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One of the big challenges of theoretical condensed-matter physics is the description, understanding,
and prediction of the effects of the Coulomb interaction on materials properties. In electronic spectra,
the Coulomb interaction causes a renormalization of energies and change of spectral weight. Most
importantly, it can lead to new structures, often called satellites. These can be linked to the coupling of
excitations, also termed dynamical effects. State-of-the-art methods in the framework of many-body
perturbation theory, in particular, the widely used GW approximation, often fail to describe satellite
spectra. Instead, approaches based on a picture of electron-boson coupling such as the cumulant
expansion are promising for the description of plasmon satellites. In this work, we give a unified
derivation of the GW approximation and the cumulant expansion for the one-body Green’s function.
Using the example of bulk sodium, we compare the resulting spectral functions both in the valence
and in the core region, and we discuss the dispersion of quasi-particles and satellites. We show that
self-consistency is crucial to obtain meaningful results, in particular, at large binding energies. Very
good agreement with experiment is obtained when the intrinsic spectral function is corrected for
extrinsic and interference effects. Finally, we sketch how one can approach the problem in the case
of the two-body Green’s function, and we discuss the cancellation of various dynamical effects that
occur in that case. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934965]

I. INTRODUCTION

Density Functional Theory (DFT)1 has opened the way
to a predictive first principles description of condensed-matter
systems. Materials properties that are governed by the elec-
tronic ground state, such as crystal structures or cohesive
energies, are often described within a precision of a few
percent. In the Kohn-Sham (KS)2 formulation an independent-
particle Schrödinger equation is derived, and the resulting
single-particle eigenfunctions allow one, in principle, to con-
struct the exact density and total energy, and in practice, often
to obtain very good approximations.

The KS equation also yields eigenvalues ε0
i . However,

besides the highest occupied state in a finite system these are
not total energy differences of the system with N and N ± 1
particles,3,4 and they cannot be interpreted as electron addition
and removal energies. The band structure given by the KS
eigenvalues is therefore different from the one that is measured,
e.g., in direct and inverse photoemission experiments, that
is called the quasi-particle band structure, and in particular,
the KS band gap is, in general, substantially smaller than the
measured photoemission band gap (see, e.g., Ref. 5). This is
sometimes called the KS band-gap problem.

a)jianqiang.zhou@polytechnique.edu

In order to go beyond the ground state and describe
phenomena such as electron addition and removal, it is more
appropriate to change the framework and work with Green’s
functions6,7 instead of the density. In particular, the imaginary
part of the one-body Green’s function yields the intrinsic spec-
tral function that can be directly compared to direct and inverse
photoemission spectra. In the independent-particle case, the
spectral functions consist of peaks that are δ-functions at
the independent-particle energies. In an interacting system,
the peaks are shifted and broadened: these are the quasi-
particle peaks. Moreover, they lose weight towards additional
structures and incoherent background that appear in the spectra,
because all excitations are coupled, and the initial excitation
decays by exciting electron-hole pairs, or collective excitations
such as plasmons.

A route to approximate the one-body Green’s function is
traced by many-body perturbation theory (MBPT).6,7 In this
framework, the one-body Green’s function is determined from
the Dyson equation G = G0 + G0ΣG, where G0 is the non-
interacting Green’s function and Σσ(r,r′,ω) is the non-local
and frequency-dependent self-energy that is diagonal in spin
σ when the Hamiltonian is not spin-dependent. If one is only
interested in the position of the quasi-particle peaks, as it
is most often the case, for example, if one only wants to
calculate the quasi-particle band structure of a solid close to

0021-9606/2015/143(18)/184109/13/$30.00 143, 184109-1 © 2015 AIP Publishing LLC
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the Fermi level, it is sufficient to replace the local and static
KS exchange–correlation potential vxc in the KS equation by
the real part of the exchange–correlation self-energy Σxc cal-
culated at the real part εi of the quasi-particle energy, i.e.,
Re Σxc(ω = εi).8,9 Here, we have defined Σ = vH + Σxc where
vH is the Hartree potential. The quasi-particle energy is the solu-
tion of the resulting Schrödinger-like equation, which requires,
in principle, iterating the equation to determine εi. Since the
self-energy isapproximately lineararound thequasi-particleen-
ergy, one can Taylor expand Re Σxc(ω = εi) ≈ Re Σxc(ω = ε0

i )
+ (εi − ε0

i )∂Re Σ(ω)/∂ω|ω=ε0
i
. This leads to a renormalization

of thequasi-particlecorrectionsbya factor Z ≡ [1 − ∂ReΣ(ω)/
∂ω|ω=ε0

i
]−1, called the quasi-particle renormalization factor.8–10

The non-locality in (r,r′) of the self-energy is tightly
linked to the non-locality of the exchange in Hartree-Fock,
for which Koopmans’ theorem11 tells us that the eigenvalues
have the meaning of electron addition and removal energies.
In most cases, the fact that the self-energy is non-local is
responsible for the opening of the band gap with respect
to a KS calculation. The frequency-dependence of the self-
energy makes this object fundamentally different from any
independent-particle potential. It causes the Z-factor to be
smaller than one: Z gives the fraction of spectral weight that
remains in the quasi-particle peak, the rest being transferred to
the satellites and the background. It is a measure of correlation,
since in an independent-particle system (as in Hartree-Fock)
it must be equal to one. Satellites can only appear when Z is
different from one, and they are always due to interactions.

The most widely used approximation to the self-energy
is Hedin’s GW approximation.12 In this approximation, the
self-energy is given as a convolution in frequency space of the
one-body Green’s function G and the dynamically screened
Coulomb interaction W , usually calculated in the random
phase approximation (RPA).13 Since G is the quantity to be
calculated, the problem is, in principle, self-consistent. In
practice, the self-energy is often constructed using a Green’s
function built with KS eigenvalues and eigenfunctions, both in
G and in W ; the approach is then called G0W0. Note that the
exact measurable W , which is screened by the test-charge–test-
charge dielectric function, can, in principle, be calculated using
time-dependent density functional theory (TDDFT). The self-
consistent RPA W is instead, in general, different from the
measurable one. This aspect will be discussed later.

One of the early successes of the G0W0 approximation
was the solution of the “band-gap problem” for simple semi-
conductors and insulators,14,15 and since then, it has led to
many successful band structure calculations in a wide range of
materials.8,9 Even energy levels in so-called strongly correlated
materials like transition-metal oxides can be described (see,
e.g., Refs. 16 and 17), as long as one stays in a low-temperature
phase with magnetic ordering that leads to a unit cell with an
even number of electrons. These materials, however, require
an accurate description of localized d- or f -electrons, which
is often not given by simple KS functionals such as the Local
Density Approximation (LDA), which have a tendency to delo-
calize charge. The problem can be overcome by carrying out
the calculations self-consistently using some static approxima-
tion to the self-energy, such as the quasi-particle self-consistent
GW (QSGW) approximation.5,18 This improves the density.

Also the fact that the eigenvalues of the KS solution can be
far from the quasi-particle values can deteriorate results and
updating quasi-particle eigenvalues in a self-consistent way
is often useful to obtain better energies, further extending the
range of materials for which the GWA is the method of choice
for band structure calculations.19

However, as discussed above, quasi-particles are only a
part of the measured spectra. The most interesting part when
it comes to exploring correlation effects is contained in the
satellites which directly exhibit the effects of coupling. Unfor-
tunately the GWA turns out to have severe problems in describ-
ing satellites (see, e.g., Ref. 20). In principle, one expects that at
least plasmon satellites are well described, since plasmons are
the dominant structures that are seen in the inverse dielectric
function ϵ−1(ω), and hence in the screened Coulomb inter-
action W = ϵ−1(ω)vc, where vc is the bare interaction. Satel-
lites in x-ray spectra have an even longer history. Physically,
these correlation effects arise from multi-electron excitations,
e.g., shake-up and shake-off processes.21 In small molecules,
these largely intrinsic processes can be treated to high accu-
racy, e.g., with configuration interaction methods.22 However,
in condensed matter, additional collective excitations such as
plasmons and phonons are present, which give rise to multiple
satellites and strong dynamic correlation effects. Plasmons
calculated in the RPA often compare well to experimental
spectra such as electron energy loss spectra or inelastic x-ray
scattering (see, e.g., Refs. 23–27). Satellites due to plasmons
are indeed found in the GWA, but they are often too far from
the quasi-particle energy, and sometimes much too sharp, and
in other cases much too weak, as compared to experiment.

In the present work, we discuss why this is so, and how
one can obtain a better description of satellite spectra. To
this purpose, we derive the GWA from the fundamental func-
tional differential equation that expresses the one-body Green’s
function as functional of an external potential, based on the
approach of Schwinger.28 We highlight the two major approx-
imations that lead to the GWA. Using the same set of equations
we show how one can do better,29 deriving an exponential
expression for G that is equivalent to a cumulant representa-
tion.20 This is the topic of Section II. For an illustration, we
show results for valence and core electron removal spectra of
sodium as prototype examples. Section III gives the results of
the GWA, with a particular accent on the importance of self-
consistency for the calculation of satellites. Cumulant results
are contained in Section IV. In order to compare to experiment,
the intrinsic spectral function is not sufficient: one has to add
the extrinsic losses due to scattering of the outgoing electron on
its way to the detector, as well as interference effects between
extrinsic and intrinsic contributions. This is the topic of Sec-
tion V. Finally, Section VI sketches a way to extend these ideas
to the two-particle Green’s function that would, in principle,
treat the hole and the photoelectron on the same footing and
therefore naturally contain intrinsic, extrinsic, and interference
effects. Conclusions are given in Section VII.

II. THEORETICAL FRAMEWORK

The fundamental building block of MBPT is the one-
body Green’s function G. At zero temperature the time-ordered
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Green’s function6 reads

G(1,2) ≡ −i ⟨Ψ0| T[ψ̂(1)ψ̂†(2)] |Ψ0⟩ , (1)

where Ψ0 is the many-body ground state, T is the time-
ordering operator, and ψ̂ and ψ̂† are field operators in the
Heisenberg picture. Here (1) stands for space, spin, and time
coordinates (x1, t1) ≡ (r1,σ1, t1), and (1+) ≡ (x1, t+1 ) with t+1
≡ t1 + η and η → 0+. The Green’s function contains a wealth
of information; in particular, the density is given by n(x1)
= −iG(1,1+) and a diagonal element of the spectral function
labelled i in some basis is

Aii(ω) = 1
π
|Im Gii(ω)|. (2)

If the many-body ground state |Ψ0⟩ was known, one could
evaluate the Green’s function from Eq. (1). This is however,
in general, not the case. Instead, one can use the fact that G
fulfills the equation of motion (note that f (1̄)g(1̄) stands for

d1 f (1)g(1))
G(1,1′) = G0(1,1′) + G0(1, 2̄)vH(2̄)G(2̄,1′)

+ iG0(1, 2̄)vc(2̄, 3̄)L(2̄, 3̄+,1′, 3̄++), (3)

where G0 is the non-interacting Green’s function, vc is the
bare Coulomb interaction, vH is the Hartree potential, and L
is the two-particle correlation function that is linked to the
two-body Green’s function G2 as L = −G2 + GG. However,
also the two-particle Green’s function G2 is defined in terms
of an expectation value of four field operators in the many-
body ground state. Its equation of motion makes the three-
body Green’s function appear, and so on. In order to truncate
this infinite chain and obtain a closed expression, one can use
Schwinger’s functional derivative approach28 that consists of
introducing a fictitious external potential u and expressing Lu

in the presence of u as

δGu(2,1′)
δu(3) = Lu(2,3,1′,3+), (4)

where Gu is G for u , 0. This leads to the equation of motion
in the compact form

Gu(1,1′) = G0(1,1′) + G0(1, 2̄)
×

[u(2̄) +vHu(2̄)]Gu(2̄,1′) +ivc(2̄, 3̄) δGu(2̄,1′)

δu(3̄+)

,

(5)

where vHu is the Hartree potential built with the density
nu(x) = −iGu(x,x, t, t+). If one could solve this functional
differential equation, the solution at u = 0 would be the desired
one-body Green’s function G. Note that when the last term
is neglected, one retrieves the Hartree approximation for G.
Instead, the variation of the Green’s function goes beyond the
independent-particle picture; it contains the information that
excitations are coupled.

A. MBPT in the linear-response approximation

As pointed out in the book by Baym and Kadanoff,30

“there is no known technique to solve functional differential

equations like [Eq. (5)] in an efficient way.” Instead the equa-
tion can be used as a starting point for increasingly accurate
approximations.

One of the complications of the equations is the fact that
the density nu in the Hartree potential introduces a term that is
quadratic in Gu. To overcome this problem, we introduce the
total classical potential

ucl(1) = u(1) + vHu(1) (6)

and rewrite (5) as

Gu(1,1′) = G0(1,1′) + G0(1, 2̄)ucl(2̄)Gu(2̄,1′)
+ iG0(1, 2̄)vc(2̄, 3̄) δGu(2̄,1′)

δu(3̄+)
= G0(1,1′) + G0(1, 2̄)ucl(2̄)Gu(2̄,1′)
+ iG0(1, 2̄)Wu(2̄, 3̄) δGu(2̄,1′)

δucl(3̄+) , (7)

where we have defined the screened Coulomb interaction Wu

= ϵ−1
u vc with the time-ordered inverse dielectric function ϵ−1

u

= δucl/δu.
This is still, in principle, exact, as long as all quantities

depend on u, as indicated by the subscript. Note that ϵ−1
u is not

the usual linear response dielectric function, since it depends
on the perturbing potential. However, since we are interested
in the solution for vanishing u, a reasonable approximation is
to evaluate the equation using ϵ−1

u ≈ ϵ−1 at u = 0. This corre-
sponds to a linear-response approximation.

Written in a basis, the resulting equation reads

Gu
i j(t12) = G0

i j(t12) + G0
im(t13)ucl,mk(t3)Gu

k j(t32)

+ iG0
ik(t13)Wklmn(t34)

∂Gu
n j(t32)

∂ucl,lm(t4) , (8)

where t12 ≡ (t1, t2) or (t1 − t2) in equilibrium, Wklmn is a matrix
element of the screened Coulomb interaction W , and we have
replaced functional derivatives by partial derivatives, suppos-
ing the basis to be discrete, which corresponds to calculations
in practice. Repeated indices are summed over. Note that we
keep the symbol Gu, but with the understanding that now Gu

is a functional of ucl instead of u.

B. The GW approximation

The simplest approximation to this differential equation is

∂Gu
n j(t32)

∂ucl,lm(t4) ≈ Gnl(t34)Gmj(t42). (9)

At u = 0, this yields the Dyson equation G
= G0 + G0ΣGWG with the GWA for the self-energy,

Σ
GW
im (t34) = vH, im + iGnl(t34)Wilmn(t34). (10)

The GWA involves hence two approximations: a linearization
of the density response of the system to the perturbation given
by the electron addition or removal and an approximation of
the coupling of excitations.

Often the GWA is used with two further approximations:
first, the Green’s function G that appears in Eq. (10) is replaced
by an independent-particle one, for example, a Kohn-Sham
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Green’s function. Second, W is calculated in the RPA. As
our derivation shows, these are additional approximations,
not indispensable for the GWA. Instead, the derivation sug-
gests that, in principle, W should be the exact linear response
screened Coulomb interaction, which is the time-ordered coun-
terpart of the measurable retarded screened interaction (often
called test-charge–test-charge interaction), and that the self-
energy should be built with the self-consistent Green’s func-
tion G. As we will see later, the excitations contained in W
directly show up in the satellites. This allows one to confirm
that, in agreement with our derivation, W should indeed be the
physical screened interaction, and not its RPA version.

C. Beyond the GWA: Cumulant expression
for the Green’s function

In order to go beyond approximation (9), we first introduce
a quasi-particle Green’s function GQP,u, defined as

[GQP,u]−1
i j = [G−1

0 ]i j − [ucl]i j − ΣGW
i j

( εi + ε j

2

)
. (11)

This allows us to rewrite Eq. (8) as

Gu
i j(t12) = GQP,u

i j (t12) + iGQP,u
ik

(t13)Wklmn(t34)
∂Gu

n j(t32)
∂[ucl]lm(t4)

−GQP,u
ik

(t13)ΣGW
kl

(
εk + εl

2

)
Gu

l j(t32). (12)

Following an idea of Ref. 29 we now approximately
decouple the equations, by supposing that Gu and GQP,u are
diagonal in the same, u-independent, basis. If one iterates
Eq. (12) for Gu

ii using this assumption, it turns out that Gu
ii

depends only on the element [ucl]ii, which means that the
screened interaction contributes only through the element

W(t34) ≡ Wiiii =


drdr′|φi(r)|2|φi(r′)|2W (r,r′, t34), (13)

where φ is the single-particle basis function labelled i. The
resulting scalar differential equation for each matrix element
Gu ≡ Gu

ii reads

Gu(t12) = Gu
QP(t12) + iGu

QP(t13)W(t34)∂G
u(t32)

∂ucl(t4)
−Gu

QP(t13)ΣGW
ii (εi)Gu(t32), (14)

where ucl ≡


dr ucl(r)|φi(r)|2 is the diagonal element of the
potential. Note that after decoupling, only the diagonals of W
and ΣGW are needed.

Eq. (14) can be solved exactly. Since it is a first order
differential equation, it has more than one solution. Excluding
a phase transition, the physical solution is the one that con-
nects to the non-interacting one when vc → 0. This solution
describes one orbital propagating in the medium given byW ,
which represents the effect of all other electrons.

For u → 0 the solution of (14) reads

G(t12) = G0
QP(t12)ei(t1−t2)ΣGW

ii
(εi)

× exp

−i

 t2

t1

dt ′
 t2

t′
dt ′′W(t ′ − t ′′)


. (15)

The double integral ofW leads to three terms,

−i
 t2

t1

dt ′
 t2

t′
dt ′′W(t ′ − t ′′)

= −(t1 − t2) 1
2π


dω
W(ω)
ω

+
i

2π


dω
W(ω)
ω2

(
e−iω(t1−t2) − 1

)
, (16)

where the first term induces a shift of the quasi-particle peak,
the second term leads to additional structures (the satellites),
and the last term, which does not depend on the time differ-
ence, yields a renormalization of the spectrum. The decoupling
approximation, although quite severe, allows us thus to eluci-
date the structure of the problem, and to highlight the physics
that emerges from the solution of the linearized equation.

Let us first examine the term proportional to (t1 − t2) in
Eq. (16), by comparing it to a GW quasi-particle shift. In
the decoupling approximation, ΣGW

kk
≈ iGkkWkkkk. Evaluated

at the quasi-particle energy, this yields exactly the term we
are interested in. This means that e−(t1−t2)

1
2π


dω
W(ω)
ω approx-

imately cancels with the GW shift in ei(t1−t2)Σ
GW
ii

(εi), and we
are left with

G(t12) = G0
QP(t12) exp


i

2π


dω
W(ω)
ω2

(
eiω(t1−t2) − 1

)
.

(17)

If one expands the exponential of the second term of
Eq. (16), and by using the Kramers-Kronig relation between
W and its imaginary part, one can see that this term makes
a series of satellites appear on the high-binding energy side
of the quasi-particle peak, since the imaginary part of W con-
tains the neutral excitations of the system. The satellite se-
ries corresponds to single, double, and multiple excitations.
Such an expression is the exact solution32 of a core electron
Hamiltonian, where a single fermion is coupled to bosons.32–36

Here, the bosons are the excitations contained in W , and
the fermion is given by G. In the case of a core level, it is
reasonable to divide the system into an isolated level and the
rest, which screens the level. Here, we are also interested in
spectra of valence electrons, where no such clear separation
exists. However, one can still imagine that one excites a quasi-
particle and that excitation of this quasi-particle, in turn, leads
to bosonic excitations in the system. The quasi-particle is not
simply the bare level; it is dressed by the other electrons. This
is expressed by Eq. (17).

As above in the case of the quasi-particle shift, the descrip-
tion of the satellites can be improved by comparing the expo-
nent to the GW self-energy in the decoupling approximation.
One can see that the peaks on the high-binding energy side
of the quasi-particle peak are then created by the imaginary
part of ΣGW(εi − ω) for µ > εi − ω, where µ is the chem-
ical potential. Therefore, we replace ImW(ω) by Im ΣhGW

= Im ΣGW(εi − ω)θ(µ − εi + ω) in the first contribution of
Eq. (17).

The last term in Eq. (17) is also evaluated using ΣhGW

such that the correct normalization of the spectral function is
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obtained. This leads to the final expression

G(t12) = G0
QP(t12) exp



∂ΣhGW(ω)
∂ω

|ω=εi


× exp


1
π

 ∞

εi−µ
dω

Im ΣGW(εi − ω)
(ω − iη)2 e(iω+η)(t1−t2)


.

(18)

This is the time-ordered cumulant (TOC) approximation
for the hole part of the Green’s function. Here we are interested
in photoemission where i stands for an occupied state, but the
same approach can be used to describe inverse photoemission
spectra.31 In both cases, the electron addition and removal
sectors are decoupled by the approximation.

Several derivations of this or closely related expressions
can be found in the literature. In particular, Langreth32 has
obtained the cumulant Green’s function as a solution to an
electron-boson coupling Hamiltonian. In the simplest case of
one level and one boson, such a Hamiltonian corresponds to
Eq. (14), whereW contains one bosonic excitation. The more
complete equation (8) couples several fermionic levels and
bosonic excitations. With respect to Langreth, our derivation
starts from the full many-body Hamiltonian, and not from
the already approximate electron-boson coupling model. The
solution of the problem is then based on a different math-
ematical strategy, but of course with similar results, since in
both cases the solution is the exact solution to the approximate
problem. Other derivations postulate the GWA self-energy as
the central ingredient, and either solve the equation of motion
for the Green’s function approximately,37 or use the cumulant
exponential form as ansatz, with the cumulant derived from the
constraint that the Dyson equation and the cumulant approach
should yield the same result to first order in W .38 In our
case, the GWA form of the self-energy appears naturally.
The closest derivation to ours is probably the one of Hedin,39

where the diagrammatic expansion of the Green’s function
is resummed, thanks to approximations on the recoil effects.
As in our derivation, there is no model Hamiltonian, W is
the central ingredient, and the GWA self-energy appears as a
result.

Eq. (17) or (18) in several variants has been used in
ab initio calculations to describe photoemission spectra of
various metals and semiconductors.31,38,40–44 In Refs. 20, 45,
and 46, Eq. (18) was applied to silicon and graphite. By includ-
ing also extrinsic and interference effects (see Sec. V), this led
to results in excellent agreement with experiment. Here, we
follow this route. One can also use the method outlined above
to go beyond and derive more sophisticated approximations
such as the retarded cumulant approximation;47 this is however
not the topic of the present work.

Because of the direct link between the GWA and the TOC,
cumulant results are obtained at almost no additional cost
once a GWA calculation has been performed. In particular,
one can calculate Im ΣGW(εi − ω) and make a fit using a
many-pole representation with weights a and pole frequencies
ω̃. The general many-pole expression gives, in principle, an
exact representation of Im ΣGW(εi − ω).45,46,48 For clarity of
the discussion, we give here the resulting spectral function
Ai(ω) = 1/π |ImG(ω)| for the case of a single pole,

Ai(ω) = e−ai

π

∞
n=0

an
i

n!
Γi

(ω − εi + n ω̃i)2 + Γ2
i

, (19)

where εi and Γi are real and imaginary parts of the QP energy,
respectively. The spectral function Ai(ω) shows the quasi-
particle peak at εi, followed by a Poisson-like decay of satellite
replicas at energies εi − n ω̃i. Numerical results shown below
are obtained with many poles, typically a few hundred. Note
that in silicon20 a single plasmon-pole model was sufficient to
obtain good results, but a metal close to the Fermi level requires
a much finer frequency sampling.

D. Calculations in practice

In order to illustrate the theory, we present results for
the electron removal spectrum of bulk sodium obtained with
ab initio calculations using a plane wave basis and pseudopo-
tentials as implemented in the ABINIT code.49 This simple
metal has been extensively studied and, in particular, it has
been shown38,50 that the GWA does not yield the experimen-
tally observed plasmon satellite series, whereas the cumulant
approximation does.38 However, these studies were limited to
the valence band, and even there, a detailed analysis is still
missing. Here, we provide this analysis, pointing out the role
of a spurious plasmaron in the bad performance of the GWA.
Moreover, we include the Na 2s and 2p core in the calculation,
thus treating valence and core on the same footing.

Of particular interest is the question of self-consistency.
The quasi-particle energies that appear in Eq. (18) should,
in principle, be calculated self-consistently. However, this re-
quires several sometimes cumbersome calculations, and in
many materials it is a good approximation to build the self-
energy using the results of simpler calculations, such as a
Kohn-Sham band structure. In the framework of the GWA,
this way to determine the quasi-particle energy εi is called
a G0W0 calculation. Through this approximation the Kohn-
Sham band structure determines then also the cumulant result.
In simple metals, the LDA is often the approximation of choice.
However, as Sec. III will show, self-consistency is a critical
issue when moving to the core levels, even in simple metals
where the valence band is almost not affected. The most impor-
tant contribution to self-consistency comes from the energies.
Therefore we also perform calculations where the energies in
G are updated until convergence, while W0 is kept fix, since it is
supposed to approximate the measurable screened interaction.
This is called energy self-consistent GW0 in the following.

Calculations have been performed for the experimental
sodium crystal structure at temperature T = 5 K.51 The lattice
constants are taken to be 4.225 Å. We have generated a sodium
Troullier-Martins-type pseudopotential52 with semicore and
valence states (2s, 2p, and 3s).53 The Brillouin zone of sodium
was sampled using a 16 × 16 × 16 grid mesh that yields 145
inequivalent k-points in the irreducible Brillouin zone (BZ),
and a smearing temperature of 0.01 Ha was used. This is a
fictitious temperature that only serves as a computational trick
tospeedup thek-pointconvergence,whichexplainswhywecan
still use a standard time-ordered formalism. We have checked
that our results are not biased by the value of the temperature.
The plane-wave cutoffof the LDA ground-state calculation was
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200 hartree. We have used the same RPA screening W0 for both
one shot (G0W0) and energy-self-consistent (GW0) calculation
with 60 bands, 100 plane waves representing the wave functions
and the dielectric matrix. Note that the update of the energies
can be expected to be the most important contribution to
self-consistency in sodium. The full frequency dependence of
the self-energy was calculated using a contour-deformation
technique. We calculated the screening using 100 frequencies
on the real axis up to an energy of 25 eV and 10 frequencies
on the imaginary axis. The final self-energy was converged
using 60 bands, 9000 plane waves for both wave functions and
the exchange term. The cumulant expansion method and the
extrinsic/interference technique are the ones used in Refs. 20
and 45. In particular, we evaluate Eq. (18).

III. THEORETICAL PHOTOEMISSION SPECTRUM
OF SODIUM: GWA RESULTS

Before looking at the final results, it is useful to analyze the
most important ingredient, namely, the GWA. In particular, we
will compare results of G0W0 based on the LDA, and energy
self-consistent GW0.

A. Quasiparticles and plasmon satellites in core
and valence

Fig. 1 shows the spectral function of the 3s valence band at
the Γ point (lower panel). To understand the origin of the fea-

FIG. 1. Valence band intrinsic spectral function of sodium at theΓ point (lower
panel). Red line is G0W0 results, blue line is GW0. Black line is the result of the
cumulant expansion. The position of the LDA band at Γ is given by the green
arrow. The upper two panels show the imaginary and shifted real parts of the
self-energy. The zero of the energy axis is set to the GW0 Fermi energy.

tures, we also show the imaginary part of the self-energy (upper
panel) as well as the shifted real part (note that in the figure ε0

i

denotes a KS eigenvalue, therefore (ω − ε0
i + Vxc − Re Σxc(ω))

is plotted to avoid double counting; middle panel). The quasi-
particle condition is fulfilled when this function crosses zero.
Red is G0W0 results, blue is GW0 (i.e., updated energies in G).
The imaginary part of Σ shows one pronounced peak about
6 eV below the quasi-particle energy, corresponding to the
plasmon energy of sodium. In correspondence, the real part is
strongly dispersing. It crosses zero at the quasi-particle energy,
giving rise to the quasi-particle peak of the bottom valence
band. It is close to the band energy found in the LDA, and
there is just a slight band narrowing, as is also found in the
homogeneous electron gas. However, there is also a second
crossing, around 12 eV binding energy. This causes a second
pronounced peak in the spectral function. This is the so-called
plasmaron. It is further away from the quasi-particle peak
than the plasmon energy, which explains the bad agreement
between G0W0 and experiment found also in the earlier work.38

Self-consistency does not change the results significantly.
The results for the core levels are given in Fig. 2, with

analogous plots as above. At the left is the Na 2s level, at
the right Na 2p. Again the G0W0 and GW0 satellites are of
plasmaronic origin and therefore too sharp and too far away
from the quasi-particle energy as compared to the plasmon
frequency.

B. Importance of self-consistency

Two things should be noted in the core level spectra.
First, G0W0 and GW0 give very different results. This is due
to the fact that the GWA shifts the core level significantly
with respect to the LDA. Energy self-consistency is therefore
mandatory for the core. Second, in the non-self-consistent
calculation, the commonly made assumption that one could
calculate quasi-particle levels from the linearized self-energy
cannot be made. Indeed, the arrow labeled G0W0 indicates
the quasi-particle energy that one would obtain by using that
procedure: clearly, the energy is completely off with respect
to the quasi-particle peak in the G0W0 spectral function (red
curve). Moreover, in the non-self-consistent G0W0 calculation
the satellite is much farther from the quasi-particle peak and
the weight transfer from the quasi-particle to the satellite is
huge, which cannot be justified with any particular strong
correlation effect in sodium. Indeed, the situation changes
drastically when self-consistent calculations are performed, as
one can see for the blue curves: the satellites get closer to
the quasi-particle peak (they are located at a distance ∼1.5
times the plasmon energy) and their intensity is reduced. It has
been noted in several places that eigenvalue self-consistency
is crucial when one is interested in GW satellites;19,31,54,55 the
present example is a striking illustration. Overall, the two core
levels behave similarly, although all features discussed here are
more pronounced in the deeper core.

C. Satellite dispersion

The imaginary part of the self-energy is an integral over
the plasmon spectrum. The small values of momentum transfer
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FIG. 2. Intrinsic spectral function of
sodium at the Γ point (lower panel) for
the core levels Na 2s (left) and Na 2p
(right). Red is G0W0 results, blue line
is GW0. Black line is the result of the
cumulant expansion. The position of the
LDA band at Γ is given by the green
arrow labeled LDA. The arrow labeled
G0W0 indicates the quasi-particle en-
ergy that one would obtain by the usual
first-order approximation based on a
linearization of the self-energy. The up-
per two panels show the imaginary and
shifted real parts of the self-energy.

dominate this integral, which explains why the imaginary part
is relatively sharp. If the spectral function followed Im Σ,
the GWA satellite would disperse together with the valence
band, at a distance about the plasmon energy. Fig. 3 shows
the k-resolved valence band spectra (the core spectra do not
disperse). GW results are on the left. At the Γ-point (bottom
panel) the satellite corresponds to a sharp plasmaron peak,
whereas it smoothens for k-points closer to the Fermi level.
Still, the satellite peak position disperses and follows essen-
tially the quasi-particle peak, although it has a slight tendency

to get closer when the plasmaron effect becomes weaker, and
the distance between quasi-particle and satellite is overesti-
mated in the GWA.

IV. THEORETICAL PHOTOEMISSION SPECTRUM
OF SODIUM: CUMULANT RESULTS

Since the non-self-consistent G0W0 results for the core are
so bad, they are not suitable as input for the cumulant calcula-
tion, and we only show the final results that are obtained using

FIG. 3. k-resolved valence band spec-
tral functions in sodium along ΓH (k
points are expressed in units of the ΓH
length). Left panel: GWA results. Right
panel: results of the cumulant expan-
sion.
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as input the energy self-consistent GW0 self-energy. Here, we
would like to remind that, according to our derivation, the
screened Coulomb interaction should, in principle, be the time-
ordered version of the measurable test charge-test charge inter-
action that one could calculate, e.g., using TDDFT. The RPA
based on Kohn-Sham ingredients is to be seen as a reasonable
approximation, in many cases better than, e.g., RPA based on
GW Green’s functions. Therefore, we use W0 calculated in
LDA-RPA everywhere.

The black curves in Figs. 1 and 2 show the cumulant
results. Note that in all cases two satellites can be resolved, at
a distance of once and twice the calculated plasmon frequency,
as expected. The first satellite is closer to the quasi-particle than
the GW satellite, since the latter represents rather an average of
the cumulant series.

The k-resolved cumulant spectral function is shown in the
right panel of Fig. 3. The satellite clearly follows the quasi-
particle dispersion. These results are similar to the results for
the HEG,47 in particular, concerning the dispersion. The same
behaviour has recently also been observed in silicon.43,44 How-
ever, comparison with experiment is not as crisp, as the plasmon
replicas are blurred by dispersion and effects of extrinsic losses
and interference as discussed below. The main difference to
the spectra in Ref. 47 is the fact that in that work on the HEG
the retarded cumulant method was applied, whereas here we
use the original time-ordered version. Therefore, our spectral
function does not have weight on both sides of the Fermi level,
contrary to the GW one. However, the retarded cumulant and
more sophisticated versions have other drawbacks and need
more testing, which makes them less suitable for the purpose
of the present paper, which is an analysis of the main effects
and the discussion of core spectra. The core levels and valence
states that are not very close to the Fermi level do not couple to
the unoccupied space, so that TOC and retarded cumulant give
the same results.

V. TOWARDS EXPERIMENTAL SPECTRA:
EXTRINSIC AND INTERFERENCE EFFECTS

The observed result of a photoemission measurement is
more than just an intrinsic spectral function. In principle, one
has a complex process of excitation of two particles with their
mutual interaction and interaction with all system particles, the
electron travelling through the system and the surface to the de-
tector, coupling to phonons, a secondary electron background,
etc. (see, e.g., Ref. 56 for some discussion). It is desirable to
treat the main effects at least approximately. Concerning the
extrinsic losses of the travelling electron and the interference
effects with the intrinsic excitation of electron-hole pairs and
plasmons by the hole, the theory can be greatly simplified
by making use of the quasi-boson approach of Hedin and
Bardyszewski57 and Hedin, Michiels, and Inglesfield (HMI),58

for treating extrinsic losses. Of key importance is the treatment
of valence excitations due to the interaction with the photo-
electron (extrinsic excitations) and the hole (intrinsic excita-
tions), as well as interference between these processes. The
HMI model describes excitations of a semi-infinite jellium
coupled to a hole as well as a photoelectron. The excitations

of the jellium are bosonic in nature, i.e., plasmons and surface
plasmons, etc. Thus, the model can be associated with a bosonic
Hamiltonian, where the electron-boson coupling is related to
the screened Coulomb interaction. The strength of the intrinsic
excitations depends mostly on the coupling, and surface effects
can be neglected, while the extrinsic excitations depend on the
distance travelled by the photoelectron through the material,
and thus on the inelastic mean free path. Within these approx-
imations the photocurrent is given by

Jk(ω0) =

i

�
Mik0

�2
 ∞

0
dzhe−ak(zh)

 ∞

−∞
dtei(ω0−ϵk+ϵi)t

× exp


dω γk(ω, zh)e−iωt


. (20)

Here, ω0 is the photon frequency, k0 =


2(ω0 + ϵ i) is the
threshold photoelectron momentum, Mik are the dipole matrix
elements between hole-state |i⟩ and photoelectron |k⟩, and k
and ϵk = k2/2 denote the photoelectron momentum and kinetic
energy at the detector. The amplitude reduction ak(zh) for a hole
located a distance zh from the surface is related to the inelastic
mean free path λk by

ak(zh) ≈


dω γk(ω, zh) = 2zh/λk + aint(zh). (21)

In the above equation, we have made the approximation that
the matrix elements Mik are constant over the range of photo-
electron energies of interest, i.e., from threshold to several
multiples of the plasmon frequency below threshold. The func-
tion γk(ω, zh) is given as a sum over boson modes with mo-
mentum q and excitation energy ωq, i.e.,

γk(ω, zh) =


q
|gq,k(ω, zh)|2δ(ω − ωq) (22)

and can be interpreted as the single boson excitation spectrum.
Assuming that the semi-infinite solid occupies the space z < 0,
the coupling is given by

gq,k(ω, zh) = V q(zh)
ω

+
i
κ

 zh

−∞
ei(k̃−κ)(z−zh)V q(z)dz, (23)

where the electron-boson coupling functions (fluctuation
potentials) V q are related to the screened Coulomb interaction.
In our model calculations, we use the bulk and surface plasmon
fluctuation potentials of Inglesfield.59 In the above equation, the
first term couples to the hole, the second to the photoelectron,
and the cross terms in |gq,k(ω, zh)|2 give the interference. Thus,
the excitation spectrum can also be separated into intrinsic,
extrinsic, and interference terms, i.e., γk = γ

int + γextk + γ
in f

k .
We find that the intrinsic couplings (and thus amplitudes) are
very weakly dependent on the distance from the surface zh, and
can thus be approximated by a constant. The wave numbers
k̃ and κ coincide with the time-inverted low-energy electron
diffraction (LEED) state,60

|k̃⟩ = eiK ·R

θ(z)e−i k̃∗z + θ(−z)e−i k̃ z (24)

and are given by

k̃ =


k2 + 2(φ + ϵF + iΓ(ϵk)),
κ =


2(ω0 + φ + ϵF + iΓ(ω0)) − |Q + K |2,

(25)
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where φ is the work function and ϵF is the Fermi energy.
The bold capital letters indicate vectors parallel to the surface,
e.g, k = {K, k} and q = {Q,q}. Finally, Γ is an imaginary
energy related to the photoelectron lifetime inside the material
and gives the photoelectron mean free path, λk = 1/Imk̃. The
dependence on the vector K gives the spectral dependence on
the outgoing angle of the photoelectron. Thus, the model is a
good way to estimate the amplitude of extrinsic and interfer-
ence effects for varying photon energy and detection angle for
semi-infinite solids.

The high kinetic energy photoelectron is approximated
using a plane-wave time-inverted LEED state which is damped
inside the solid by the inelastic mean free path and behaves
like a plane wave far from the solid surface. This damping
is extremely important, and without it, the current from a
semi-infinite solid is unbounded since electrons at all depths
contribute equally to the intrinsic signal. The use of a plane-
wave inverted LEED state for high kinetic energy photo-
electrons is a reasonable approximation; however, the localized
approximation is less accurate for the valence hole. Conse-
quently, we use this model only to calculate the weight of the
extrinsic plus interference satellites and modify the amplitude
of the intrinsic satellites calculated according to the more
accurate theory outlined in Sec. II C. In particular, we scale
the correlation part of the self-energy in Eq. (18) by the ratio
of the total to intrinsic weights (averaged over zh) as calculated
using the HMI model for plasmon frequency ω′,

R(ω′) = ātot(ω′)
āint(ω′) , (26)

where the averaged amplitudes are given by

ātot =


dzhdω e−ak(zh)γk(ω, zh),

āint =


dzhdω e−ak(zh)γint(ω, zh),

(27)

and the dependence on the plasmon frequency ω′ is implicit
in the above equations. This modification of the amplitude is
possible since the exponential forms of the two approaches are
similar and allows for a good approximation of the total satellite
weight.20 In order to compare to the experiment, the secondary
electron background is also added to the spectral function. The
background is approximately proportional to an integral of the
spectral function (or sum of spectral functions in the case of
the valence electrons), i.e., b(ω) = c ×

 ω

∞ dω′ A(ω′). Thus,
the total calculated photoelectron current is given by Jk(ω)
= A(ω) [1 + b(ω)] ,where the constant of proportionality is set
by matching to the experimental data at low energy where the
spectral function is small, and the background dominates the
signal.

The final results for the photocurrent calculated includ-
ing intrinsic, extrinsic, and interference effects are shown in
Fig. 4 for the valence band, and in Fig. 5 for the core level.
The calculation of the 2s spectrum in Fig. 5 also includes
an approximation for the surface plasmon contribution, which
appears as a shoulder at an excitation energy of approximately
ωp/
√

2 = 4.25. Our calculations are given by the red solid
curve; the experimental photoemission spectra61,62 (measured
at 1486.7 eV photon energy) are shown in black dots. For

FIG. 4. Comparison of the experimental photoemission spectrum to the
spectrum calculated using the cumulant + extrinsic + interference approach:
valence band. Red solid line is total calculation, including a secondary elec-
tron background, black line with circles is experiment,61 and blue dashed line
is the intrinsic cumulant spectral function. The spectra are angle-integrated.
Original experimental data were in arbitrary units: here we have normalized
them to the main-peak intensities.

comparison, the figures also include the momentum-integrated
cumulant spectral function without extrinsic, interference, or
background contributions (blue dashed curves), which for the
valence band is in line with the results of Ref. 38. The overall
agreement between the calculated photocurrent and experiment
is reasonably good. The distance of the satellites from the quasi-
particle position is systematically slightly overestimated; this
may be due to the use of the RPA that overestimates plas-
mon frequencies in loss or inelastic x-ray scattering spectra,
especially with increasing momentum transfer.63,64 Since the
screening of W should correspond to the measurable one in
order to obtain the correct spectrum, this leads to an error in the
satellite positions. This discrepancy in peak position also partly
accounts for the discrepancy in satellite amplitude due to the
1/ω2 factor in the cumulant. Note that the disagreement is larger
for the valence spectrum than for the core. This is partly due to
the fact that the imaginary part of the self-energy is broader and
more asymmetric for states at the Fermi surface than for the
core or even the valence at the Γ point, and these states near
the Fermi surface make up the dominant contribution to the
valence spectrum. Since the time-ordered cumulant approach
should work best far from the Fermi level, it is not astonishing
that the largest deviations are found close to the Fermi level.
Moreover, our model of the extrinsic and interference effects
assumes that the total excitation spectrum is proportional to
the intrinsic excitation spectrum, while in reality, the extrinsic
effects should be roughly independent of hole level. A more
appropriate way to model the extrinsic and interference terms
might be to calculate these terms directly from the loss function.
Also note that the position of the core levels has been aligned
to zero; otherwise, the GWA 2s level is too deep by about 5 eV,
and the 2p level by about 3 eV. However, all of the main trends
are reproduced by the cumulant+ extrinsic+ interference ap-
proach: the appearance of a satellite series, the fact that the
relative weight of the satellites is larger in the valence than in
the core region, and the extended incoherent spectrum that can
be seen in the figures for the core levels.
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FIG. 5. Comparison of the experimental photoemission spectrum to the spectrum calculated using the cumulant + extrinsic + interference approach: left, Na
2s; right: Na 2p. The red solid lines are total calculations, including secondary electron background, black lines with circles are experimental data,62 and blue
dashed lines are calculated cumulant spectral functions. The total Na 2s calculated spectrum also includes an approximation to the surface plasmon contribution.

VI. A UNIFIED VIEW: COUPLING OF EXCITATIONS
IN THE TWO-PARTICLE GREEN’S FUNCTION

A. Dynamical effects in the two-particle
Green’s function

The dynamical effects in the one-body Green’s func-
tion express the fact that electron addition or removal induces
excitations in the system of all electrons. In the same way, the
addition of two electrons or two holes, or the excitation of an
electron-hole pair, perturbs the system and should lead to addi-
tional excitations that renormalize energies, change intensities,
and can lead to additional structure in the spectra. Indeed, this
is an important fact that manifests itself, for example, as the
so-called double excitations in molecules,65,66 or as satellites
that appear at large momentum transfer in the inelastic x-
ray scattering spectra of simple metals.67,68 It is also tightly
linked to the problem of extrinsic and interference effects in
photoemission: the need for those corrections is due to the fact
that one approximates the photoemission process in a three-
step picture by the creation of a hole (the intrinsic spectral
function) and the subsequent propagation of the electron to
the detector (leading to extrinsic effects). A unified description
should treat this as a two-particle problem, given by the hole
and the electron. Both electron and hole are described by one-
body Green’s functions with their respective dynamical effects
as outlined above, and moreover, there is in general an electron-
hole interaction. Such a problem can be described, for example,
by the Bethe-Salpeter equation (BSE) for the two-particle
correlation function L. In the standard approximation to the
BSE, the electron-hole interaction is approximately derived
from the GWA. The result is given by the screened Coulomb
interaction W in a static approximation.10 However, in prin-
ciple, W is frequency dependent: this frequency dependent
W leads to the interference effects, as also discussed in the
following.

Solving the BSE with full frequency dependence is a very
difficult problem, and several approximations have been pro-
posed.69–74 One can however doubt whether an approximation
based on the GWA would be a good starting point for the
description of dynamical effects since, as we have seen above,
the GWA often fails to describe satellites. It is therefore desir-
able to sketch a route that follows the lines of the cumulant

approximation for the one-body Green’s function. This is the
topic of the present explorative section.

B. A functional differential equation for the
two-particle correlation function

The first task is to derive a functional differential equation
for the quantity of interest. Here, we will concentrate on the
irreducible two-particle correlation function L̃, from which the
reducible L and spectra can be obtained straightforwardly. In
analogy to (4), the irreducible two-particle correlation function
is defined as

δGu(2,1′)
δucl(3) = L̃u(2,3,1′,3+), (28)

with ucl given in (6). We now rewrite (7) as

Gu(1,2) = GHu(1,2) + iGHu(1, 3̄)W (3̄, 4̄)L̃u(3̄, 4̄+,2, 4̄++)
(29)

keeping Wu → W (u = 0) fixed in the spirit of the linear
response approximation. Here, we have defined GHu(1,2)
= G0(1,2) + G0(1, 3̄)ucl(3̄)GHu(3̄,2). Differentiation with re-
spect to ucl, using the fact that the last term contains a double
derivative of G, yields a functional differential equation for L̃u,

L̃u(1,5,2,5+) = GHu(1,5)GHu(5+,2)
+ iGHu(1,5)GHu(5+, 3̄)W(3̄, 4̄)L̃u(3̄, 4̄+,2, 4̄++)
+ iGHu(1, 3̄)W (3̄, 4̄) δL̃u(3̄,5,2,5+)

δucl(4̄) . (30)

Substitution of (29) finally leads to

L̃u(1,5,2, 5̄+) = GHu(1,5)Gu(5+,2)
+ iGHu(1, 3̄)W (3̄, 4̄) δL̃u(3̄,5,2,5+)

δucl(4̄) . (31)

This is a functional differential equation for L̃u in terms
of ucl, provided Gu is given. It is now most natural to use the
results of above, namely, to write the equation in a basis, make
the decoupling approximation, and use the cumulant solution
for Gu. In this way, one obtains a differential equation for one
transition matrix elementLvc ≡ L̃vvcc

u , for a resonant transition
v → c from a valence to a conduction state. The differential
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equation reads

Lvc(t1, t5, t2, t+5 ) = GHu
vv (t1, t5)Gu

cc(t+5 , t2)
+ i

 t5

t1

 +∞

−∞


n=v,c

GHu
vv (t1, t3̄)Wvvnn(t3̄, t4̄)

×
δLvc(t3̄, t5, t2, t+5 )

δucl,nn(t4̄) dt3̄dt4̄. (32)

In the unusual zero-order term GHuGu, the hole interacts
via the Hartree potential with the rest of the system, while the
electron propagates with a fully interacting Green’s function.
This asymmetric treatment makes an exponential of Wcccc

appear (carried by the cumulant Gu) while no equivalent term
is carried by GHu. However, the missing single-particle Wvvvv

and the interaction term Wvvcc are actually included by the sum
over the index n of Eq. (32).

If one starts to iterate this equation, it becomes clear that
in the last term a factor

GHu
vv (t1, t3̄)GHu

vv (t3̄, t5)Gu(t5, t2)Fvc[W ] (33)

appears at any order, where Fvc[W ] is a functional of W but not
of ucl. Moreover, GHu

vv (t1, t3̄)GHu
vv (t3̄, t5) = GHu

vv (t1, t5). The full
equation is then solved by means of the ansatz L̃vc = GHu

vv

Gu
ccFvc, suggested by the result of the iteration procedure.

The solution for F follows the same scheme as for the sin-
gle particle Green’s function, and it leads to two exponentials
of Wvvcc and Wvvvv analogous to the exponential term in the
cumulant. The equilibrium limit u = 0 can finally be taken.

C. Solution and discussion

For u = 0, the solution of Equation (32) is

Lvc(t1, t5, t2, t+5 ) = e−i[εH
c (t5−t2)−εH

v (t5−t1)]e− i
2
 t5
t2

 t5
t2

Wcccc(t−t′)dtdt′− i
2
 t5
t1

 t5
t1

Wvvvv(t−t′)dtdt′+i
 t5
t1

 t5
t2

Wvvcc(t−t′)dtdt′

= Gvv(t1, t5)Gcc(t5, t2)ei
 t5
t1

 t5
t2

Wvvcc(t−t′)dtdt′. (34)

The polarizability (limit t2 → t1) can be taken only at the
end of the calculation, once the exponential solution is found
and the vanishing u limit can be performed.

Now, we have a cumulant with three contributions: the
quasi-particle correction and excitations due to the hole in
Wvvvv (the original intrinsic contribution in the one-body
Green’s function), quasi-particle corrections and excitations
due to the electron in Wcccc, which give rise to the extrinsic
effects, and the mixed term Wvvcc that is responsible for
excitonic effects and for the interference effects in the context
of photoemission. Note that when all matrix elements are
equal, there is perfect cancellation because of the opposite
signs and factors 1/2. This provides a justification for the
complete neglect of dynamical effects that is usually done in
Bethe-Salpeter calculations. The result shows that it would
be dangerous to neglect only part of the effects, for example,
include only the dynamical effects in the electron-hole inter-
action via Wvvcc but keep the quasi-particle approximations
for the one-body Green’s functions. Such a cancellation of
dynamical effects has been discussed in Ref. 75. In that work,
only the first order expression was derived, but mixing of
transitions at different k-points was allowed. It should be clear
that this mixing is crucial if one wants to use the results for
calculations in extended systems, since excitonic effects in
these systems can only occur when transitions are allowed to
mix: in the thermodynamic limit, the first-order correction
to the energies vanishes. Our derivation above has to be
understood as a basis for discussion, and as a first step towards
the calculation of spectra including dynamical effects in the
two-body Green’s function to all order, along the lines that
have shown to be very successful for the one-body Green’s
function.

VII. CONCLUSIONS

In conclusion, dynamical effects in electronic spectra are
a signature of correlation, since they cannot be explained in
any independent-particle picture. They express the coupling of
electrons to different excitations in the system. In the case of
photoemission, the coupling of a hole to electron-hole pairs
and plasmons can efficiently be described by extending the
framework of the GW approximation to include multiple satel-
lites via a cumulant approach, because the screened Coulomb
interaction W contains this kind of excitations. The cumulant
form for the one-body Green’s function has been known for
many years, and it is the exact solution of a boson excitation
model for core-level spectroscopy. Here, we have explained
how one can obtain it as an approximation on the same footing
as the GWA, which highlights the main assumptions and even-
tually allows one to go beyond. As an example for the potential
of the theoretical approach, we have sketched a way to apply
the same procedure to the two-body Green’s function. We
have illustrated the main findings with ab initio calculations of
the one-body spectral function of bulk sodium, going beyond
published results by extending the study to the core region,
where we show the crucial importance of self-consistency.
We also add extrinsic and interference effects, and finally
obtain electron removal spectra in very good agreement with
experiment.

The two main approximations used here are a linear-
response treatment of the Hartree potential and an approximate
way to take coupling between excitations into account. Work
is under way to make the latter procedure more systematic and
to understand the drawbacks of the linear-response approxi-
mation. For example, it is clear that satellites due to hole-hole
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excitations, such as the famous 6 eV satellite in nickel,76–80

cannot be described in this way, because W contains only
electron-hole excitations. Nevertheless, the progress of this
approach with respect to satellite spectra calculated in the
GWA is striking, at a computational cost that is negligible with
respect to the GWA calculation. Whether the same will be true
for the two-body Green’s function, where mixing of k-points
is crucial in order to get excitonic effects in solids, is still to be
seen.
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