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RainBio: Proportional visualization of large sets in biology
Lamy Jean-Baptiste, Tsopra Rosy

Fig. 1. RainBio displaying the comparison of 12 sets, after clustering. Each set includes the most expressed genes on a
mammary tissue sample. Sets are displayed in columns and are ordered by similarity, showing that there are 4 types of
tissue. The dataset has 276 non-empty exclusive intersections. Here, the 26 biggest ones are represented by colored
boxes. Box color indicates the intersection degrees. The height of the box is proportional to the number of elements after
clustering, while the darker bar on the right is proportional to the number of elements before clustering (i.e. exclusive
elements). For example, there are 249 genes common to all sets, and 118 shared by stro tissues, of which about 30% are
exclusive to the three stro tissue samples.

Abstract—Set visualization is a well-known task in information visualization. In biology, it is used for comparing visually sets of genes or
proteins, typically using Venn diagrams. However, limitations of the Venn diagram are well-known: they are limited to 6 sets and difficult to
read above 4. Many other set visualization techniques have been proposed, but they have never been widely used in biology. In this
paper, we introduce RainBio, a technique for visualizing sets in biology and aimed at providing a global overview showing the size of the
main intersections, in a proportional way, and the similarities between sets. We adapt rainbow boxes, a technique for visualizing small
datasets, to the visualization of larger sets, using element aggregation and intersection clustering. We present the application of RainBio
to three datasets, with 5, 6 and 12 sets. We also describe a small user study comparing RainBio with Venn diagrams, involving 30
students in biology. Results showed that RainBio led to significantly fewer errors on 6-set dataset, and that the majority of students
preferred RainBio. RainBio is proposed as a web-based tool for up to 15 sets.

Index Terms—Gene set comparison, Set visualization, Venn diagram, Bioinformatics.

F

1 INTRODUCTION

Set visualization is a well-known task in information visualization.
It considers some elements and several sets containing one or more
of these elements. The sets may represent categories of elements,
shared properties, or subsets of elements associated with a given
condition. While the problem is intuitively simple, the number of
possible set combinations increases exponentially with the number
of sets, and thus the visualization becomes rapidly complex beyond
4 sets. A large literature exists on set visualization [1] and many
techniques have been proposed.

In biology, set visualization is commonly used for comparing
visually sets of genes or proteins. Usual datasets have a high
number of elements (e.g. thousands of genes) but a small-to-
medium number of sets. The two typical situations are: (a) Genes
(or proteins, or gene clusters) are isolated in several biological
samples (e.g. various species, tissues or health statuses). Biologists
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would like to visualize the genes specific to each sample, or shared
by two or more samples. Here, genes are the elements and samples
are the sets. (b) Genes (or proteins, etc) are identified as biomarkers
for a given disorder using several methods. Biologists would like
to compare the results obtained with the various methods and/or
to compare the methods between themselves. Here, genes are the
elements and there is one set per method.

Currently, the Venn diagram is the most used approach to
visualize gene sets in biology. However, it has well-known
limitations [2], [3]: it is difficult to generate automatically and to
read when the number of sets increases. In practice it is limited to 6
sets. Other more recent set visualization techniques, such as UpSet
[4], are less commonly used in biology, possibly because they
often focus on detailed data mining. On the contrary, biologists
sometimes expect a quick “one-screen” overview of the entire
dataset or a “big picture” easy to publish in scientific journals.

Recently, we introduced rainbow boxes [5], [6], a technique
originally able to visualize 2-25 elements and 5-100 sets. Figure
2 shows an example of rainbow boxes displaying a small dataset
on planets. The elements are shown in columns, and the sets are
represented by rectangular boxes placed below column headers.
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Fig. 2. Example of rainbow boxes showing the 8 planets of the solar
system (elements/columns) and 7 properties (sets/boxes), e.g. the set of
“Big” planets contains Jupiter, Neptune, Saturn and Uranus.

Each box covers the columns corresponding to the elements
belonging to its set. The column order is computed using a heuristic
optimization algorithm (hence planets are not ordered as usual in
Figure 2). This algorithm tries to order the columns so as the
elements belonging to each set are contiguous. When it is not
possible to have them contiguous for a given set, a “hole” is present
in the corresponding box and a small thread links the two parts of
the box (e.g. in Figure 2, the “Has O2” box has one hole). Colors are
added to column headers and boxes: rainbow colors are associated
with column headers, ranging across the spectrum, and the color of
a box is the mean of the colors of the columns it covers. Finally,
boxes are stacked vertically, with the largest boxes at the bottom.
Two boxes can be next to each other, as long as they do not occupy
the same columns. Rainbow boxes have already shown their utility
in pharmaceutical domain [6]. Later, we proposed a proportional
version of rainbow boxes [7] for representing artificial neurons.

In this paper, we present RainBio, a rainbow boxes-based tool
for set visualization in biology. The main focus of RainBio is to
provide a global overview or a “big picture” of a dataset, i.e. to
visualize the main intersections and the potential set similarities in
a diagram that can be displayed on a single screen of typical size,
without the need for scrolling. Our main contributions are: (a) we
adapt rainbow boxes to the visualization of large datasets (in terms
of elements), supporting up to 15 sets and 40,000 elements, (b)
we propose to cluster set intersections, which is a new approach
in large set visualization, (c) we achieve the exact proportional
visualization of 6 sets, which was not reported yet, (d) we compare
our approach with others on several datasets and we present a small
user study versus Venn diagrams.

The rest of the paper is organized as follows. Section 2 presents
background on set visualization and describes the typical tasks
required for biologists. Section 4 presents how we adapted rainbow
boxes to the visualization of large sets. It also describes interactivity
and implementation details. Section 5 illustrates the use of RainBio
on three biological datasets. Section 6 argumentatively compares
RainBio with other approaches. Section 7 describes a user study
comparing RainBio with Venn diagrams on 5 and 6-set datasets.
Finally, section 8 discusses the results, the limits of our approach
and proposes perspectives.

2 RELATED WORKS

Alsakallah et al. [1] reviewed techniques for overlapping set
visualization. They distinguished 6 approaches: (1) Euler and Venn
diagrams and their variants, (2) overlays on a map, (3) node-
link diagrams, (4) matrix-based techniques, (5) aggregation-based
techniques, and (6) scatter plot-based techniques. Another possible
classification [4] is to distinguish element-centric approaches, in
which elements are shown individually, and set-centric approaches,

Table 1
Classification of set visualization techniques (E: element-centric, S:
set-centric, (x): the approach is proportional but either displays only

aggregated data (Set O’Gram) or does not relate visually all proportional
intersections to their corresponding sets (Radial Sets, PowerSet)).

Technique Category -c
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Euler diagram Euler/Venn E - - X
Venn diagram Euler/Venn S - - X
Proportional Venn d. Euler/Venn S X - X
LineSets overlays E - - X
Bubble Sets overlays E - - X
BiSet node-link E - - -
Circular itemsets node-link S - - X
Bicentric diagram node-link S - - X
Linear diagram matrix E - - X
Mosaic diagram matrix E - - X
Rainbow boxes matrix E X X X
Radial Sets aggregation S (x) - X
Set O’Grams aggregation S (x) - X
ConSet aggregation+matrix S - X -
UpSet aggregation+matrix S X - -
AggreSet aggregation+matrix S X X -
PowerSet aggregation S (x) - X
RainBio clustering+matrix S X X X

in which elements are aggregated and only sets are individualized.
Table 1 shows the classification of the techniques mentioned below.

Euler and Venn diagrams are one of the oldest approaches
[8]. They are often used to teach set theory. In Euler diagrams,
each set is represented by a closed-area [3]. The areas overlap in
various regions that represent the (exclusive) intersections of the
sets. A Venn diagram is a kind of Euler diagram showing all the
2n − 1 possible combinations of overlaps, where n is the number
of sets. In a proportional Venn diagram, the size of the various
regions is proportional to the number of elements in each regions.
Venneuler [9] is a tool drawing such diagrams using circles, and
nVenn another tool drawing quasi-proportional Venn diagrams [10]
using closed shapes made of several circles. The automatic drawing
of these diagrams is still a challenge above 4 sets [3].

In biology, many Venn diagram-based tools have been proposed:
GeneVenn [11] (Venn diagram, limited to 3 sets), BioVenn [12]
(proportional Venn diagram, limited to 3 sets), VennMaster [13],
[14] (approximately proportional Venn diagram), JVenn [15] (Venn
diagram, limited to 6 sets), InteractiVenn [16] (Venn diagram,
limited to 6 sets, allows the analyze of set unions interactively),
VennDiagramWeb [17] (Venn and Euler diagrams, limited to 5 sets)
and VennPainter [18] (Venn diagram and nested Venn diagram, up
to 8 sets). Most use Edward-Venn diagrams [19].

Overlay-based techniques are suited for datasets including a
spatial component. Examples are LineSets [20], which display
elements as points in the space, and sets by lines joining these
points, and Bubble Sets [21], which display sets as bubbles
including the corresponding elements. Extended LineSets [22]
are a variant of LineSets for non-spatial datasets, such as biological
pathways.

BiSet [23] is an improvement of node-link diagrams, in which
the edges are bundled together to facilitate their reading and their
manipulation. Circular itemsets [24] is another node-link technique,
which represents intersections in concentric circles. The sets are
positioned on the outer circle, then the intersections of 2 sets
are positioned on the second circle, etc. Bicentric diagram [25]
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Table 2
The typical tasks identified for set visualization in biology. The table indicates in which situations each task was encountered (comparison of several

samples and/or comparison of several methods, as detailed in introduction), and the corresponding tasks in Alsallakh et al. classification [1].

# Task Samples Methods Alsallakh
1 How many elements belong to all sets? X X B10
2 How many elements belong only to a given set X? X X B12
3 What is the set X that contains the highest number of elements belonging to no other set? X X B12
4 What is the biggest exclusive intersection (in general or limited to degree y)? X - B10, B7
5 What is the number of elements in a given exclusive intersection? X - B8, B10

considers two groups of two concentric circles.
Linear diagram is a matrix-based diagram [2], [26], introduced

by Leibniz in 1686 [27]. Elements are displayed in columns and
sets in rows. A piece of horizontal line is drawn in each cell at
the intersection of an element that belongs to a set. Thus, a set is
represented by one or more horizontal segments. Colors are usually
added to identify the lines of a given set. Mosaic diagram [28], [29]
is a space-filling variant of linear diagram. Rainbow boxes [5], [6]
can be seen as an evolution of linear diagram, despite the fact that
they move away from matrices, by allowing the representation of
several sets in a single row. They also permit a proportional variant
[7].

In Radial Sets [30], only aggregated information on sets is
displayed, using bubbles and histograms organized in a ring.
Another aggregation-based technique is Set O’Grams [31]. It
represents sets in a bar chart, the height of each bar indicating the
cardinality (i.e. number of elements) of the set. Bars are divided in
several segments, each segment containing the elements that belong
to a fixed number of sets (e.g. elements belonging to a single set, to
2 sets, etc). This technique heavily relies on interaction for relating
the various segments and identifying intersections.

Several techniques combine matrix-based visualization with the
display of aggregated values using charts. ConSet [32] represents
set intersections as pies and sets as a permutation matrix. The
tool is interactive, allowing reordering the rows and columns of
the matrix. It also displays fan diagrams, a simplified form of
the Venn diagram, for subsets of the data. UpSet [4] combines
a matrix-based approach, showing the various set combinations
similarly to a linear diagram, with aggregated values, such as
a bar chart showing the cardinality of each intersection. It also
supports advanced interactive queries for the creation of user-
defined aggregations. For each set, the user can restrict the
visualization to elements belonging, or not, to that set. Finally,
UpSet supports the visualization of element attributes (i.e. set-
typed data). AggreSet [33] is another approach for set-typed data.
It creates aggregations for set intersections, set pairs and set degrees,
and represents the cardinality of each aggregation. A co-occurrence
matrix is used for visualizing set pairs. Interactive options are
provided for selection and filtering.

PowerSet [34] is based on Treemaps [35], and displays intersec-
tions as rectangles, the area being proportional to the intersection
cardinality. Intersections are sorted by degree (i.e. the number of
sets they involve). Over- and underrepresented intersections are
highlighted with colors. PowerSet allows distinguishing very well
the main intersections, but the identification of sets is more difficult,
since a given set is divided into several, unrelated, rectangles.

3 REQUIREMENT AND TASKS ANALYSIS

Alsallakh et al. [1] proposed a task classification for set visualiza-
tion. It includes 3 main categories: (A) tasks related to elements,

(B) tasks related to sets and (C) tasks related to element attributes.
For identifying tasks in biology, we first gathered published papers
in bioinformatics [16], [36] and biology [37]–[40] presenting Venn
diagrams. These papers do not contain task descriptions, but we
extracted the diagrams and the insights mentioned in the text
citing the figures. Then, we derived questions and tasks from these
insights, and we mapped them to Alsallakh et al. classification.
For example, in [16], a sentence introduces a Venn diagram and
then states that “all methods retrieved 38 common proteins”. We
derived this into task #1, “How many elements belong to all sets?”.
We also reviewed the task classification proposed for biological
pathway visualization [41]; although mostly graph-based, pathway
visualization sometimes involves set visualization (e.g. task R3 in
[41]). Finally, we completed this information with our expertise
in the field, to identify 5 typical tasks for gene set visualization
in biology (Table 2). All five tasks belong to category B (tasks
related to sets). This was expected, since the elements (i.e. genes)
are too numerous to be visualized individually (for category A),
and there is no per-element attributes (for category C). The number
of tasks in Table 2 is limited and they cover only four tasks in
Alsallakh et al. classification: B7 (identify the set involved in a
certain intersection), B8 (identify set intersections belonging to
a specific set), B10 (analyze and compare set and intersection
cardinalities) and B12 (analyze and compare set exclusiveness).
Some tasks in Table 2 correspond to several tasks in Alsallakh et al.
classification, e.g. for task #4, after finding the biggest intersection
(B10), a biologist usually wants to know which sets it involves
(B7).

In addition, task B11 (analyze and compare set similarity, e.g.
through a similarity measure) is probably of interest for biologists.
However, since this task is not supported by the Venn diagram
[1] they commonly use, it is not expressed as such in papers.
Biologists often identify similarities between set through the finding
of the largest intersections. When comparing gene sets from several
samples, a large intersection between two or more sets means
that the corresponding samples share many genes, and thus are
similar with regard to those genes. On the contrary, the small
intersection between two or more sets does not necessarily imply
the absence of similarity, because most set visualization techniques
(including Venn diagrams) actually represent exclusive intersections,
i.e. elements belonging to the intersection of some sets and not
belonging to any other intersection of a highest degree. For example,
two sets s1 and s2 may have a small (exclusive) intersection, while
being similar because the intersection of s1, s2 and another set s3
is large. Consequently, biologists are usually more interested in the
largest intersections than in the smallest ones.

Alsallakh et al. tasks related to inclusion, hierarchy, pairwise
intersection and subset selection seems less important in biology.
The limited task coverage suggests that the needs of biologists are
actually focused on rather specific tasks.
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Many existent tools can be used to perform tasks B7, B8,
B10 and B12, including the Venn diagram and UpSet, the latter
supporting a very wide range of tasks. However these tools are not
specifically optimized for the needs of biologists. We identified
the main characteristics of the ideal set visualization approach
in biology: (a) It should be set-centric, because the number of
elements is often very high (several thousand or more). (b) It
should provide a global “one-screen” overview, and thus should
avoid displaying one intersection per row/column because the
number of intersections increases exponentially with the number
of sets. (c) It should facilitate the identification of set similarities.
This can be done through a proportional visual approach, in which
similar sets have similar shapes, like in the proportional Venn
diagram, and/or through a set similarity measurement, typically
by reordering the rows or the columns of a matrix according to
similarity.

Table 1 indicates how the various approaches support these
characteristics. No approach satisfies all the criteria listed above.
Near misses are the proportional Venn diagram (but it cannot
be generated exactly above 4 sets), rainbow boxes (but element-
centric and thus unable to display large sets), ConSet, UpSet and
AggreSet (but they provide limited global overview, due to their
“one intersection per row” approach).

Another particularity of biological datasets should be taken
into account in the design: when a given gene is present in
two samples, each sample has its own copy of the gene (and
not a single copy shared by all samples). Consequently, when
considering proportional set visualization, one may consider an area
proportional to the number of gene copies, rather than proportional
to the number of distinct genes, e.g. a gene present in two samples
would occupy an area twice larger than the area occupied by a gene
present in a single sample. Existing proportional visualizations
(including proportional Venn diagram) do not take into account
this point.

In the present work, we propose to adapt rainbow boxes
in order to produce a new set-centric proportional approach,
supporting set similarity and overview, targeting the typical tasks
we identified in biology and considering the number of gene copies
for proportionality.

4 ADAPTING RAINBOW BOXES FOR THE VISUAL-
IZATION OF LARGE SETS

When comparing sets in biology, the number of elements is
usually high and the number of sets is limited. This would
result in rainbow boxes with 1000-10,000 columns and 2-6 boxes,
which is impractical: a standard screen cannot show so many
columns simultaneously. Consequently, in this section we adapt
rainbow boxes to the visualization of datasets with a high number
of elements, by displaying aggregated data instead of showing
each element individually. We also propose a novel method for
intersection clustering, we define a new color scheme and we add
interactivity.

4.1 Columns and boxes

The general principles we propose for visualizing large sets in
RainBio are the following (see example in Figure 3). Each column
corresponds to a set, and each box to a set combination. The box
covers the columns corresponding to the sets in its set combination,
e.g. the box for the set combination {A,B} will occupy the two

Fig. 3. RainBio showing a trivial 4-set dataset.

columns A and B. The box is labeled with the cardinality of
the exclusive intersection of the sets in its combination. We call
exclusive intersection of some sets, the elements belonging to the
set intersection and not belonging to any other set. Exclusive
intersections correspond to the regions of the Venn diagram; for
clarity, we will refer to them as “intersections” in the following,
in opposition to “standard intersections”. The height of the box is
proportional to the cardinality of the intersection, and the color of a
box indicates the intersection degree. When they are too numerous,
boxes are clustered: smallest boxes are removed and their elements
are moved to taller boxes (this will be described in section 4.2).

Consequently, the set membership of an intersection is encoded
spatially, by the horizontal position of the corresponding box.
The cardinality of an intersection is also encoded spatially, by
the vertical dimension of the box. Finally, intersection degree
is encoded by both the box color and vertical position (with
intersections of higher degree at the bottom). The rest of the
section gives a detailed description.

A set dataset can be formalized as a set of sets S =

{S1, S2, ..., Si, ..., Sn}, where n is the number of sets (n ≥ 2). Sets
Si can be overlapping, i.e. a given element may belong to several
sets. E =

⋃
i∈{1,...,n}

Si is the set of all elements. The intersection

of one or more sets in S is the set of elements that belong to the
standard intersection of those sets and that belong to no other sets
in S. The function X() computes the exclusive intersection:

X(c ⊆ S) =
⋂
x∈c

x \
⋃

y∈S\c
y

Let C = {c ⊆ S : X(c) 6= ∅} be the set of combinations of
S with a non-empty intersection. When the number of such
combinations is low, all of them can be displayed in a separate box,
and clustering is not needed. For a given box, identified by its set
combination, the box function B() returns the elements represented
in that box. Without clustering, the elements in a box are simply
the exclusive intersection: B = X.

In order to have proportional rainbow boxes, the height of the
box for a set combination c is Hc = max(|B(c)| × k,Hmin) where
|B(c)| is the cardinality of the box. k is a scaling factor, inversely
proportional to the number of elements in E. It allows maintaining
a similar global height, whatever the number of elements is. Hmin

is the minimum allowed height. Hmin prevent boxes being too
small when |B(c)| is very low. Each box is labeled with the number
of elements it represents, i.e. |B(c)|, provided that the box is tall
enough to include a label.

Finally, we define a new color scheme for rainbow boxes. The
color of the box for set combination c depends on the number of
sets in c: we use a gradient of hues, from blue (a single set) to red
(the maximum number of sets). Thus, hotter colors are attributed
to boxes involving more sets. In addition, boxes are organized
vertically by colors: “hotter” boxes involving more sets are lower.
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Fig. 4. Same dataset as Figure 3, after clustering (with t = 2).

4.2 Intersection clustering
When the number of intersections is too high, it is not possible to
display one box for each while keeping a readable visualization. In
this case, we propose to cluster intersections. We define a clustering
threshold t ≥ 1. Intersections with at least t elements are used as
“seeds” and will be associated with a box. In addition, intersections
involving a single set are always selected as seeds, for two reasons:
(a) they are associated with boxes of length one, which cannot
have holes, and (b) it ensures that all elements will be clustered
in at least one box, consequently, no element disappears during
clustering. Let Cs = {c ⊆ S : |X(c)| ≥ t ∨ |c| = 1} be the set of
seed combinations.

Set combinations d ∈ C \ Cs have less than t elements in
their intersection and will not have their own box. The elements in
their intersections X(d) will be displayed in the boxes of the
seed combinations that are the biggest available subsets of d.
Consequently, with clustering, boxes display subsets of elements
that are somewhat in-between exclusive and standard intersection.
For a set combination c in Cs, the corresponding box displays not
only the exclusive intersection of c, but all elements that belong
to the standard intersection of c and that do not belong to another
box associated with a set combination that is a (strict) superset of
c. The box function is now:

B(c ⊆ S) =

if c ∈ Cs :
⋂
x∈c

x \
⋃
{B(c′) : c′ ∈ Cs ∧ c ⊂ c′}

otherwise : ∅

B(c) can be computed recursively, starting with the largest
combinations c. The height of boxes is proportional to |B(c)|, the
number of elements after clustering. In addition, we add a small
dark bar on the right of the box, whose height is proportional to
|X(c)|, the number of exclusive elements (i.e. before clustering).
This bar indicates “how exclusive” the box is. It is deliberately
subtle, in order to limit visual clutter. It uses the color value visual
variable, while the color hue is used to indicate the intersection
degree. Those two visual variables are selective according to
Bertin’s semiology of graphics [42], allowing the user to focus
his attention on one of these variables and ignoring the other. For
example, Figure 4 shows the dataset of Figure 3 after clustering
with t = 2. The yellow box with 1 element has been removed, and
its element is now counted in the two boxes that were just above
the yellow one.

4.3 Optimizing column order
In rainbow boxes, column order must be optimized for minimizing
the number of holes in the boxes. Holes add visual clutter, thus
boxes with holes tend to be harder to read. This can be particularly
problematic if an important box has holes. Since biologists are often
interested in the largest intersections, we improved the optimization
criteria proposed previously [6] by taking into account Hc, the
height of the boxes, during optimization. The cost for adding a

hole in a box is equal to Hc. This prevents holes in taller boxes, to
the detriment of the smallest ones.

For a given set order O, the total hole cost is the sum of the
number of holes multiplied by the corresponding box height. It is
computed by the function h defined as follows:

h(O) =
∑
c∈Cs

Hc ×
∣∣∣{i ∈ I = {ind(O, s ∈ c)}

: i+ 1 6∈ I ∧ i 6= max(I)
}∣∣∣

where ind(O, s) is a function that returns the index of a given set s
in the order O (starting at index 1). The optimization process aims
at finding the best order Obest = argmin

O
(h(O)).

When the number of columns is below 10, column order can
be optimized with a brute force algorithm that tests all possible
orders. When the number of columns is above 10, we proposed a
metaheuristic algorithm [43].

4.4 Adding interactivity
Interactivity was added for two purposes. First, we used detail-on-
demand to display additional information. When the mouse cursor
is over a box, a popup label displays the sets involved in that box
and the number of elements. This is especially interesting for boxes
that are too small to display a label. When the user clicks a box,
a new window is open, listing the elements in this box. If several
intersections were clustered, the list is organized by intersections.
When the mouse cursor is over a column header, a popup label
displays the number of intersections, before and after clustering,
involving the corresponding set.

Second, two options have been added for filtering out boxes.
The first one consists of controlling clustering. We added a panel on
the right of rainbow boxes (shown in Figure 1). It displays various
statistics, such as the total number of elements and sets, and allows
controlling the clustering threshold t with the two buttons “-” and
“+”. Buttons can be held down in order to display the various steps
of clustering as an animation. The minimum allowed value for t is
the lower one that produces at most 64 boxes, i.e. we limited the
visualization to at most 64 boxes.

The second filtering option aims at selecting boxes involving
one or several particular sets. We added a checkbox for each set,
in the column header. By default, they are unchecked. When a
checkbox is checked, boxes corresponding to set combinations that
do not involve this set are faded (see example Figure 8). When
several checkboxes are checked, their effect is additive: all boxes
that do not involve all the selected sets are faded.

4.5 Complexity
Intersections can be determined exponentially with n, since the
number of set combinations is 2n. However, it can also be
performed linearly with the number of elements m = |E|, because
the number of non-empty intersections is at most m (in fact,
exclusive intersections are a partition of E). When n is high,
the linear complexity according to m is usually preferable since it
grows slower. Thus, the complexity is O(m) or O(2n), depending
on the chosen algorithm (both can be implemented for selecting
the most appropriated one). Similarly, clustering can be performed
in O(s×m) or O(s× 2n), where s = |Cs| is the number of boxes
after clustering (limited to 64 in our implementation).

For column ordering, the brute force algorithm has a factorial
complexityO(n!). The metaheuristic algorithm finds a near-optimal
column order in a much faster computation time, however, its
complexity is almost impossible to assess.
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Fig. 5. RainBio showing the prostate biomarker dataset (5 sets).

4.6 Implementation

RainBio has been implemented in Python 3.
It is available online at the following address:
http://www.lesfleursdunormal.fr/static/appliweb/rainbio, with
several demo datasets (tested with Mozilla Firefox and Google
Chrome). The web application is limited to 15 sets and 40,000
elements, and uses the same file format as InteractiVenn. A video
is also available as Supplementary Material.

5 APPLICATION TO VARIOUS DATASETS

In this section, we illustrate the use of RainBio. The first two
datasets were initially used for demonstrating InteractiVenn [16].
The third one shows the ability of RainBio to compare more
than 6 sets. These datasets were analyzed by JBL, who teaches
bioinformatics at university.

5.1 Dataset #1: prostate biomarker (5 sets)

This dataset comes from a study aimed at determining biomarkers
for distinguishing two types of prostate cancers [37]. It includes
349 candidate biomarker proteins and 5 sets, each containing
the proteins found as valid biomarkers by a given feature selec-
tion method: univariate Beta-binomial, semi-multivariate Nearest
Shrunken Centroids (NSC), multivariate Support Vector Machine-
Recursive Features Elimination (SVM-RFE) and Student’s t-test
and MWW test. The original dataset included 3 methods, and
the last 2 were added by the designers of InteractiVenn [16]. 17
intersections are non-empty, out of 31.

Figure 5 shows the dataset in RainBio. If one is interested in
comparing the 5 methods, the following insights can be gained
through the visualization: (a) No biomarkers were found only by
t-test (no blue box in the “t test” column). (b) 125 proteins are
found as biomarkers only by NSC (the tall blue box at the top);
this suggests that NSC produces a lot of false positives (since the
four other methods agreed that these proteins are not biomarkers).
(c) 80 proteins are found as biomarkers by all methods excepted
SVM-RFE (the tall yellow box); this suggests that SVM-RFE
produces a lot of false negatives. Consequently, Beta-binomial, t-
test and MWW are the most consensual methods. If one is interested
in finding biomarkers, RainBio allows identifying easily the 38
proteins that are found as valid biomarkers by all the 5 methods
(the red box at the bottom). In addition, one may want to consider
the biomarkers found by the three most consensual methods.

Fig. 6. RainBio showing the banana dataset (6 sets), without clustering
(the right panel with clustering control is not shown).

5.2 Dataset #2: banana (6 sets)

This dataset was designed for comparing the genome of the
banana (Musa acuminata) with 5 other plant species (Phoenix
dactylifera, Oryza sativa, Sorghum bicolor, Brachypodium distachyon
and Arabidopsis thaliana) [38]. The dataset includes 23,143 gene
clusters and all the 63 possible intersections are non-empty.

Figure 6 shows the dataset in RainBio. Despite many boxes
are small and difficult to individualize, RainBio gives a global
overview of the dataset. One can gain the following insights from
the visualization: (a) There are 7673 gene clusters shared by the 6
plants (the red box at the bottom). This represents roughly 50-70%
of the gene clusters of each species, suggesting some similarities
between the plants. (b) There is a high number (2,809) of gene
clusters shared by 3 plants (Sorghum bicolor, Oryza sativa and
Brachypodium distachyon, the tall green box). These three species
are thus close to each other. In addition, clustering can be used to
simplify the visualization, by removing the smallest boxes.

5.3 Dataset #3: mammary tissues (12 sets)

This publicly available1 dataset [44] was designed for comparing
4 types of mammary tissues: fibroblast-enriched stromal (stro),
mammary stem cell (ML), luminal progenitor (pL), mature luminal
(mL). There are three replicates for each tissue, leading to 12
samples. For each, microarray profiling was used to obtain the
expression levels of 28,458 genes. The objective of the study was
to determine whether each tissue has a distinct gene expression
profile.

In order to produce sets from microarray results, we retain
for each sample the most expressed 500 genes. This yielded a
dataset with 12 sets (one per sample) of 500 genes each, with 1,027
distinct genes. Figure 7 shows the dataset in RainBio, with the
minimum level of clustering allowed (this dataset has 276 non-
empty intersections, but as mentioned above we limited RainBio
to at most 64 boxes). Figure 1 shows the dataset with a higher
level of clustering, resulting in a simpler and more synthetic view.
Clustering not only removes the smallest boxes, but also strengthens
boxes having a large non-exclusive intersection.

1. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16997
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Fig. 7. RainBio showing the mammary tissue dataset (12 sets). This is
the same dataset as Figure 1, but with a lower clustering threshold (t = 3
leading to 63 boxes).

Fig. 8. RainBio showing the mammary tissue dataset, after the user
checked 3 checkboxes, for pL3, MS2 and MS3.

Column order provides an interesting insight here. Columns
were ordered as described previously, by box similarity. The four
types of tissue are well-separated from each other: the three stroma
samples are grouped in three contiguous columns, etc. Therefore,
it is possible to respond to the original question that motivated the
study, just by looking at the visualization: yes, each tissue has a
distinct gene expression profile.

Four tall light blue boxes (labeled 50, 35 and 48 in Figure 7, the
last one being unlabeled) correspond to the overexpressed genes
shared by the samples of each type of tissue. With a higher level of
clustering (Figure 1), the smallest boxes are pruned. The four light
blue boxes are taller, because the elements of the missing boxes
are moved to other boxes (for example if there is a single gene
overexpressed in pL1, pL2, pL3 and stro1, it might be clustered
with the box for pL1, pL2 and pL3, increasing the size of this box).

Finding a given box can be difficult on huge datasets, especially
if the box is small. Figure 8 shows how the checkboxes in column
headers can help. In this example, the user wants to identify the box
coveringMS1,MS2 and pL3. After checking the three checkboxes
corresponding to these sets, boxes that do not include at least these
three sets are faded. Consequently, the desired box is the top-most
non-faded box (unless it is empty).

Other insights can be obtained from the visualization: (a) There
are 249 genes shared by all samples (red box); this high number
is expected since all tissues are mammary. (b) pL and mL tissues
share several overexpressed genes (the green box labeled 26 in

Fig. 9. Venn diagram showing the banana dataset (from [16], CC-BY).

Fig. 10. Proportional Venn diagram displaying the banana dataset.

Figure 7, and 48 in Figure 1); since both tissues are luminal, it
is not surprising that they are similar. (c) stro seems the most
different type of tissue (higher number of specific genes shown by
the tall dark bar in its light blue box, and no tall green or yellow
box indicating an important number of genes shared with other
types of tissue).

6 COMPARISON WITH OTHER APPROACHES

6.1 Venn diagrams

Figure 9 shows dataset #2 (banana) using Edward-Venn diagram
(drawn with InteractiVenn). Identifying the previously mentioned
large 3-set intersection (with 2809 genes) is more difficult in the
Venn diagram, while it literally “pops out” in RainBio (Figure
6) thanks to its proportional nature. On the other hand, the Venn
diagram allows a better reading of the smallest regions.

6.2 Proportional Venn diagrams

Figure 10 shows dataset #2 (banana) using a proportional Venn
diagram (generated with Venneuler [9]). The large overlaps between
sets make the diagram complex to read. The previously mentioned
large 3-set intersection can be identified on the right of the diagram.
Since no method exists for drawing an exact proportional Venn
diagram of 6 sets, Figure 10 is approximate: it displays only 30
intersections out of 63. In particular, the 759 gene clusters found
only in Musa acuminata are not shown: the “Musa” circle has no
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Fig. 11. UpSet displaying the mammary tissue dataset.

Fig. 12. UpSet and RainBio displaying the same small dataset with huge
disparities in intersection cardinalities.

region that does not overlap any other circles. This is especially
problematic here, since the objective of the initial study was to
compare Musa acuminata to other plants. Using a proportional Venn
diagram, biologists might wrongly conclude that banana has no
specific gene clusters. On the contrary RainBio allows an exact
proportional visualization with 6 sets (Figure 6).

6.3 UpSet

UpSet [4] is a recent set visualization technique. Figure 11 shows
dataset #3 (mammary tissues) with UpSet. It displays the 30
largest intersections. Both RainBio and UpSet are matrix-based
set visualization and thus RainBio is closer to UpSet than to Venn
diagrams. The main difference is that UpSet encodes the sets
involved in an intersection and the intersection cardinality in two
separated visual elements: (1) connected dots in a matrix, and
(2) a bar chart aligned with the matrix. On the contrary, RainBio
combines these two pieces of information in one: the connected
dots are replaced by a rectangular box whose height encodes the
intersection cardinality. With UpSet, the user has to put the matrix
in relation to the bar chart and the column headers, which requires
to focus visual attention on three places. With RainBio, the user
has only to focus his attention on boxes and column headers. This

Fig. 13. UpSet displaying the mammary tissue dataset, when the order
of the columns/sets is unknown.

arguably facilitates the reading of the intersections by removing an
extra level of indirection.

In addition, since there is no bar chart aligned with the matrix in
RainBio, it allows packing multiple intersections (i.e. boxes) next to
each other, in the same “row”, as long as the boxes do not overlap.
This has two advantages. First, it makes RainBio potentially more
compact than UpSet. For example, in Figure 7, RainBio displays
63 intersections while, in Figure 11, UpSet displays only 30, out
of 276. However, RainBio shows only 21 cardinality numbers
while UpSet shows 30. Second, packing multiple intersections in
the same “row” may facilitate the identification of intersection
disjointedness: any boxes that are next to each other do not overlap
and thus are necessary disjoint.

However, the layout of UpSet is simpler and more uniform than
in RainBio. Both are biased towards large intersections, in different
ways: RainBio displays larger intersections in bigger boxes while
UpSet shows them first. But this bias is higher in RainBio. This is
an advantage of UpSet, especially when there is a huge disparity in
intersection cardinalities: UpSet can display all cardinalities with
numbers while RainBio cannot (see example Figure 12).

A second difference is that UpSet provides intersection
aggregations by degree, sets, deviations and overlaps, while
RainBio provides intersection clustering. UpSet displays the largest
intersections at the top and the user has to interact with a scroll
bar to display the others. For example, in Figure 11, only 662
elements are represented, out of 1027 (about 64%). But scrolling
can be tedious, especially if there is a “long tail” of many small
intersections. Here, Figure 11 is the first screen out of 9, as suggest
the size of the vertical scroll bar holder. On the contrary, the use of
clustering in RainBio allows displaying at least partial membership
information for all elements in a single screen.

A third difference is that UpSet has no automatic sets/columns
ordering while RainBio automatically orders them by similarity
using a metaheuristic. Similarity-based set ordering can greatly
help users. Let us imagine that biologists are not aware that there
are 4 types of mammary tissues in dataset #3, and that they want
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Table 3
The questions with the correct answers. Questions marked by (*) correspond to insights mentioned in the original publications.

Question Correct answer

5-
se

td
at

as
et - How many biomarkers are found only by SVM-RFE? 13

#1 How many biomarkers are found by all the 5 methods? (*) 38
#2 How many biomarkers are found only by beta-binomial? 9
#3 Which method finds the highest number of biomarkers that are not found by other methods? (*) NSC
#4 What are the two methods finding the highest number of common biomarkers, not found by any other

method?
Beta-binomial and NSC

#5 How many biomarkers are found by both SVM-RFE and NSC (and no other method)? 6

6-
se

t d
at

as
et - How many gene clusters are present only in Arabidopsis? 1187

#1 How many gene clusters are shared by the 6 plants? (*) 7674
#2 How many gene clusters are present only in M. acuminata? (*) 759
#3 Which species has the most specific gene clusters (=not present in other species)? (*) Oryza
#4 Which are the 3 plants that share the highest number of gene clusters (present only in these 3 plants)? (*) Arabidopsis, Oryza, Sorghum
#5 How many gene clusters are shared by Phoenix, Musa and Arabidopsis (and not shared with other species)? 206

to discover those tissue types. In Figure 11, sets were ordered
alphabetically, which resulted in grouping them by tissue types
(e.g. stroma, mL,...). This is no longer possible if tissue types
are unknown. Figure 13 shows the dataset with UpSet, using a
random set order. In this figure, discovering the four tissue types
is more difficult. It requires to find visually that intersections
B-C-J (stro previously), G-H-K (pL), D-E-L (mL) and A-F-I
(MS) are large and that they make a partition of the set of all
sets, i.e. the intersections include each set once and only once.
This is more difficult in UpSet than in RainBio, because UpSet
represents intersection cardinalities and sets separately (as said
above), and it is even more difficult when sets are not ordered by
similarity. Manually ordering the sets to simplify the visualization
in UpSet would be tedious, because there are 12! = 479, 001, 600

candidate orders. On the contrary, discovering the four tissue types
is easier in RainBio: the fact that some boxes are next to each
other facilitates the identification of disjoint intersections (which
are requirements for partitions), and sets are automatically ordered
by similarity. Thus, the set order in the dataset has no impact,
and the visualization remains the same as in Figure 1 and 7. This
example shows that UpSet depends a lot on the set order (arbitrary
order in the dataset file or alphabetical order). However, a good
visualization should be independent from any arbitrary order.

To conclude, UpSet has a more uniform global layout and
provides much more interactive options, such as two-level aggrega-
tions or user-defined queries. It also provides intersection deviations
and supports the analysis of set-typed data. Thus, it is arguably
better for detailed data mining or when intersection cardinalities
are very disparate. On the other hand, thanks to tighter packing
and clustering, RainBio can display more information than UpSet
in a single screen. Therefore, RainBio provides arguably a more
comprehensive “one-screen” overview. In addition, similarity-based
column ordering may help find relation between sets. These two
points correspond to ideal requirements (b) and (c) we identified in
section 3.

7 USER STUDY

In this section, we present a small user study. Its objective was to
compare RainBio and Venn diagrams for the visualization of 5 and
6-set datasets, with regard to the five typical tasks we identified in
biology (Table 2). The Venn diagram was chosen as a comparator,
because (a) it is, by far, the most widely used approach in biology
(as the large number of Venn diagram-based tools for biology

suggests, see section 2), (b) it has also been chosen as a comparator
during other studies, e.g. for linear diagrams [45] and (c) more
recent approaches, such as UpSet, have not yet been evaluated
during user study.

7.1 Recruitment
30 biology students were recruited at our university in the first year
of master degree (M1). Most of them were female; this is usual in
biology courses. About half of them were from foreign countries,
thus various cultures were represented. The study was performed
during the course of bioinformatics and students were not aware
that the study will take place at this moment. They were told that
the objective of the study was to compare two tools, but not that
the Venn diagram is a well-established technique and RainBio is
a challenger. Some students already used Venn diagrams in other
courses.

7.2 Protocol
The study was anonymous and no personal information was
recorded (such as age or sex). We used a balanced crossover
protocol in which each student tested both tools. We used datasets
#1 and #2, with 5 and 6 sets, initially produced for demonstrating
InteractiVenn. For each, we designed 6 questions: a “warm-up”
question (whose results were not analyzed) and 5 other questions
(Table 3), one per typical task described in section 3. 6 questions
(out of 10) corresponded directly to insights mentioned by the
authors of the original publications [16], [37], [38]. The two
questions #5 were deliberately designed so as they target small
intersections, the cardinality of which is not shown in RainBio
boxes (thus requiring user interaction). Each question had a single
correct answer.

Students were randomly divided in two groups. The first group
had to reply to the questions on the 5-set dataset with the Venn
diagram and to the questions on the 6-set dataset with RainBio,
and vice versa for the second group. All students began with the
simpler 5-set dataset. Thus, both groups had the same questions
and datasets, in the same order, but not with the same tool. We
recorded the error rate and the response time. Consequently, the
independent variables were the dataset (5-set or 6-set), the tool
used (RainBio or Venn diagram) and the question identifier (#1-5),
and the dependent variables were the response accuracy and the
response time. Finally, the last question asked the student about his
preferred tool, with three possible choices: RainBio, Venn diagram,
or no opinion.
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7.3 Hardware and software
The study was performed on the classroom desktop computers
(Intel Core i5-6500 processors at 3.20 GHz, 8 Gb RAM) running
Debian GNU/Linux. They were equipped with 19’ screens with a
resolution of 1280x1024 pixels.

A dynamic website was developed for the study. The website
was responsible for the randomization in the two groups. The first
page presented briefly the objective of the study. The second page
presented the first tool (depending on the group in which the user
was randomized). The next pages corresponded to the questions
with the 5-set dataset. Then the second tool was presented, followed
by the questions with the 6-set dataset. Venn diagrams were based
on InteractiVenn (without the panel for authoring the dataset). In
RainBio, clustering was removed, since InteractiVenn does not
have it. When the response to a question was a number, students
had to enter it. When the response was one or more sets, student
had to choose the response from 5 predefined values. Finally, the
last page asked the question related to user preference. The website
collected error rates and response times.

7.4 Statistical analysis
Statistical analysis was performed using R version 3.3.2 [46]. The
significance threshold was set at α = 0.05. Error rate was the
main criteria; it was compared with Fisher’s exact test and Global
Linear Model (GLM), considering two factors: tool (Venn diagram
or RainBio) and dataset size (5 or 6). Response time was log-
transformed to normalize the distribution, and analyzed with Welch
two sample t-test.

7.5 Results
All students performed the entire study and responded to all
questions. We collected 150 responses with each tool.

35 errors were recorded with the Venn diagram (error rate
23.3%) and 25 with RainBio (error rate 16.7%). This difference is
not significant (p value = 0.19, Fisher exact test). GLM showed that
dataset size has a significant relationship with error rate (p = 0.015)
and that there is a significant interaction between tool and dataset
size (p = 0.0004). Thus we analyzed each dataset separately. With
the Venn diagram, there were 8 and 27 errors for the 5- and 6-set
datasets, respectively. With RainBio, there were 14 and 11 errors,
respectively. For the 5-set dataset, the difference is not significant
(p = 0.11). For the 6-set dataset, the difference is significant (p =
0.0006).

The mean response time was 31.6 seconds with the Venn
diagram vs 32.6 seconds with RainBio. This difference is not
significant (p value = 0.45, Welch two sample t-test performed on
log(time)). 10 (33.3%) students preferred the Venn diagram, while
17 (56.7%) preferred RainBio (the 3 others indicated no opinion).

In conclusion, RainBio led to significantly fewer errors on the
6-set dataset, and was preferred by the majority of the students.

8 DISCUSSION AND CONCLUSION

In this paper, we presented RainBio, a visualization technique for
providing a global overview of large sets in biology. We adapted
rainbow boxes for the visualization of datasets with a high number
of elements, by using aggregation based on exclusive intersection,
by representing sets in columns rather than in boxes, and by
defining a new color scheme, allowing the visualization of up to
15 sets. We proposed intersection clustering, a novel approach to

set visualization. In particular, we proposed the exact proportional
visualization of up to 6 sets, which was not reported yet to our
knowledge. We demonstrated the use of RainBio on 3 biological
datasets of various sizes, and we compared it with several other
techniques (Venn diagram, proportional Venn diagram and Upset).
Finally, we compared RainBio with Venn diagrams in a small user
study. We showed that students made fewer errors with RainBio
on 6-set datasets, and that it was preferred by the majority of the
students.

8.1 Visualization technique

In RainBio, we opted for a proportional approach to set visu-
alization: larger intersections are represented by taller boxes.
In addition, we gave more importance to largest intersections
when determining the column order (section 4.3). Favoring the
largest intersection is an approach followed by several other
set visualization tools, including PowerSet, Radial Sets and the
proportional Venn diagram. In a similar spirit, UpSet allows sorting
intersection by cardinality, thus focusing on the largest ones, and
BiSets allows hiding individual edges. This proportional approach
facilitates the identification of the largest intersections and the
discovery of similarities between sets (as seen in section 3), at the
price of making the smallest intersections harder to identify, or
even hiding them. This might bias the visualization towards the
largest intersections. However, when comparing several samples,
biologists are often interested in largest gene clusters rather than by
smallest ones. In addition, size is a selective visual variable [42],
and thus selecting visually the smallest boxes remains possible.

Various designs were considered during the development of
RainBio. First, it is known that the Human vision is usually
more sensitive to surface than to size [47]. Thus, we tried to
encode intersection cardinality as box area (instead of box height).
However, rainbow boxes have a “semi-table-like” aspect, with
clearly delimited columns but without rows. Thus, it favors a
separate interpretation of the horizontal and vertical dimensions, as
usual in tables. Moreover, when the number of sets is high, the area-
proportional encoding leads to very small boxes for intersections
of high degree. In addition, as seen at the end of section 3, when
a gene is shared between two samples, each sample has its own
copy of the gene. Consequently, using box height for encoding
cardinality, actually encodes the number of observed copies as
box area: box area represents the number of copies (i.e. counting
1 copy per sample) while box height represents the number of
distinct genes (i.e. without duplicates). For these reasons, we
preferred height-proportional encoding of cardinality, especially
when visualizing gene sets. Second, we considered the use of
variable column widths, proportional to the cardinality of each set.
However, variable column widths imply that a box representing the
exclusive intersection of two or more sets occupy a largest area in
the largest column. This might lead to the biased perception that
the largest column plays a more important role with regard to the
intersection. Thus, we opted for fixed column widths.

RainBio displays boxes horizontally. An alternative option
would be to display boxes vertically (e.g. rotating the whole
visualization by 90°). Since computer screens are usually wider
than tall, a vertical disposition would provide more space for boxes.
However, rainbow boxes stack boxes at the bottom of the screen,
mimicking the action of gravity: this behavior is more natural than
stacking them on the left or on the right. For this reason, we chose
to display boxes horizontally.
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Table 4
The various tasks related to sets and set relations in Alsallakh et al. classification [1]. The last column indicates whether user interaction is required or

not (V: visually, Ic: interactively using checkboxes, Id: interactively using details-on-demand, Ig: interactively using clustering).

# Task How to perform the task with RainBio
B1 Find out the number of sets in the set family Count the number of columns V
B2 Analyze inclusion relations Find visually a column where all boxes are shared with another column V
B3 Analyze inclusion hierarchies - (not supported) -
B4 Analyze exclusion relations Find visually the absence of a box covering two or more columns

(checkboxes can help if many boxes are present)
V, Ic

B5 Analyze intersection relations Find visually the box covering two or more columns (checkboxes can
help)

V, Ic

B6 Identify intersections between k sets Select visually boxes of a given color V
B7 Identify the sets involved in a certain intersection Find visually the columns covered by a given box V
B8 Identify set intersections belonging to a specific set Select visually the boxes in a given column V
B9 Identify the set with the largest/smallest number of pairwise

set intersections
Find visually the column with the tallest/smallest 2-set boxes
(clustering can help by reducing and merging boxes)

V, Ig

B10 Analyze and compare the cardinality of sets and
intersections

Find visually the tallest/smallest boxes (detail-on-demand is required
for small boxes, and clustering can help)

V, Id, Ig

B11 Analyze and compare set similarities Select visually adjacent column and/or find column sharing many and
tall boxes

V

B12 Analyze and compare set exclusiveness Compare visually the blue 1-column boxes V
B13 Highlight specific sets, subsets, or set relations Use checkboxes to fade out boxes not including one set Ic
B14 Create a new set using set-theoretic operation - (not supported) -

On dataset #3, we showed that RainBio could be used to
discover similarities between sets and to group them in clusters. In
dataset #3, these clusters corresponded to the already known cate-
gories of tissue. However, if those categories were not yet known,
RainBio could have been used to discover them. Consequently,
RainBio might be used for clustering sets and for unsupervised
learning. Other visual approaches allow unsupervised learning,
for example principal component analysis (PCA) associated with
scatter plots allows clustering visually objects described by an
object-property matrix. Other set visualization approaches, such
as ConSet [32], were able to achieve visual clustering through
columns and rows reordering, using different algorithms.

The main limit of the proposed technique is the visualization
of datasets having many sets but few elements. The number of
intersections grows exponentially with the number of sets. With
more than 10 sets, intersection cardinalities tend to be lower. In
extreme cases, there can be as many non-empty intersections as
elements, each intersection including a single element. In these
cases, the visualization in RainBio is not informative and the
clustering method we proposed cannot be applied (since we select
the largest intersections as seeds). This situation occurs typically
with purely random datasets; on the contrary, the mammary tissue
dataset has some large exclusive intersections that “structure” data.

8.2 Intersection clustering
In the literature, existing approaches, including UpSet [4] and
AggreSet [33], rely on aggregation (or grouping) rather than
clustering: they provide predefined aggregations, such as “group-
ing intersections by degree”, “grouping intersections by set” or
“grouping intersections by pair of elements”, or allows the user to
create his own aggregates. Aggregation gives a more general view
of the data. However, the user has little control over the number of
aggregates produced: if the number is high, all aggregates cannot
fit on the screen and it is difficult for the user to obtain a global
overview. On the contrary, in RainBio, intersection clustering
gives to the user a better control over the number of clustered
intersections, via the parameter t.

Clustering leads to an information loss. However, it is not
comparable with approximately proportional Venn diagrams, be-
cause clustering can be controlled and it ensures that the visible

intersections are always the largest ones. The clustering method we
proposed guarantees that all intersections with t elements or more
are visible, allowing the quantification of the information loss. On
the contrary, on dataset #2, the approximately proportional Venn
diagram (Figure 10) missed a large intersection of 759 elements,
and it is difficult for the user to evaluate how approximated a
diagram is.

8.3 Set visualization tasks

Alsallakh et al. [1] proposed a task classification for set visual-
ization. Since RainBio follows a set-centric approach and does
not support set-typed data, we are only interested in category B
(tasks related to sets). In section 2, we identified 5 typical tasks for
biologists; RainBio targets particularly those tasks. Nevertheless,
it can be used to achieve other tasks beyond those five. Table 4
shows the set-related tasks, and how RainBio allows achieving
them. Some tasks in the classification can be divided in subtasks,
for example task B10 (cardinality of an intersection) involves sets
(i.e. |A|), standard intersections (|A ∩B|) and unions (|A ∪B|). In
some cases, RainBio does not always support all possible subtasks,
for example for task B10, RainBio is efficient for evaluating the
cardinalities of intersections, but not for the ones of unions. Similar
remarks hold for tasks B2, B4, B12 and B13.

Compared to the Venn diagram (and its task description by
Alsallakh et al. [1]), RainBio also supports task B1, B6, B11
and B12. In the literature, other set visualization techniques have
achieved a higher coverage of Alsallakh et al. task classification:
for instance, UpSet supports 23 of the 26 tasks [4], including all
tasks of category B excepted B11 (set similarity). Task B11 is not
supported by the Venn diagram and UpSet, while it is by RainBio.

RainBio is focused on the global overview of the dataset.
Consequently, in Table 4, most tasks can be achieved visually,
without interacting with the system. Interaction is required for
only one task (B13), and four other tasks require interaction only
in certain circumstances (e.g. small boxes) or may be enhanced
through interaction. This limited use of interactivity could facilitate
the use of RainBio by biologists in scientific publications, because
it is much easier to publish a still picture than an interactive
interface, for technical reasons (some journals are paper-based)
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but also because readers may not be trained in the use of the
interactive interface and therefore may not be able to find the
expected insights from the visualization. In our opinion, this point
might explain why the Venn diagram is still widely used in biology,
despite its limitations are known by biologists themselves (e.g.
the Venn diagram is “not effective for presentation of more than four
categorical groups” [48]).

On the contrary, many recent tools such as UpSet or AggreSet
are more focused on the interactive analysis of set data. Those
tools allow the creation of user-defined aggregations, but require
more complex user interaction. They also frequently use scroll bars,
making harder to obtain a global overview of the data.

8.4 User study

For the user study, we deliberately reused datasets produced for
InteractiVenn, in order to limit biases in the selection of the
datasets (i.e. we did not design specific datasets that would favor
RainBio). We used a crossover protocol, in which each subject
tested both tools on different datasets, and thus can be his own
control. Crossover protocols are known to reduce the inter-subject
variability [49], which is important when the number of subjects
is rather low. We showed that students made fewer errors with
RainBio on a 6-set dataset, compared to the Venn diagram. On
the contrary, on a 5-set dataset, we observed fewer errors with the
Venn diagram, although the difference was not significant. Some
questions on the 5-set dataset might have favored the Venn diagram,
for example, the two sets involved in question #5 were next to
each other on the Venn diagram but not on RainBio. In addition,
surprisingly, we observed slightly fewer errors with RainBio on the
6-set dataset than on the 5-set one (although the difference is not
significant).

Response time was slightly higher (although not significantly
higher) with RainBio than with Venn diagrams. This might be
explained because RainBio requires user interaction for answering
some questions (such as finding the number of genes in a given
exclusive intersection, questions #5 in Table 3), while the Venn
diagram does not. The fact that some students already used the
Venn diagram might also be an explanation. Finally, for the 6-set
dataset, the response times can difficultly be analyzed without
considering the difference in the number of errors.

The presented user study showed that RainBio could advanta-
geously replace the Venn diagram for 6 sets. However, the study
did not evaluate the new features proposed by RainBio, such as
clustering and the ability to visualize a higher number of sets
than the Venn diagram. Future user studies should consider larger
datasets and be focused on clustering, probably using another
comparator than Venn diagrams.

In the literature, the limits of Euler and Venn diagrams have
already been shown, compared to matrix-based approach such as
linear diagram. Chapman et al. [45] compared four techniques for
set visualization: Venn diagram, standard Euler diagram (using
complex shapes), Euler diagram with shading (i.e. Euler diagram
using ellipses, empty regions being shaded) and linear diagram.
They measured response times and error rates, and they showed
that the linear diagram performed the best. In our user study, we
obtained similar results on error rates for 6-set dataset (but not in
response times). However, our study differs since we compared
proportional rainbow boxes to Venn diagrams showing numbers,
while in the Chapman et al. study, intersections of Venn diagrams
were empty, and there exists no proportional version of the linear

diagram. Moreover, contrary to Chapman et al., we measured user
preferences in addition to error rates and response times. In user
studies, effectiveness (measured here by error rates), efficiency
(error rates / response times ratio) and satisfaction (e.g. user
preference) are not necessarily correlated [50], and thus each of
them should be assessed independently.

8.5 Perspectives
In this paper, we focused on applications in biology for comparing
gene or protein sets. However, RainBio could be used beyond to
biology. Thus, a first perspective of this work is to adapt RainBio for
set visualization in other domains. Examples include co-authorship
relations in bibliographic databases or cloned software systems [51].
Another perspective is the use of RainBio for unsupervised learning,
either visually, or even entirely automatically, by identifying
similarities between sets. A third perspective is to develop a set
visualization tool for data mining, combining the global overview
proposed by RainBio with advanced queries and filtering such as
those proposed in other tools.
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