], allowing the user to focus . . . .
his attention on one of these variables and ignoring the other. fBersections can be determined exponentially wittsince the
example, Figurg]4 shows the dataset of Figure 3 after clusterfigMPer of set combinations i8". However, it can also be
with t = 2. The yellow box with 1 element has been removed, arRf’formed linearly with the number of elements= jEj, because

its element is now counted in the two boxes that were just abo'illala‘3 nu_mb(_er of norj-empty interse_cFions is at mmst(_in fgct,
the yellow one. exclusive intersections are a partition B). Whenn is high,

the linear complexity according to is usually preferable since it
o grows slower. Thus, the complexity @(m) or O(2"), depending

4.3 Optimizing column order on the chosen algorithm (both can be implemented for selecting
In rainbow boxes, column order must be optimized for minimizinthe most appropriated one). Similarly, clustering can be performed
the number of holes in the boxes. Holes add visual clutter, thinssO(s m) orO(s 2"), wheres = jCsj is the number of boxes
boxes with holes tend to be harder to read. This can be particulaafyer clustering (limited to 64 in our implementation).
problematic if an important box has holes. Since biologists are often For column ordering, the brute force algorithm has a factorial
interested in the largest intersections, we improved the optimizatioomplexityO (n!) . The metaheuristic algorithm nds a near-optimal
criteria proposed previously [[6] by taking into accouty, the column order in a much faster computation time, however, its
height of the boxes, during optimization. The cost for adding @mplexity is almost impossible to assess.
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Beta-binomial MWW test SVM-REE (71) RainBio Arabidopsis Sorghum Oryza sativa Brachypodium Musa Phoenix
183) 139) thaliana (11991) bicolor (16903) (17380) i (15499) i (12729) i (11157)

Visualizing sets in

biology 827 1246

with rainbow boxes 1187

t test (141) NSC (323)

5 sets 1151 769
125 547

349 distinct

elements

9 18 non-empty
exclusive
29 intersections

16 13

2809
Box clustering:
+

18 boxes shown
At least 1 elements
per box
80
1458

685

38

7674

Fig. 5. RainBio showing the prostate biomarker dataset (5 sets).

4.6 Implementation Fig. 6. RainBio showing the banana dataset (6 sets), without clustering
L . . éthe right panel with clustering control is not shown).
RainBio has been implemented in  Python .

It is available online at the following address:
http://www.les eursdunormal.fr/static/appliweb/rainbio, ~ with5 2 Dataset #2: banana (6 sets)

several demo datasets (tested with Mozilla Firefox and Google. . .
1 is dataset was designed for comparing the genome of the
8

nana Nusa acuminath with 5 other plant speciesPboenix
dactyliferg Oryza sativa Sorghum bicolorBrachypodium distachyon
and Arabidopsis thaliana [38]. The dataset includes 23,143 gene
clusters and all the 63 possible intersections are non-empty.

5 APPLICATION TO VARIOUS DATASETS Figure[6 shows the dataset in RainBio. Despite many boxes

In this section, we illustrate the use of RainBio. The rst tw'® small and dif cult to individualize, RainBio gives a global
datasets were initially used for demonstrating Interactivenh [16)€rview of the dataset. One can gain the following insights from
The third one shows the ability of RainBio to compare morkie visualization: (a) There are 7673 gene clusters shared by the 6

than 6 sets. These datasets were analyzed by JBL, who tead@ats (the red box at the bottom). This represents roughly 50-70%
bioinformatics at university. of the gene clusters of each species, suggesting some similarities

between the plants. (b) There is a high number (2,809) of gene

] clusters shared by 3 plantSdrghum bicolor Oryza sativaand

5.1 Dataset #1: prostate biomarker (5 sets) Brachypodium distachyorihe tall green box). These three species

This dataset comes from a study aimed at determining biomarkare thus close to each other. In addition, clustering can be used to

for distinguishing two types of prostate cancérs [37]. It includesmplify the visualization, by removing the smallest boxes.

349 candidate biomarker proteins and 5 sets, each containing

the proteins found as valid biomarkers by a given feature selec- .

tion method: univariate Beta-binomial, semi-multivariate Neare®tS Dataset #3: mammary tissues (12 sets)

Shrunken Centroids (NSC), multivariate Support Vector Machin€his publicly availabIEdataset [44] was designed for comparing

Recursive Features Elimination (SVM-RFE) and Studentést 4 types of mammary tissues: broblast-enriched stromal (stro),

and MWW test. The original dataset included 3 methods, anthmmary stem cell (ML), luminal progenitor (pL), mature luminal

the last 2 were added by the designers of InteractiVenn [16]. @dL). There are three replicates for each tissue, leading to 12

intersections are non-empty, out of 31. samples. For each, microarray pro ling was used to obtain the
Figure[$ shows the dataset in RainBio. If one is interested é@xpression levels of 28,458 genes. The objective of the study was

comparing the 5 methods, the following insights can be gainésl determine whether each tissue has a distinct gene expression

through the visualization: (a) No biomarkers were found only byro le.

t-test (no blue box in the “t test” column). (b) 125 proteins are In order to produce sets from microarray results, we retain

found as biomarkers only by NSC (the tall blue box at the topfor each sample the most expressed 500 genes. This yielded a

this suggests that NSC produces a lot of false positives (since thataset with 12 sets (one per sample) of 500 genes each, with 1,027

four other methods agreed that these proteins are not biomarkefistinct genes. Figure] 7 shows the dataset in RainBio, with the

(c) 80 proteins are found as biomarkers by all methods excepiathimum level of clustering allowed (this dataset has 276 non-

SVM-RFE (the tall yellow box); this suggests that SVM-RFEempty intersections, but as mentioned above we limited RainBio

produces a lot of false negatives. Consequently, Beta-binomiato at most 64 boxes). Figure 1 shows the dataset with a higher

test and MWW are the most consensual methods. If one is interest@g| of clustering, resulting in a simpler and more synthetic view.

in nding biomarkers, RainBio allows identifying easily the 38Clustering not only removes the smallest boxes, but also strengthens

proteins that are found as valid biomarkers by all the 5 methodsxes having a large non-exclusive intersection.

(the red box at the bottom). In addition, one may want to consider

the biomarkers found by the three most consensual methods.  1.|https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16997

Chrome). The web application is limited to 15 sets and 40,0
elements, and uses the same le format as InteractiVenn. A vid
is also available as Supplementary Material.
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Fig. 7. RainBio showing the mammary tissue dataset (12 sets). This is
the same dataset as Figure 1, but with a lower clustering threshold (t = 3
leading to 63 boxes).

= 2 O mil O pll D plz Y pls O Ms1 @ Msz @ Ms3 ) swo3 [ swez [ swer]  Fig- 9. Venn diagram showing the banana dataset (from [16], CC-BY).
(500) (500) (500) (500) (500) (500) (500) (500) (500) (500) (500) (500)
Oryza
) 22
Phoenix sativa
dactylifera™
4 (12 after
clustering) elements in box
MS2 & MS3 & pL3
(click to view them)
Sorghum
icolor
Musa bicolo
acuminata
249 . . :
Arabidopsis Brachypodium
thaliana ———distachyon

Fig. 8. RainBio showing the mammary tissue dataset, after the user  Fig. 10. Proportional Venn diagram displaying the banana dataset.
checked 3 checkboxes, for pL3, MS2 and MS3.

] ) o Figure[7, and 48 in Figure 1); since both tissues are luminal, it
Column order provides an interesting insight here. ColumRs ot surprising that they are similar. (s)ro seems the most

were ordered as described previously, by box similarity. The foyfiterent type of tissue (higher number of speci ¢ genes shown by
types of tissue are well-separated from each other: the three straR@+51| dark bar in its light blue box, and no tall green or yellow

samples are grouped in three contiguous coluretesTherefore, oy indicating an important number of genes shared with other
it is possible to respond to the original question that motivated thgses of tissue).

study, just by looking at the visualization: yes, each tissue has a
distinct gene expression pro le.
Four tall light blue boxes (labeled 50, 35 and 48 in Figgre 7, tfa COMPARISON WITH OTHER APPROACHES
last one being unlabeled) correspond to the overexpressed ganes Venn diagrams
shared by the samples of each type of tissue. With a higher Ievellf?él
clustering (Figure 1), the smallest boxes are pruned. The four li
blue boxes are taller, because the elements of the missing bq
are moved to of[her boxes (for example .'f th_ere Is a single g Enn diagram, while it literally “pops out” in RainBio (Figure
oyerexpressed L1, pL2, pL3 an_dstro 1’. I mlght_ be clus_tered thanks to its proportional nature. On the other hand, the Venn
with t.he_box forle, pL2 andpL3., increasing the size of this bO)_()'diagram allows a better reading of the smallest regions.
Finding a given box can be dif cult on huge datasets, especially
if the box is small. Figurg]8 shows how the checkboxes in column ) )
headers can help. In this example, the user wants to identify the §% Proportional Venn diagrams
coveringMS 1, MS 2 andpL 3. After checking the three checkboxesFigure[I) shows dataset #2 (banana) using a proportional Venn
corresponding to these sets, boxes that do not include at least thdiagram (generated with Venneulgf [9]). The large overlaps between
three sets are faded. Consequently, the desired box is the top-nses$ make the diagram complex to read. The previously mentioned
non-faded box (unless it is empty). large 3-set intersection can be identi ed on the right of the diagram.
Other insights can be obtained from the visualization: (a) TheBince no method exists for drawing an exact proportional Venn
are 249 genes shared by all samples (red box); this high numbirgram of 6 sets, Figufe JLO is approximate: it displays only 30
is expected since all tissues are mammary. (b) pL and mL tissueiersections out of 63. In particular, the 759 gene clusters found
share several overexpressed genes (the green box labeled 2@nlp in Musa acuminatare not shown: the “Musa” circle has no

ure[9 shows dataset #2 (banana) using Edward-Venn diagram
awn with InteractiVenn). Identifying the previously mentioned
?ae 3-set intersection (with 2809 genes) is more dif cult in the
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Fig. 11. UpSet displaying the mammary tissue dataset. Fig. 13. UpSet displaying the mammary tissue dataset, when the order
of the columns/sets is unknown.

arguably facilitates the reading of the intersections by removing an
extra level of indirection.
In addition, since there is no bar chart aligned with the matrix in
RainBio, it allows packing multiple intersectionise( boxes) next to
each other, in the same “row”, as long as the boxes do not overlap.
This has two advantages. First, it makes RainBio potentially more
compact than UpSet. For example, in Figufe 7, RainBio displays
63 intersections while, in Figufe L1, UpSet displays only 30, out
] o ] ] of 276. However, RainBio shows only 21 cardinality numbers
g;gb;rzit'igspﬁ;?;g;?iﬁf 'é’a?ésiﬁgal?;;gg_the same small dataset with huge ;0 UpSet shows 30. Second, packing multiple intersections in
the same “row” may facilitate the identi cation of intersection
disjointedness: any boxes that are next to each other do not overlap
region that does not overlap any other circles. This is especiadifd thus are necessary disjoint.
problematic here, since the objective of the initial study was to However, the layout of UpSet is simpler and more uniform than
compareMusa acuminatdo other plants. Using a proportional Vennin RainBio. Both are biased towards large intersections, in different
diagram, biologists might wrongly conclude that banana has ways: RainBio displays larger intersections in bigger boxes while
speci ¢ gene clusters. On the contrary RainBio allows an exaldpSet shows them rst. But this bias is higher in RainBio. This is

proportional visualization with 6 sets (Figyrg 6). an advantage of UpSet, especially when there is a huge disparity in
intersection cardinalities: UpSet can display all cardinalities with

numbers while RainBio cannot (see example Figuie 12).
A second difference is that UpSet provides intersection

aggregations by degree, sets, deviations and overlaps, while
6.3 UpSet RainBio provides intersection clustering. UpSet displays the largest
UpSet [4] is a recent set visualization technique. Figuie 11 shoumsersections at the top and the user has to interact with a scroll
dataset #3 (mammary tissues) with UpSet. It displays the B@r to display the others. For example, in Figbré 11, only 662
largest intersections. Both RainBio and UpSet are matrix-baseléments are represented, out of 1027 (about 64%). But scrolling
set visualization and thus RainBio is closer to UpSet than to Veran be tedious, especially if there is a “long tail” of many small
diagrams. The main difference is that UpSet encodes the setsrsections. Here, Figufe]ll is the rst screen out of 9, as suggest
involved in an intersection and the intersection cardinality in twihe size of the vertical scroll bar holder. On the contrary, the use of
separated visual elements: (1) connected dots in a matrix, ahastering in RainBio allows displaying at least partial membership
(2) a bar chart aligned with the matrix. On the contrary, RainBioformation forall elements in a single screen.
combines these two pieces of information in one: the connected
dots are replaced by a rectangular box whose height encodes theéA third difference is that UpSet has no automatic sets/columns
intersection cardinality. With UpSet, the user has to put the matiaxdering while RainBio automatically orders them by similarity
in relation to the bar chart and the column headers, which requitgsing a metaheuristic. Similarity-based set ordering can greatly
to focus visual attention on three places. With RainBio, the udeelp users. Let us imagine that biologists are not aware that there
has only to focus his attention on boxes and column headers. Taie 4 types of mammary tissues in dataset #3, and that they want
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Table 3
The questions with the correct answers. Questions marked by (*) correspond to insights mentioned in the original publications.

Question Correct answer

g - How many biomarkers are found only by SVM-RFE? 13

@ #1  How many biomarkers are found by all the 5 methods? (*) 38

§ #2  How many biomarkers are found only by beta-binomial? 9

2 #3  Which method nds the highest number of biomarkers that are not found by other methods? (*) NSC

m‘f’ #4  What are the two methods nding the highest number of common biomarkers, not found by any otheBeta-binomial and NSC
method?

#5  How many biomarkers are found by both SVM-RFE and NSC (and no other method)? 6

g - How many gene clusters are present only in Arabidopsis? 1187

® #1  How many gene clusters are shared by the 6 plants? (*) 7674

§ #2  How many gene clusters are present only in M. acuminata? (*) 759

2 #3  Which species has the most speci ¢ gene clusters (=not present in other species)? (*) Oryza

£ #4  Which are the 3 plants that share the highest number of gene clusters (present only in these 3 plants)? (*)  Arabidopsis, Oryza, Sorghum

#5 How many gene clusters are shared by Phoenix, Musa and Arabidopsis (and not shared with other sp&tés)?

to discoverthose tissue types. In Figufe]11, sets were ordersdggests, see sectioh 2), (b) it has also been chosen as a comparator
alphabetically, which resulted in grouping them by tissue typeliring other studiess.g. for linear diagrams| [45] and (c) more

(e.g. stroma, mL,...). This is no longer possible if tissue type®cent approaches, such as UpSet, have not yet been evaluated
are unknown. Figurg 13 shows the dataset with UpSet, usinglaring user study.

random set order. In this gure, discovering the four tissue types

is more dif cult. It requires to nd visually that intersections 7.1 Recruitment

B-C-J @tro previously), G-H-K pL), D-E-L (mL) and A-F-1 30 biology students were recruited at our university in the rst year
(MS) are largeand that they make a partition of the set of allof master degree (M1). Most of them were female; this is usual in
sets,i.e. the intersections include each set once and only ongglogy courses. About half of them were from foreign countries,
This is more dif cult in UpSet than in RainBio, because UpSethus various cultures were represented. The study was performed
represents intersection cardinalities and sets separately (as gaithg the course of bioinformatics and students were not aware
above), and it is even more dif cult when sets are not ordered lgiyat the study will take place at this moment. They were told that
SImI'arIty Manually Ordering the sets to Slmp“fy the ViSl.la.HzatiOI'lhe objective of the study was to compare two too|s’ but not that
in UpSet would be tedious, because therel@e= 479;001;600 the Venn diagram is a well-established technique and RainBio is

candidate orders. On the contrary, discovering the four tissue typeghallenger. Some students already used Venn diagrams in other
is easier in RainBio: the fact that some boxes are next to eaghrses.

other facilitates the identi cation of disjoint intersections (which
are requirements for partitions), and sets are automatically ordered Protocol

by similarity. Thus, the set order in the dataset has no impaghe st dy was anonymous and no personal information was
and the visualization remains the same as in Figure I hnd 7'_Tné§orded (such as age or sex). We used a balanced crossover
exam?'e shows that UpSet depends_a lot on the set order (arb'trﬁ\ré(tocol in which each student tested both tools. We used datasets
o_rder_ln t_he dataset Ie_or alphabetical order). prever, a909q anqg #2, with 5 and 6 sets, initially produced for demonstrating
visualization should be independent from any arbitrary order. | oo tvenn. For each. we designed 6 questions: a “warm-up”
To conclude, UpSet has a more uniform global layout ang,estion (whose results were not analyzed) and 5 other questions
provides much more interactive options, such as two-level aggreglaa-me[})' one per typical task described in sedfibn 3. 6 questions
tions or user-de ned queries. It also provides intersection deviatiop$,+ of 10) corresponded directly to insights mentioned by the
and supports the analysis of set-typed data. Thus, it is arguallfhors of the original publications T16], [37], [38]. The two

better for detailed data mining or when intersection cardinaliti%{%estions #5 were deliberately designed so as they target small
are very disparate. On the other hand, thanks to tighter packifjghrsections, the cardinality of which is not shown in RainBio

and clustering, RainBio can display more information than UpSges (thus requiring user interaction). Each question had a single
in a single screen. Therefore, RainBio provides arguably a MQi&rect answer.

comprehensive “one-screen” overview. In addition, similarity-based  g;,qents were randomly divided in two groups. The rst group

column ordering may help nd relation between sets. These typ,q (o reply to the questions on the 5-set dataset with the Venn
points correspond to ideal requirements (b) and (c) we identi ed fiagram and to the questions on the 6-set dataset with RainBio,

sectior(8. andvice versafor the second group. All students began with the
simpler 5-set dataset. Thus, both groups had the same questions
and datasets, in the same order, but not with the same tool. We
recorded the error rate and the response time. Consequently, the
In this section, we present a small user study. Its objective wasitalependent variables were the dataset (5-set or 6-set), the tool
compare RainBio and Venn diagrams for the visualization of 5 anded (RainBio or Venn diagram) and the question identi er (#1-5),
6-set datasets, with regard to the ve typical tasks we identi ed iand the dependent variables were the response accuracy and the
biology (Tablg ). The Venn diagram was chosen as a comparatesponse time. Finally, the last question asked the student about his
because (a) it is, by far, the most widely used approach in biologyeferred tool, with three possible choices: RainBio, Venn diagram,
(as the large number of Venn diagram-based tools for biology no opinion.

7 USER STUDY
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7.3 Hardware and software set visualization. In particular, we proposed the exact proportional

The study was performed on the classroom desktop computéiialization of up to 6 sets, which was not reported yet to our

(Intel Core i5-6500 processors at 3.20 GHz, 8 Gb RAM) runnirg"OWbdge- We. demqnstrated the use of Raln.Blo.on 3 biological

Debian GNU/Linux. They were equipped with 19' screens with §atasets of various sizes, and we compared it with several other

resolution of 1280x1024 pixels. techniques (Venn diagram, proportional Venn diagram and Upset).
A dynamic website was developed for the study. The websftdnally, we compared RainBio with Venn diagrams in a small user

was responsible for the randomization in the two groups. The r&tudy. We showed that students made fewer errors with RainBio

page presented brie y the objective of the study. The second pagfé 6-set datasets, and that it was preferred by the majority of the

presented the rst tool (depending on the group in which the useidents.

was randomized). The next pages corresponded to the questions

with the 5-se.t datas.et. Then the second tool Was.presented, followefl \sisualization technique

by the questions with the 6-set dataset. Venn diagrams were based = ) )

on InteractiVenn (without the panel for authoring the dataset). I, RainBio, we opted for a proportional approach to set visu-

RainBio, clustering was removed, since Interactivenn does rfJtzation: larger intersections are represented by taller boxes.

have it. When the response to a question was a number, studdht@ddition, we gave more importance to largest intersections

had to enter it. When the response was one or more sets, studfd}gn determining the column order (sectfon| 4.3). Favoring the

had to choose the response from 5 prede ned values. Finally, {RE9€St intersection is an approach followed by several other

last page asked the question related to user preference. The welS§evisualization tools, including PowerSet, Radial Sets and the
collected error rates and response times. proportional Venn diagram. In a similar spirit, UpSet allows sorting

intersection by cardinality, thus focusing on the largest ones, and
- . BiSets allows hiding individual edges. This proportional approach
7.4 Statistical analysis facilitates the identi cation of the largest intersections and the
Statistical analysis was performed using R version 3[3.2 [46]. T@&covery of similarities between sets (as seen in seftion 3), at the
signi cance threshold was set at = 0:05. Error rate was the price of making the smallest intersections harder to identify, or
main criteria; it was compared with Fisher's exact test and Globglen hiding them. This might bias the visualization towards the
Linear Model (GLM), considering two factors: tool (Venn diagramargest intersections. However, when comparing several samples,
or RainBio) and dataset size (5 or 6). Response time was I@ghlogists are often interested in largest gene clusters rather than by
transformed to normalize the distribution, and analyzed with Welgnallest ones. In addition, size is a selective visual variable [42],

two samplet-test. and thus selecting visually the smallest boxes remains possible.
Various designs were considered during the development of
7.5 Results RainBio. First, it is known that the Human vision is usually

All students performed the entire study and responded to HIPre Sensitive to surface than to size[[47]. Thus, we tried to
questions. We collected 150 responses with each tool. encode |nter§ect|on cardinality as box area (mstgad of box helght).
35 errors were recorded with the Venn diagram (error raléPWever, rainbow boxes have a “semi-table-like” aspect, with
23.3%) and 25 with RainBio (error rate 16.7%). This difference félearly dgl|m|ted cglumns but V,V'thOUt FOWS. 'I.'hus,. it favprs a
not signi cant (p value = 0.19, Fisher exact test). GLM showed thaﬁepariate interpretation of the horizontal and vertlca! dlmensmns, as
dataset size has a signi cant relationship with error rate 0.015) usual in tables. Morgover, when the number of sets is hlgh, the area-
and that there is a signi cant interaction between tool and data§gpPortional encoding leads to very small boxes for intersections
size p = 0.0004). Thus we analyzed each dataset separately. WaH1igh degree. In addition, as seen at the end of seffion 3, when
the Venn diagram, there were 8 and 27 errors for the 5- and 6-84€ne is shared between two samples, each sample has its own
datasets, respectively. With RainBio, there were 14 and 11 err&@PY Of the gene. Consequently, using box height for encoding

respectively. For the 5-set dataset, the difference is not signi Ca(;ﬁlrdinality, actually encodes the number of observed copies as
(p = 0.11). For the 6-set dataset, the difference is signi cant ( box area: box area reprgsents the_ number of copesdgunting
0.0006). 1 copy per sample) while box height represents the number of

The mean response time was 31.6 seconds with the Vefifitinct genesif. without duplicates). For these reasons, we
diagramvs 32.6 seconds with RainBio. This difference is noPreferred height-proportional encoding of cardinality, especially
signi cant (p value = 0.45, Welch two samptetest performed on Whgn visualizing gene sets. Second, we congldgred the use of
log(time)). 10 (33.3%) students preferred the Venn diagram, whiyariable column widths, proportlopal to the cardinality of eaph set.
17 (56.7%) preferred RainBio (the 3 others indicated no opinior)l0WeVver, variable column widths imply that a box representing the

In conclusion, RainBio led to signi cantly fewer errors on theexclusive intersection of two or more sets occupy a largest area in

6-set dataset, and was preferred by the majority of the studentdhe largest column. This might lead to the biased perception that
the largest column plays a more important role with regard to the

intersection. Thus, we opted for xed column widths.
8 DISCUSSION AND CONCLUSION RainBio displays boxes horizontally. An alternative option
In this paper, we presented RainBio, a visualization technique feould be to display boxes verticallye.¢. rotating the whole
providing a global overview of large sets in biology. We adaptedsualization by 96). Since computer screens are usually wider
rainbow boxes for the visualization of datasets with a high numbtran tall, a vertical disposition would provide more space for boxes.
of elements, by using aggregation based on exclusive intersectldaywever, rainbow boxes stack boxes at the bottom of the screen,
by representing sets in columns rather than in boxes, and rhimicking the action of gravity: this behavior is more natural than
de ning a new color scheme, allowing the visualization of up tstacking them on the left or on the right. For this reason, we chose
15 sets. We proposed intersection clustering, a novel approachadisplay boxes horizontally.
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Table 4

The various tasks related to sets and set relations in Alsallakh et al. classi cation [1]. The last column indicates whether user interaction is required or
not (V: visually, Ic: interactively using checkboxes, Id: interactively using details-on-demand, Ig: interactively using clustering).

# Task How to perform the task with RainBio

Bl Find out the number of sets in the set family Count the number of columns \

B2 Analyze inclusion relations Find visually a column where all boxes are shared with another colunh

B3 Analyze inclusion hierarchies - (not supported) -

B4 Analyze exclusion relations Find visually the absence of a box covering two or more columns V, Ic
(checkboxes can help if many boxes are present)

B5 Analyze intersection relations Find visually the box covering two or more columns (checkboxes vatc
help)

B6 Identify intersections between k sets Select visually boxes of a given color \%

B7 Identify the sets involved in a certain intersection Find visually the columns covered by a given box \%

B8 Identify set intersections belonging to a speci c set Select visually the boxes in a given column \

B9 Identify the set with the largest/smallest number of pairwis&ind visually the column with the tallest/smallest 2-set boxes V, g

set intersections (clustering can help by reducing and merging boxes)
B10 Analyze and compare the cardinality of sets and Find visually the tallest/smallest boxes (detail-on-demand is required, Id, Ig
intersections for small boxes, and clustering can help)

B11  Analyze and compare set similarities Select visually adjacent column and/or nd column sharing many\and
tall boxes

B12  Analyze and compare set exclusiveness Compare visually the blue 1-column boxes \Y,

B13  Highlight speci c sets, subsets, or set relations Use checkboxes to fade out boxes not including one set Ic

B14 Create a new set using set-theoretic operation - (not supported) -

On dataset #3, we showed that RainBio could be used itdersections are always the largest ones. The clustering method we
discover similarities between sets and to group them in clusters.droposed guarantees that all intersections wiglements or more
dataset #3, these clusters corresponded to the already known eatevisible, allowing the quanti cation of the information loss. On
gories of tissue. However, if those categories were not yet knowvtine contrary, on dataset #2, the approximately proportional Venn
RainBio could have been used to discover them. Consequerdiggram (Figur¢ 7]0) missed a large intersection of 759 elements,
RainBio might be used foclustering sets and founsupervised and it is dif cult for the user to evaluate how approximated a
learning Other visual approaches allow unsupervised learnirgiagram is.
for example principal component analysis (PCA) associated with
scgtter plots allows _clustenng V|su_ally _objc_acts described by %rb Set visualization tasks
object-property matrix. Other set visualization approaches, such
as ConSet[[32], were able to achieve visual clustering throud#sallakh et al. [1] proposed a task classi cation for set visual-
columns and rows reordering, using different algorithms. ization. Since RainBio follows a set-centric approach and does

The main limit of the proposed technique is the visualizationot support set-typed data, we are only interested in category B
of datasets having many sets but few elements. The numbeitagks related to sets). In sect{gn 2, we identi ed 5 typical tasks for
intersections grows exponentially with the number of sets. Withiologists; RainBio targets particularly those tasks. Nevertheless,
more than 10 sets, intersection cardinalities tend to be lower.itrean be used to achieve other tasks beyond those ve. Tdble 4
extreme cases, there can be as many non-empty intersectionsh@ws the set-related tasks, and how RainBio allows achieving
elements, each intersection including a single element. In théBem. Some tasks in the classi cation can be divided in subtasks,
cases, the visualization in RainBio is not informative and tHer example task B10 (cardinality of an intersection) involves sets
clustering method we proposed cannot be applied (since we selget jAj ), standard intersectionfA(\ Bj) and unionsj@ [ Bj). In
the largest intersections as seeds). This situation occurs typicaliyne cases, RainBio does not always support all possible subtasks,
with purely random datasets; on the contrary, the mammary tis§ae example for task B10, RainBio is ef cient for evaluating the
dataset has some large exclusive intersections that “structure” deasdinalities of intersections, but not for the ones of unions. Similar

remarks hold for tasks B2, B4, B12 and B13.
8.2 Intersection clustering Compared to the Venn diagram (and its task description by
In the literature, existing approaches, including Up$Sét [4] amdsallakh et al. [1]), RainBio also supports task B1, B6, B11l
AggreSet [[33], rely on aggregation (or grouping) rather thaand B12. In the literature, other set visualization techniques have
clustering: they provide prede ned aggregations, such as “groghieved a higher coverage of Alsallaghal. task classi cation:
ing intersections by degree”, “grouping intersections by set” éor instance, UpSet supports 23 of the 26 tasks [4], including all
“grouping intersections by pair of elements”, or allows the user tasks of category B excepted B11 (set similarity). Task B11 is not
create his own aggregates. Aggregation gives a more general viapported by the Venn diagram and UpSet, while it is by RainBio.
of the data. However, the user has little control over the number of RainBio is focused on the global overview of the dataset.
aggregates produced: if the number is high, all aggregates can@otisequently, in Tablg] 4, most tasks can be achieved visually,
t on the screen and it is dif cult for the user to obtain a globawithout interacting with the system. Interaction is required for
overview. On the contrary, in RainBio, intersection clusteringnly one task (B13), and four other tasks require interaction only
gives to the user a better control over the number of clustergdcertain circumstance®.g.small boxes) or may be enhanced
intersectionsyia the parameter. through interaction. This limited use of interactivity could facilitate

Clustering leads to an information loss. However, it is ndhe use of RainBio by biologists in scienti ¢ publications, because
comparable with approximately proportional Venn diagrams, be-is much easier to publish a still picture than an interactive
cause clustering can be controlled and it ensures that the visilslgerface, for technical reasons (some journals are paper-based)
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but also because readers may not be trained in the use of disgram. Moreover, contrary to Chapmetral, we measured user
interactive interface and therefore may not be able to nd thereferences in addition to error rates and response times. In user
expected insights from the visualization. In our opinion, this poistudies, effectiveness (measured here by error rates), ef ciency
might explain why the Venn diagram is still widely used in biologyierror rates / response times ratio) and satisfactimg. (iser
despite its limitations are known by biologists themselvweg. ( preference) are not necessarily correlated [50], and thus each of
the Venn diagram isrfot effective for presentation of more than fouthem should be assessed independently.
categorical groups”|[48]).

On the contrary, many recent tools such as UpSet or Aggre8e5 Perspectives
are more focused on the interactive analysis of set data. Th@senis paper, we focused on applications in biology for comparing
tools allow the creation of user-de ned aggregations, but requiéeene or protein sets. However, RainBio could be used beyond to
more complex user interaction. They also frequently use scroll ba§iogy. Thus, a rst perspective of this work is to adapt RainBio for

making harder to obtain a global overview of the data. set visualization in other domains. Examples include co-authorship
relations in bibliographic databases or cloned software sysierns [51].
8.4 User study Another perspective is the use of RainBio for unsupervised learning,

. ejther visually, or even entirely automatically, by identifying
For the user stydy, we dellper'atel.y reu;ed datasets Pmducedsfﬂ{ilarities between sets. A third perspective is to develop a set
InteractNenn, in order to.I|m|t blgses in the selection of thSisualization tool for data mining, combining the global overview
datasetsife. we did not design speci ¢ datasets that would favo roposed by RainBio with advanced queries and Itering such as
RainBio). We used a crossover protocol, in which each subj fibse proposed in other tools,

tested both tools on different datasets, and thus can be his own

control. Crossover protocols are known to reduce the inter-subject

variability [49], which is important when the number of subject EFERENCES
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