J. D. Evans, D. M. Huang, M. Haranczyk, A. W. Thornton, C. J. Sumby et al., Computational identification of organic porous molecular crystals, CrystEngComm, vol.18, pp.4133-4141, 2016.

A. W. Thornton, C. M. Simon, J. Kim, O. Kwon, K. S. Deeg et al., Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage, Chem. Mater, vol.29, 2017.

C. M. Simon, R. Mercado, S. K. Schnell, B. Smit, and M. Haranczyk, What Are the Best Materials To Separate a Xenon/Krypton Mixture?, Chem. Mater, vol.27, pp.4459-4475, 2015.

M. Fernandez, P. G. Boyd, T. D. Daff, M. Z. Aghaji, and T. K. Woo, Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2Capture, J. Phys. Chem. Lett, vol.5, pp.3056-3060, 2014.

S. R. Hall, F. H. Allen, and I. D. Brown, The crystallographic information file (CIF): a new standard archive file for crystallography

, Acta Crystallogr., Sect. A: Found. Crystallogr, vol.47, pp.655-685, 1991.

S. Yang, M. Lach-hab, I. I. Vaisman, and E. Blaisten-barojas, Identifying Zeolite Frameworks with a Machine Learning Approach, J. Phys. Chem. C, vol.113, 2009.

M. De-jong, W. Chen, R. Notestine, K. Persson, G. Ceder et al., A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds, Sci. Rep, vol.6, p.34256, 2016.

S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher et al., Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis, Comput. Mater. Sci, vol.68, pp.314-319, 2013.

T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, and M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Microporous Mesoporous Mater, vol.149, pp.134-141, 2012.

R. L. Martin, B. Smit, and M. Haranczyk, Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials, J. Chem. Inf. Model, vol.52, pp.308-318, 2012.

A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys, vol.98, pp.5648-5652, 1993.

S. Grimme and . Semiempirical, GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem, vol.27, pp.1787-1799, 2006.

R. Nada, J. B. Nicholas, M. I. Mccarthy, and A. C. Hess, Basis sets for ab initio periodic Hartree?Fock studies of zeolite/adsorbate interactions: He, Ne, and Ar in silica sodalite, Int. J. Quantum Chem, vol.60, pp.809-820, 1996.

R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc

R. Gaillac, P. Pullumbi, and F. Coudert, ELATE: an open-source online application for analysis and visualization of elastic tensors, J. Phys.: Condens. Matter, vol.28, p.275201, 2016.

J. H. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, Annals of Statistics, vol.29, pp.1189-1232, 2001.

J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning

F. Pedregosa, Scikit-learn: Machine Learning in Python, Springer Series in Statistics, vol.12, issue.36, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00650905

A. Mohan, Z. Chen, and K. Weinberger, Web-search ranking with initialized gradient boosted regression trees. Proceedings of the Learning to Rank Challenge, pp.77-89, 2011.

H. Li, Y. Liang, and Q. Xu, Support vector machines and its applications in chemistry, Chemom. Intell. Lab. Syst, vol.95, pp.188-198, 2009.

R. Caruana and A. Niculescu-mizil, An empirical comparison of supervised learning algorithms, ICML '06 Proceedings of the 23rd International Conference on Machine Learning, pp.161-168, 2006.

D. L. Alexander, A. Tropsha, and D. A. Winkler, Beware ofR2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models, J. Chem. Inf. Model, vol.55, pp.1316-1322, 2015.

A. F. Combariza, D. A. Gomez, and G. Sastre, Simulating the properties of small pore silicazeolites using interatomic potentials, Chem. Soc. Rev, vol.42, pp.114-127, 2013.

B. W. Van-beest, G. J. Kramer, and R. A. Van-santen, Force fields for silicas and aluminophosphates based onab initiocalculations, Phys. Rev. Lett, vol.64, 1955.

M. J. Sanders, M. Leslie, and C. R. Catlow, Interatomic potentials for SiO2, J. Chem. Soc., Chem. Commun, pp.1271-1273, 1984.

J. D. Gale, Analytical Free Energy Minimization of Silica Polymorphs, J. Phys. Chem. B, vol.102, pp.5423-5431, 1998.

G. Sastre and J. D. Gale, Derivation of an Interatomic Potential for Germanium-and Silicon-Containing Zeolites and Its Application to the Study of the Structures of Octadecasil, p.9

, Materials. Chem. Mater, vol.15, pp.1788-1796, 2003.

S. Tsuneyuki, M. Tsukada, H. Aoki, and Y. Matsui, First-Principles Interatomic Potential of Silica Applied to Molecular Dynamics, Phys. Rev. Lett, pp.869-872, 1988.

A. Yeganeh-haeri, D. J. Weidner, and J. B. Parise, Elasticity of agrCristobalite: A Silicon Dioxide with a Negative Poisson's Ratio, Science, vol.257, pp.650-652, 1992.

R. Astala, S. M. Auerbach, P. A. Monson, . Lta, M. Cha et al., Density Functional Theory Study of Silica Zeolite Structures: Stabilities and Mechanical Properties of SOD, J. Phys. Chem. B, vol.108, pp.9208-9215, 2004.

D. J. Earl and M. W. Deem, Toward a Database of Hypothetical Zeolite Structures, Ind. Eng. Chem. Res, vol.45, pp.5449-5454, 2006.

M. W. Deem, R. Pophale, P. A. Cheeseman, and D. J. Earl, Computational Discovery of New Zeolite-Like Materials, J. Phys. Chem. C, vol.113, 2009.

J. D. Gale and A. L. Rohl, The General Utility Lattice Program (GULP), Mol. Simul, vol.29, pp.291-341, 2003.

F. Mouhat and F. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B: Condens. Matter Mater. Phys, p.224104, 2014.

B. W. Silverman, Density Estimation for Statistics and Data Analysis, vol.26, 1986.

Y. Li, J. Yu, and R. Xu, Criteria for Zeolite Frameworks Realizable for Target Synthesis, Angew. Chem., Int. Ed, vol.52, pp.1673-1677, 2013.

E. Haldoupis, S. Nair, and D. S. Sholl, Pore size analysis of > 250000 hypothetical zeolites, Phys. Chem. Chem. Phys, pp.13-5053, 2011.

C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser et al., Large-scale screening of hypothetical metalorganic frameworks, Nat. Chem, pp.4-83, 2011.

L. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher et al., In silico screening of carbon-capture materials, Nat. Mater, vol.11, pp.633-641, 2012.

A. U. Ortiz, A. Boutin, A. H. Fuchs, and F. Coudert, Investigating the Pressure-Induced Amorphization of Zeolitic Imidazolate Framework ZIF-8: Mechanical Instability Due to Shear Mode Softening, J. Phys. Chem. Lett, 1861.
URL : https://hal.archives-ouvertes.fr/hal-02116930

J. Jiang, J. Yu, and A. Corma, Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures, Angew. Chem., Int. Ed, vol.49, pp.3120-3145, 2010.

A. Pulido, Functional materials discovery using energy? structure?function maps, Nature, vol.543, pp.657-664, 2017.