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ABSTRACT17

Water distributions networks (WDNs) are exposed to multiple hazards leading the network18

to operate under a range of critical conditions. This paper explores the relationship between the19

impact of anomalous events (AEs) of WDNs and the consequent palliative actions (PAs) to be20

implemented in the network to minimize such impact. Both AEs and PAs are assessed through a21

network resilience criticality index adapted to WDNs. The results are compared to those obtained22

from normal operating conditions with respect to the satisfaction rate of nodal demands. The23
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proposal is evaluated by two case-studies. The first corresponds to a small synthetic network24

and the second to a medium size utility network. After a pipe burst event analysis there are also25

scrutinized two different isolation actions in each of the two WDNs. The results quantify system’s26

resilience and support water utility managers on further decision-making processes. This is done27

through critical resilience indicators that show to provide information and support both for better28

crisis preparedness (planning) and management (mitigation).29

INTRODUCTION30

Water distribution networks (WDNs) are key urban complex infrastructures. They provide an31

essential resource for life, being considered as critical infrastructures that require protection to32

adequately accomplish their service (?). In 2014, a pipe burst of one of Los Angeles’ (California,33

USA) main pipes left water losses over 5,600 l/s. In 2018 and by similar reason, roads were closed34

to motorists and pedestrian in central London (UK) while more than 20,000 homes were affected35

by water shortage. Also in 2018, big factories such as Jaguar, Land Rover, and Cadbury shut plants36

so water firm can fix burst pipes originated by cold weather in the West Midlands (UK). These37

examples show how ensuring WDN resilience and security is a big concern for water utilities.38

Water network vulnerability to failures depends on several factors such as nature of the affected39

consumers, assets location, and time of the event occurrence. A continuous water supply service40

has better security than those having intermittent service (?). In this regard, several authors argue41

in their research that the best manner to guarantee water quality is by maintaining a pressure head42

above a target threshold and preserving the continuity of the supply through the network (?; ?;43

?). Assessing WDN node importance plays a key role for approaching vulnerability. It depends44

on a number of factors: sensitive population, node location, and system performance. Regarding45

pipes, first we should notice is that they might perform a very different role for the water supply46

ranging from distribute water to other pipes to properly supply consumers (?). Thereby, it is clear47

that some of the network pipes are more important than others from a hydraulic point of view.48

Thus, recognizing the diverse and relative importance of its pipes it is an essential factor to evaluate49

the overall hydraulic performance (?). Pipes importance is related to estimate the risk of network50
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isolation and the risk of deficient pressure head at the demand points. ?) argue that information51

related to the pipe importance will be helpful for design, planning, control and WDNmanagement.52

Several studies (?; ?) focus their attention on the evaluation of the network performance under pipe53

failures. Authors prioritized in this way network links by studying how each link failure would54

affect the post-anomalous event network performance (?; ?; ?). Multiple failures of the components55

is another issue with high relevance in resilience studies. Widely considered causes of multiple56

failures in pipes are the location of the isolating valves (isolation of surrounding area of the affected57

pipe) (?), natural disasters (?), severe failures due to human-made causes (?), sudden-onset disaster58

that are followed by multiple related sub-disasters (cascading events) (?), and random multiple59

failures (?). It is, then, necessary to ensure a satisfactory performance of the system by planing and60

investment on the study of those components critical for a suitable water supply (?).61

In aWDN context, the first definition of resilience was given by (?). In their work, some criteria62

were proposed for describing the performance in terms of reliability, resilience and vulnerability.63

Resilience refers to the strength of the network and its behavior under different anomalous events64

(AEs) (?; ?). The ability of the system to resist stress scenarios, mitigate failures, and overcome65

their consequences through a quick recovery is often referred to as the resilience of the system66

(?). Thus, network managers require implement actions to support their decision-making process67

towards more resilient systems (?). WDN resilience assessment focuses on either the mechanical68

failure of components such as pipe or pump failure. It should also be considered any hydraulic69

failure of the system due to degraded pipe capacities and/or to uncertain nodal demand flows (?).70

Resilience criticality indicators (RCIs) seek to quantify the impact on consumers as consequence71

of an anomaly that occurs within the WDN. The criticality of the pipes (and other WDN assets) is72

measured through the impact on the disruption to supply (?). In essence, RCIs attempt to evaluate73

the capability of the system under different abnormal operational conditions such as emergencies,74

component failures, and hydraulic changes. RCIs quantify how resilient the system is and support75

the decision on actions in order to reduce the occurrences and tominimize the possible consequences76

of any AE.77
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This work proposes a tool for exploring the consequences of pipe failures with respect to the78

hydraulic performance of a WDN. This methodology can be adapted to the kind of critical event79

that occurs (mechanical or hydraulic failure) and to the type of operative actions taken on response80

at such event (mitigation, adaptation, restoration). The method splits into five stages: a) Define81

network model and consumer characteristics, b) run hydraulic computer models, c) assess system82

performance state, d) quantify resilience throughRCIs, and e) resilience visualization. The proposal83

aims to be a reliable tool to quantify the system resilience, supporting the decision-making process84

to eventually reduce the occurrence of failures and minimize their potential consequences.85

The paper also characterizes how the network works under pipe burst scenarios. Several86

positions for pipe burst occurrences are evaluated. This is approached by considering water87

demand at peak and valley requirements. Afterwards, the impact on the network performance is88

assessed through an RCI specifically tailored to WDNs and also compared to normal operating89

conditions regarding the satisfaction rate of nodes. The system resilience is presented as maps of90

component importance. These maps represent the average system impact as consequence of AE91

in each pipe of the WDN. These maps provide an easy and quick identification of areas of high92

importance components in the WDN. This is made through visualization of both the overall effects93

of any disruption event and the extent of low resilience CIs areas. The resilience assessment is94

complemented by the so-called palliative actions (PAs) in case of disruption events. PAs operates95

single and multiple isolation of WDN areas. The isolation PAs are mitigation actions attempting96

to minimize the potential negative effects related to an AE. It is possible, then, to determine how to97

enhance the network performance facing an AE by to the implementation of these types of isolation98

actions and comparing the most critical results after application of each PA (for a specific time).99

PROPOSED THEORETICAL FRAMEWORK100

There is a need to develop a generic framework associated to WDN resilience as this concept101

remains unclear in literature. This is based on the three-stage resilience approaches proposed by102

the Franco-German ResiWater Project (?). These three-stages are supported by the three-capacities103

of the system (?): 1) absorptive capacity, 2) adaptive capacity, and 3) restorative capacity. The104
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first capacity refers to the ability of the system to absorb the impact of any system perturbation105

and to minimize its consequences (without corrective action from water utility managers side).106

The adaptive capacity is the ability of the system to temporarily adjust undesirable situations by107

undergoing some changes if absorptive capacity has been exceeded. The restorative phase refers to108

the capacity of the system to implement long-term solutions so that the system performance reaches109

a stable or better level than the initial state (prior to adverse operative conditions) (?).110

The resilience notion aims at developing tools to prepare water utilities for crisis scenarios; as111

it is the case of ResiWater project (?). This improves the definition proposed by ?) by including the112

criterion of preparedness. Resilience, and specifically WDN resilience, is often measured using113

performance metrics. Fig. ??a shows an example of a performance-based resilience curve, also114

called “functionality curve” or “resilience triangle” (see e.g. ?; ?). The horizontal axis represents115

time and the vertical axis performance (criteria to assessing resilience) (?). This resilience curve116

can be split into events and actions. The first division of the resilience curve is measured at the117

event starting time (tevent) and goes until the water utility initiate appropriate (palliative) actions.118

Thus, we have the time in which the anomalous event occurs; tevent (e.g. pipe burst). We also have119

the detection time (tdet), and the starting time tpall in which any PA is implemented by the water120

utility. The times of the absorptive stage involved in the model (event(s) part of the resilience curve)121

are shown in Fig. ??b (tevent → (+)tdet → (+)tpall). According to the framework of the ResiWater122

project, the first stage (absorptive phase) of the network’s resilience is measured since tevent occurs123

and goes until tpall (see Fig. ??b). It is also possible to quantify the internal vulnerability of the124

system mirroring its absorptive capacity. The absorptive phase is followed by another two stages125

(adaptive and restorative) (?). The times involved in the model (action(s) part of the resilience126

curve) are: tstab, the time when all emergency measures are in place for maintaining the system127

performance; tend , the time when the system performance reaches a stable level; tacc or acceptable128

time, the maximum stipulated time in which the network can be under failure. The main goal for129

tacc is to quantify the degree of severity that users suffer during the period in which the system is130

on failure mode.131
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This paper focuses on characterizing a WDN working under a pipe burst scenario (without132

corrective action from water utility) at a specific time. According to the previous definition,133

the paper explores the most critical AE consequences at the absorptive phase of the network134

performance. This is made by shifting pipe breaks location along each WDN pipe and also varying135

the water demands. The paper also proposes to evaluate the isolation actions at the same demand136

period explored for the AE (see Fig. ??a) in order to determine the WDN capacity enhancing its137

performance and to explore the relative importance of pipes. To ranking pipes it is important to138

investigate the system performance during and after tpall . However, this paper exclusively explores139

the functioning of the network at tpall , due that this information allows to know the more real140

requirements for the WDN at the most critical operating condition during the absorptive phase.141

This also ease to compare the results with the starting of the adaptive phase. When the pressure142

head drops under unfavorable values, water utilities increase the pumping pressure (if pumps are143

available) in order to boost pressure across the system to maintain positive pressure heads and also144

avoid further contamination. These adaptive actions are only implemented prior to any palliative145

actions and aim to improve the ability of the system to keep working properly. In case of pressures146

back to normal, these actions delimit the end of the absorptive phase (at tpall). Fig. ?? presents the147

flowchart for the proposed system for evaluating resilience. Each stage is explained in the following148

sections.149

Brief Description of the AE Under Investigation and Isolation Actions150

The AE under study corresponds to the pipe burst tested at each pipe of the system. There are151

evaluated three different burst along the pipe. These are: 1) at pipe’s initial point (Pos0), 2) at pipe’s152

center (Pos50), and 3) at pipe’s terminal point (Pos100). The proposed burst locations proposed153

in this paper attempt to emulate those commonly used for hydraulic simulations in WDN (?; ?;154

?; ?). Our proposal takes into account the flow direction within the pipes determining the burst155

locations (Pos0, Pos50, and Pos100). This corresponds to the flow orientation obtained through156

the simulation of the network working under normal operating conditions.157

There are considered two isolation actions: 1) the single isolation action (SIA) of the affected158
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pipe, and 2) the multiple isolation action (MIA) - isolation of the surrounding area of the affected159

pipe.160

• SIA corresponds to the pipe isolation by means of two valves placed at the pipe extremes.161

This allows to close exclusively the affected pipe (?). ? proposed single pipe isolation as162

reliability indicator but it has a lack of practicality since any operation to fix a broken pipe163

involves the closure of a larger hydraulic segment. The m− 1 reliability importance of each164

single pipe can be calculated by simulating the system without this link. The importance165

is defined as the ratio of the actual delivery and the target demand (see Section ??). This166

information aids to quantify the system resilience by means of RCIs and to make preventive167

actions, such as twinning of the most critical pipes, establishing schemes and prioritizing168

maintenance or rehabilitation actions, or possible removal of redundant pipes.169

• MIA corresponds to the isolation of a surrounding to the affected broken pipe. MIA can170

occur in the network due to the isolation valves’ configuration, where the exact location171

of the isolation valves is unknown (or it is necessary to close more than one pipe). MIA172

shows its usefulness as palliative action. The isolation of even larger parts of the network173

(combination of several hydraulic segments) may require MIA facing contamination events.174

This is depending on the source and its estimated spreading through the network. In this175

way, it is firstly stopped any further dissemination of the contaminant. This is followed by176

flushing of the contaminated pipes (?; ?; ?; ?). This action is applied to renew the water177

and extract the contaminant substance of the affected pipes and to additionally avoid the178

contaminant spread (?).179

Topological Characteristics of the Network180

WDNs can be represented as a network/graph G = G(V,E) of nodes/vertices (e.g. reservoirs,181

tanks, demand nodes), V, connected by links/edges (e.g. pipes, valves), E (?; ?). The topological182

characteristics of the networks are generally represented by the incidence matrix AN, Eq. (??).183
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AN
(i, j) =


−1 if node i is terminal point of link j

0 if node i is not connected to link j

1 if node i is the initial point of link j

, (1)184

where i = 1, . . . , n with i the node number and j = 1, . . . ,m, with j the link number. For further185

hydraulic computations, matrix AN is generally partitioned into two sub-matrices, Af and A; that186

represent respectively nodes with fixed head (reservoirs or tanks) and nodes with unknown head187

(demand or junction nodes). This incidence matrix maybe used to accelerate the detection of the188

surrounding area to the affected pipe (Appendix ??).189

Hydraulic Models190

The steady-state of the entire WDN is simulated both through the potential at the nodes (head)191

and the link flows at a specific time (?). This is expressed by the Eq. (??). In this equation, q192

represents the vector of flow in the links; h and hf are the head at nodes with unknown head, and193

head at fixed head nodes, respectively; and d represents the water demands at consumers (vector).194

The head losses in the links is described by ∆h(r, q), where r is the pipe friction coefficient.195


Aq + d = 0; mass balance at every node

∆h(r, q) − ATh − Af
Thf = 0; energy balance at every link

, (2)196

For hydraulic modeling of the network it is important to differentiate between the two demand197

driven model –DDM, and pressure driven model –PDM. Classical techniques for hydraulic analysis198

of WDNs (DDM formulations) are analyzed under the assumption that water demands are known199

and fully satisfied. This happens whether or not the available head pressure is enough to guarantee200

the delivered outflow. Hence, in the hydraulic simulations carry on through the uses of DDM201

approach, the delivered outflow (c) at each node i, is equal to the required design (ci = di) (?). If the202

pressure head drops below a certain threshold, as consequence of some AE, the outflow rate will be203

significantly reduced. In those cases, the hydraulic analysis performed through DDM approaches204

can deviate considerably from reality (?; ?).205
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For a PDM approach (suitable for systems operating under unfavorable conditions), the outflow206

is described by the so-called Pressure Outflow Relationship (POR). The demand is split into three207

levels of satisfaction: adequate or full, partial or degraded, and critical or zero outflow. Adequate208

or full outflow appears when the available pressure head is enough to fully satisfy the water209

requirements for all the consumers. This demand satisfaction level allows to continue operating210

under DDM. The usefulness of the proposed PDM approach comes in partial or degraded outflow211

scenarios in which the delivery conditions are given by the current system pressure. In extreme212

conditions, there is a zero outflow that corresponds to the case in which the system collapses in213

its operation (partially or in a full manner). In this case, the system does not guarantee delivery214

of any outflow to the user. POR is able to capture the behavior of the system when it is working215

under stress conditions. This in terms of showing the pipe flows reordered and so the supply of the216

outflow available. There are several proposals in the literature related to POR (?; ?; ?; ?; ?; ?; ?).217

The PDM approach follows Eq. (??).218

c(h) = d ×


1 if hs ≤ h(

h−hm
hs−hm

)0.5
if hm < h < hs

0 if h ≤ hm

, (3)219

where hm corresponds to the minimum head. The value of hm is commonly fixed for a system220

and directly related to the nodal elevation. hs refers to the service head necessary to guarantee the221

consumers’ water requirements. Some criterion for hs in order to consider the flow directions and222

the connected pipes’ head losses is presented in ?).223

The DDM and PDM system can be approached in various ways. For example, by means of224

a damped Newton method as it is proposed in ?). Another interesting proposal is presented in225

?) considering sensitivities with respect to the demand. These local sensitivities provide relevant226

information on aspects such as sensor placement or confidence intervals for hydraulic performance227

predictions. Examples of other PDM formulations ?) use a Co-content Model Approach for the228

hydraulic analysis of WDNs under unfavorable operative conditions. The up-to-date snapshot of229
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the ongoing research in this area (software applications for PDM) can be found in (?; ?).230

Water pipe burst/leakage. Pipe burst or leakage is a pressure dependent phenomenon and key231

for WDN resilience assessment. This is a challenging issue as the available pressure at consumer232

points might decrease with the pressure head reduction due to water leaking at the pipe burst point233

(?). Pipe burst events cause inefficient energy distribution through the network (?; ?). In addition,234

low pressure conditions within the system may lead to the introduction of pollutants into WDNs235

and, consequently, worsen water quality (?). Therefore, a pipe break (via pipe burst) represents236

not only decreasing revenues for water utilities (?), but also a deterioration in the water quality and237

wasted energy resources. It should be properly distinguished between pipe burst and pipe leakage.238

The first is a visible damage and it can start to be fixed immediately (if operational resources are239

available from the water utility). Leakages usually are not visible and their detection requires240

mathematical algorithms and sophisticated methods and/or equipment (?).241

The treatment of the outflow as pressure head function for a specific junction node is in242

general based on some form of the orifice equation (?). Thus, in WDNs both leaks and burst are243

commonly modeled by the well-known Torricelli equation (?). Torricelli’s equation represents,244

under conditions of zero energy loss, the conversion of potential pressure energy to kinetic energy.245

A discharge coefficient (Cd) is included in the Eq. (??) to consider energy losses by friction and246

the orifice’s effective area (?).247

cL(h) =


CdAL
√

2g∆h = CdAL
√

2g
√

h − hm if hm ≤ h

0 otherwise
, (4)248

where cL represents the water leaked; CdAL is the leak effective area; AL represents the orifice249

area; and g is the gravity acceleration. For modeling purposes, the orifice equation is typically250

simplified as an emitter form where multiple orifices might be combined into a single emitter (?).251

AN APPROACH TO RESILIENCE CRITICALITY INDICATORS252

In WDNs, there is an essential need to generate specific metrics that allow to quantify the253

system performance when it is working under failure (or unfavorable) conditions. There are several254
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indicators aiming to capture this performance through mathematical formulations. We propose that255

these indicators may be classified in the following six groups: 1) Power/Energy (?), 2) Performance256

(such as the demand satisfaction indicators proposed herein), 3) Graph theory/Social Networks (?),257

4) time (?), 5) sensitivities (?), and 6) others ?.258

Awidely usedmethod to quantify theWDN resilience is through power/energy-based indicators.259

This indicators class is, at the same time, divided into three groups: a) power-based indicators,260

b) energy based indicators, and c) entropy-based indicators. The most popular power/energy-based261

indicator is Todini’s resilience index (?). This index is a power-based indicator that describes the262

relationship between the power supplied to the end-user and the maximum power dissipated in263

the network to satisfy the water requirements for the consumers. Several authors have proposed264

other definitions based on the Todini’s resilience index (?; ?; ?; ?; ?). These authors attempt to265

obtain a better understanding of the network reliability through the uses of their indicators. ?)266

and ?) included into the Todini’s indicator the uniformity of pipe diameters and loop diameter,267

respectively. ?) found an inconsistency in Todini’s resilience indicator if it is used to measure268

resilience when there are multiple sources for the WDN. Subsequently, they propose an indicator269

attempting to fix this issue. Other modifications of Todini’s resilience index aimed to enhance it270

by including different pressure-dependent modeling cases. This is the case of the proposals of ?)271

which focuses on leakage related issues and ?) which deals with leakage and consumption issues.272

The Franco-German ResiWater Project (?) proposes the use of an event-driven approach that273

can be classified as a performance indicator. In this project ?) exemplify the network resilience274

due the occurrence of some critical event and consider aspects of the resilience such as: sequence275

of events, type of approach used in the hydraulic model (DDM or PDM), the system performance276

state, and the use of resilience power-based indicators.277

The energy-based indicators address resilience assessment through the energy available at278

the system. Some examples of these indicators are minimum and maximum head sources; the279

minimum, mean, and maximum node pressure (?); the standard deviation of the node pressures280

(?); the minimum and the sum of surplus head (?); and the energy dissipation (?), among others.281
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The entropy-based indicators propose an interesting point of view with respect to the network282

resilience assessment. This is the case of the statistical flow entropy indicator proposed by ?) based283

on the relative uniformity of the pipe flow rates (?). In ?) RCIs of the group of power-based and284

entropy-based indicators are evaluated for WDN design. The authors evaluated the results of the285

optimization under critical operating conditions: single isolation action and hydrant service. The286

paper concludes that the group of power-based indicators represent a better estimation of resilience.287

?) proposed other definition of the resilience indicators, where there are considered aspects such288

as time, water quality (before and after an AE), reserve capacity in tanks, and demand satisfaction.289

Graph-theory based indicators represent an alternative for WDN resilience assessment (?;290

?). ?) and ?) proposed hybrid, hydraulic and graph-theory based, approaches for assessing291

the WDN resilience. This was done by considering the pipeline’s geodesic distances and head292

losses associated with the water flow. In both papers, the criticality of pipes is measured through293

the effective supply of users. These approaches were complemented by ?) by assessing WDNs294

resilience through a topological perspective. There were also proposed to extend the graph-theory295

based indicators into a multi-scale order in order to take into account the district metered areas296

(sectors) configuration. ?) show that geometrical and topological features (using graph-theoretic297

and fractal tools) provide useful knowledge for the WDN resilience assessment even in the case of298

not having or partial hydraulic information. Also based on a topological metrics, ?) present a graph299

decompositionmodel forWDNs. The developedmodel is used to facilitateWDN reliability analysis300

(?). Another interesting example, mainly applied on power supply systems, is presented in ?), where301

the authors proposed using graph theoretical measures for critical link analysis. This is done by a302

computing reliability of links and an object-oriented based method for vulnerability analysis. It is303

worth mentioning that the recognition of topological interdependence among critical infrastructure304

systems (e.g. energy, water supply and wastewater, communications, transport systems) may avoid305

serious consequences (?) due to the network working under the effects of anomalous events (?).306

Impact of a failure - Demand satisfaction RCI. In a system failure scenario it is expected307

to get a reduction on the volume of water supplied (?). Thus, a proper evaluation of the network308
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performance and determining how critical is the reduction in the supply becomes a challenge for309

water utilities. For a specific time, the satisfaction rate SR in a WDN (Eq. (??)) is the relationship310

between the water provided and the user’s requirements (?; ?). In addition of being an RCI, SR is311

also an estimation of the reliability when it is computed for a given failure in j-th component (or312

set of components) with respect to its impact at i-th user (node).313

SRi, j =
ci, j

di
. (5)314

The impact (due to the network operating under unfavorable or critical conditions) is given by315

the average satisfaction rate (ASR) for the entire system. ASR describes the relationship between316

the total volume of water supply and the total volume of users demand, Eq. (??). Therefore,317

ASR is the response of the system in terms of the availability of water when it is operating under318

unfavorable conditions (due to the failure of the component j). In Eq. ??, nd is the total number of319

demand nodes. ASR is ranging between 0 and 1; where 0 is the collapse situation and 1 is the case320

in which the whole system is totally resilient to the failure.321

ASRj =

nd∑
i=1

di
nd∑
i=1

di

SRi, j =

nd∑
i=1

ci

nd∑
i=1

di

. (6)322

In general, overviewing risk assessment modeling for pipes uses break frequency and degra-323

dation rates as main aspects for assessing pipe deterioration. The analysis of the state of the324

entire network pipes requires a detailed information of their characteristics. However, this type of325

information is not often available in water utilities (?) and the risk quantification analysis is not326

contemplated herein.327

CASE-STUDIES328

This section implements further applications of the methodology for assessing WDN criticality329

proposed in Section ??. Two WDNs working under abnormal/degraded operating conditions, as330
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described above (Section ??), are used for their critical analysis. Firstly, a small size benchmark331

network is investigated. The second case-study corresponds to a medium size utility network with332

an average population density in France. The Hazen-Williams (H-W) and the Darcy-Weisbach333

formulation are used to compute the head loss for the simple and complex case-study, respectively.334

Simple Case-Study335

The first case-study corresponds to a two loop network (TLN) proposed by ?). This is a simple336

benchmark network composed by 6 demand nodes, 8 pipes and 1 reservoir (Fig. ??). The choice337

of such a simple network is motivated by the necessity of facilitating the analysis of the results.338

Several authors have used this network for WDN management research and resilience assessment339

(?; ?; ?; ?). Table ?? details the TLN network features.340

Simple Case-Study – Impact at System and Nodes as Consequence of Burst Position341

This case-study investigates three different locations along one affected pipe and how are their342

effects in the system performance. The results are presented in Fig. ?? and the hydraulic simulations343

are computed by PDM. Fig. ??a presents the resilience assessment for the ASR indicator. The max-344

imum, medium and minimum impact on the network are estimated by maxImp j = min(ASRj,Pos),345

medImp j = mean(ASRj,Pos) and minImp j = max(ASRj,Pos). The network performance at the346

system nodes for the three mentioned positions of the burst, in terms of pressure head and water347

availability (SR), are presented in Fig. ??(b-d) and Fig. ??(e-g), respectively.348

Fig. ??a shows that the maximum impact on the network under study occurs when the burst349

is located at one of the ends of an affected pipe (Fig. ??a; curve maxImp). Pipe P3 presents an350

exception as the minimum network impact is given by Pos50. At this point it is important to make351

the proper selection of the leak point for each pipe. This is because the most critical behavior352

of the network under this failure may significantly vary depending on the burst position along353

the pipe. Estimating it wrongly can lead to do not take proper actions and consequently to bring354

cost overruns for water utilities. Fig. ??a also shows a difference for the failure impact at each355

pipe (minImp j − maxImp j). For pipe P1, the maximum difference in the system performance356

deterioration is given for the pairwise (Pos0, Pos100). This difference is approximately 91%357
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in terms of water availability resilience. If a burst occurs in the pipe P1, at position Pos0, the358

resilience for entire system is 97%. We can also observe that the leak outflows for pipe P1 at Pos0 is359

2583.8 L/s, at Pos50 is 906.3 L/s, and at Pos100 is 650.7 L/s. The water head loss coming from T1360

to the leak position in P1 is 0.1 m, 52.6 m and 56.2 m, respectively. It is worth mentioning that the361

leakage outflow rate at Pos0 is very high (2583.8 L/s), comparing it to Pos50 and Pos100. However,362

the available pressure head downstream the break point is the same than the associated with the363

reservoir (following the model). Likewise, and due to the head loss for this case, the pressure364

head available downstream of break point is similar to that obtained for the original state of the365

network (without failure). This results on a minimal decrease in the system resilience comparing366

it to the other two position tested. Thus, in future works it is worthwhile to study other indicators367

of resilience in which the volume of leaked water is considered in the approach.368

The maximum impact in the network due to an AE points out at the most critical allocation of369

the burst along the affected pipes (Fig. ??a; curve maxImp) will be used in Section ??. This is of370

main importance for assessing the network performance after the implementation of the proposed371

PAs (MIA and SIA).372

Fig. ??(b-d) shows a considerable decreasing in the state of the system performance as conse-373

quence of the pipe burst. Even though some nodes are still working, we can say that the network’s374

performance state is, in general terms, under failure mode. This is strongly confirmed when the375

pipe burst is placed at one end of the pipe (Pos0 or Pos100). In the absorptive phase of the system376

resilience, the network performance state is considered in failure mode when the first consumer is377

affected (h ≤ hs; in our case hs − elevation =30 mH2O, green curve)378

The node performance state is determined by two conditions; hm < h < hs (with hm −379

elevation =0 mH2O in our case, red curve) and h ≤ hm; for the network working under degraded380

and failuremode, respectively. Fig. ??(b-d) shows negative pressure values. An incorrect prediction381

can occur in hydraulic simulations with PDM approach. This is since the mathematical model only382

restricts delivered water if insufficient pressure values are obtained. Despite this approach will raise383

the pressure, the PDM model still can yield negative pressure with zero water outflow (Fig. ??e-f)384
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as mentioned in ?).385

Simple Case-Study – Pipe Burst and Isolation of the Affected Pipe386

Fig. ??(a-b) shows the system resilience results for the three operative conditions considered387

in this paper. The respective rankings of the hydraulic importance of the affected component (in388

this case pipes) for the simple case-study are shown as well in this figure. Fig. ??(a-b) includes the389

most critical AE (due to the burst location) for each affected pipe (see Fig. ??a), SIA, and MIA.390

The set of adjacent pipes for MIA is obtained through Eq. (??). It should be necessary to391

consider the implementation of subsequent actions by the water utilities (to be applied after PAs)392

such as auxiliary pumping (?) at the adaptive resilience stage or the implementation of long-term393

actions such as repair or to repair/replace (long term actions) at the adaptive or the restorative394

resilience stage, respectively.395

The values of the resilience previously obtained (Fig. ??a, maxImp curve) for the average396

impact at system are ordered from major to minor impact on the resilience assessment. This397

ordered curve is presented in Fig. ??(a-b; blue line). The performance results for the network398

working under effects of the isolation PAs (SIA and MIA) are showed in Fig. ??(a-b); Fig. ??a with399

red continuous line for SIA, and Fig. ??b with red dashed line for MIA. For SIA and MIA results,400

the order obtained with the ranking of pipes for the network working under effects of the AE is401

preserved. Fig. ??(c-e) shows the average impact at the system nodes generated for the network402

working under effects of the three adverse operative conditions evaluated.403

The comparison between the AE with each tested isolation PA (see Fig. ??) shows that:404

• in both of the PAs evaluated (SIA and MIA), we can observe that the internal vulnerability405

of pipes (1 − ASR) is higher for AE than PAs at tpall (Fig. ??,a-b). This is valid for the406

components that do not collapse the network by themselves.407

• SIA shows better results (as isolation action) than MIA as it provides the maximum en-408

hancement, 71%, for the network resilience. This is an outstanding result as the operative409

condition when MIA shows a maximum enhancement for the network resilience of just410
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26%. However, as mentioned in Section ??, SIA for each pipe is not a realistic solution411

(due to the potential cases of pollutants into the network, to the valves location, that is412

non-profitable in economic terms, among others). In this sense, the set of pipes associated413

with the pipes P4 to P8 are shown as an option that would not collapse the network, it just414

in case that is necessary to isolate an specific area of the network. In the case of SIA, only415

the isolation of the pipe P1 is capable to collapse the system’s functioning.416

• Fig. ??a shows a system resilience enhancement after the implementation of SIA. The417

resilience increases in average up to 55% for all the pipes except for P1, the pipe associated418

with the tank.419

• Fig. ??(c-e) shows that the most critical impact on the simple case-study nodes (due to the420

AE and PAs) occurs in the farthest nodes (N6 and N7) from the tank. Nonetheless, we can421

observe that although the farthest node (N7) from the tank is not the node that suffers the422

most impact in the three operative conditions evaluated and the most critical node is node423

N6 (see Fig. ??d). This reveals that selecting a suitable level of detail (i.e. node elevation,424

water demand, pipe length and diameter) for hydraulic models is a relevant issue to be425

considered on the network resilience assessment.426

Complex Case-Study427

In this section we apply the proposed methodology for criticality assessment of WDNs through428

a utility network case-study. ThisWDN (Fig. ??) has 1738 nodes, 1 tank, and 1781 pipes (116 Km),429

43 loops, and 3 different pipe materials (cast-iron, PVC, PE). The total demand ranges from 5.7 L/s430

to 21.3 L/s and the demand curve is defined at hourly basis for a week (Fig. ??b). The head of the431

tank is considered as a reservoir for the related hydraulic simulations and its upstream network is432

not taken into account further.433

Complex Case-Study – Impact at System and as Consequence of Burst Position434

A map of component importance represents the average system impact as consequence of the435

AE in each pipe of the system. The resilience results presented as component importance maps436
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with respect to the maximum and minimum demand (see Fig. ??b) are approached in Fig. ?? by437

showing the ASR indicator. The AE is tested at three different positions along each pipe. Thus,438

three different maps are built (for each demand evaluated) depending on the AE’s average impact439

in the system. The AE is located at the middle of each pipe for better comparison between maps.440

Fig. ?? encompasses four analysis areas aiding further results interpretation. As consequence of441

the AE, Fig. ??(d-f) shows a notable decreasing on the network resilience for zone1, in comparison442

with the estimated resilience for the maximum demand period (Fig. ??,a-c) for the same zone. This443

effect is due to a pressure head increment as the demand nodes requirements decrease (minimum444

peak of demand). However, this performance is not preserved in the maxImp maps (insets c445

and f) for zone2. Fig. ?? also shows two critical zones (zone2 and zone3) for all the evaluated446

characteristics (demand peaks and burst position). The area nearby the reservoir (zone4) shows a447

not considerable affection with respect to the entire system resilience for the AE, also for all the448

evaluated conditions. This performance is due to the redundant topology of pipes belonging to449

zone4 (Fig. ??c). Only a small area in zone4 is sensible to the AE. Still, there is a small effect450

generated in such zone by the AE in terms of the entire network performance.451

Table ?? shows amaximum impact in resilience for the considered AE in the period of minimum452

demand. The network performance is, then, consequence of an increasing pressure head due to453

decreasing demand requirements. A greater impact for the AE of burst is shown in the periods454

of low demand making them the most critical periods for this event. Overall, the results show a455

variation between the minimum (44.68%) and maximum (99.39%) resilience for all the network456

characteristics contemplated (maximum and minimum demand peak and position of burst in the457

pipe). The most critical condition for the network occurs for a value order of 44.68% (Table ??) in458

terms of the satisfied average demand.459

Complex Case-Study – Pipe Burst and Isolation of the Affected Pipe460

The component importance maps are shown in Fig. ?? for the two isolation PAs considered461

herein. The zones proposed in Fig. ??, for the AE, are preserved in Fig. ?? to facilitate the462

comparison between AE and PAs.463
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In Fig. ?? we can observe lower dispersion and lower intensity in the average impact suffered464

by the network after the AE due to the application of the proposed PAs. This is in comparison with465

the component importance maps obtained for the AE of burst (Fig. ??). A low dispersion means466

that fewer pipes are capable of generating a considerable impact in the system. Thus, the hydraulic467

importance for pipes is concentrated at specific points of the network. The intensity in the maps468

is directly related to the impact suffered in the system due to the closure of the associated area469

components. In this paper low intensity is interpreted in terms of low resilience. The results are470

detailed as follows:471

• for zone1 both PAs (minimum valley and maximum peak of demand evaluated), present a472

smaller dispersion than that obtained for the AE at maxImp (Fig. ??; inset c for maximum473

peak, and inset f for minimum valley). The intensity is shown to be larger for PA than for the474

AE. This occurs in all cases except for the pairwise of dashed red circles (Fig. ??), whose475

intensity is larger for AE than PAs. We compare zone1 at the maximum and minimum476

demand requirements for each PA. The results show that the dispersion is very similar in all477

cases but the intensity is often greater for the periods of minimum demand.478

• Zone2 and zone3 are considered as the most critical areas for an AE. The results show that479

zone2 preserves zone critical characteristics, whilst zone3 becomes into a not significantly480

affected area for both PAs. This means that the impact of an AE is effectively mitigated481

with the application of any of the two PAs proposed. Thus, the resilience for zone3 can be482

improved through the implementation of actions providing a fast AE detection and isolation483

of the affected components. At zone2 the dispersion is preserved for PAs. Thus, not484

new components acquire hydraulic relevance after the implementation of PAs. Although485

the intensity has been reduced for this zone with the application of PAs (SIA better than486

MIA) the results show that PAs of isolation are not considerably effective to mitigate the487

impact related to AE (specially for the period of maximum demand). There are required488

adaptive actions and the consideration of “twining” pipes (creating loops for increasing the489

topological redundancy of the network) for improving resilience.490
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• Neither AE of burst nor the application of PAs have a significant impact on the system’s491

operation for zone4.492

CONCLUSIONS493

This paper contributes to progress on the implementation and quantification of the conceptual494

development of water distribution networks (WDNs) resilience. This is done by investigating the495

consequences of failure in the network components. The proposal is based on the three system496

capacities and focuses on the absorptive resilience phase of a pipe burst (anomalous event, AE).497

In addition, it takes into account two palliative actions (PAs) to mitigate any negative AE’s effects.498

The first action is based on the exclusive isolation of the affected pipe (single isolation action - SIA).499

The second action considers the isolation of the surrounding area of the affected pipe (multiple500

isolation action - MIA). The impact on the network performance is evaluated for the two cases501

through the water demand satisfaction.502

The paper introduces a novel tool-set for resilience indicators development. This counts on503

both network structure and energy’s level availability. This is possible thanks to the hydraulic504

model used (Pressure driven model - PDM). The tool-set is tested by assessing the resilience of two505

case-studies. The proposed methodology is able to suitably identify the most critical components of506

a network working under unfavorable conditions (AE, SIA, and MIA). In addition, the information507

is presented by a novel visualization method showing component importance maps. This method508

has the advantage of allowing better results interpretation than only using numeric information.509

Component importance maps do not require user experience and can be used both to plan adaptive510

actions and to redesign the network.511

The two case-studies highlight how important is to consider the burst position in the pipe both512

for practical network management and theoretical developments. Furthermore, estimating the burst513

position wrongly can lead to do not take proper actions and consequently bring cost overruns for514

water utilities. The results show the viability of using the analysis of the event in the absorptive515

phase of the system resilience as an assessment tool both for simple and complex cases. In addition,516

they lead to the following conclusions and recommendations:517
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• The isolation PAs for an AE point out SIA as the ideal isolation in comparison to MIA for518

palliative actions. The results can be used for recommendations for valve placement. It519

is recommended a configuration of isolation valves avoiding further network collapse. In520

addition, if the closed zones are too large the system performance during isolation might be521

highly affected.522

• The results show that the effect of an anomalous event depends on the water demand. The523

most critical condition of the network performance occurs in conditions of minimum water524

demand. However, the PAs show a more critical behavior at the period of maximum water525

demand. Therefore, given that the duration of the isolation of the affected area may be526

longer (depending on the characteristics of the affected pipe) than the time of the leak, it is527

recommended that adaptive actions should be evaluated for the maximum peak of demand.528

• The comparison of the AE and the first action carried out for the water utility in the specific529

time evaluated (time in which the first action is implemented in the system), has allowed530

to generate possible system responses. The overall recommendation is to focus, firstly, on531

those components that really require adaptive actions or some specific redesign, given the532

inability of the network to compensate the losses of resilience due to the event.533

The paper opens a research avenue for analyzing further the synergy between resilience key534

performance indicators at different resilience stages. Additional investigation will be necessary for535

assessing resilience of large-size networks divided in district metered areas.536
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APPENDIX I. DETECTION OF SURROUNDING AREA537

This Subsection proposes labeling the sets of three proposed operative conditions of failure: AE,538

SIA, and MIA. The label directly marks the affected pipe among the set of links E{E1, . . . , Em}.539

MIA involves the isolation of an entire network area. The surrounding area indicator (termed by540

the author), sai, label the isolation pipes associated with MIA, Eq. (??).541

sai j =

����(AN
(∗, j)

)T
���� ��AN�� , (7)542

where j represents the link under operative conditions of failure; (·)T denotes matrix transposition;543

and |·| represents the matrix of the absolute value of its elements, and A(∗, j) is the column extracted544

from A indexed by j.545

The row vector sai identifies the pipes that might be isolated in the network. The values obtained546

through Eq. ?? are 0, 1 and 2. A value equal to 2 refers to the affected pipe by an AE; a value547

equal to 1 identifies the surrounding pipes (to be isolated); and a value equal to 0 stands for pipes548

that are not involved in the current action (pipes that not require to be isolated). An instance of the549

surrounding area identification methodology (through the use of Eq. ??) is shown in Fig. ??.550

It is possible to obtain the set of pipes to be isolated as consequence of the failure of j for MIA.551

This is by extracting the column number of the values different to zero from sai and, subsequently552

comparing these values with the list of pipes. For Fig. ??, we have the failures in pipe P4 represented553

as E4 = {P3,P4,P5,P7,P8}. E4 is the set of adjacent links to the nodes N4 and N5, pipe P4 end554

nodes. In case of having adequate information regarding valve locations, this methodology might555

be adapted for identification of real pipes that can ultimately be isolated in the network.556
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TABLE 1. TLN network. Node and pipe properties.

Nodes Pipes Burst nodes
ID elev. dem. ID initial term. length diam. H-W Position Cd

(m) (L/s) node node (m) (mm) coef. Pos0 Pos100
T1 210 - P1 T1 N2 1000 400 130 T1 N2 0.6
N2 150 27.8 P2 N2 N3 1000 400 130 N2 N3 0.6
N3 160 27.8 P3 N2 N4 1000 300 130 N2 N4 0.6
N4 155 33.3 P4 N4 N5 1000 400 130 N4 N5 0.6
N5 150 75.0 P5 N4 N6 1000 300 130 N4 N6 0.6
N6 165 91.7 P6 N6 N7 1000 400 130 N7 N6 0.6
N7 160 55.6 P7 N3 N5 1000 400 130 N3 N5 0.6
- - - P8 N5 N7 1000 400 130 N5 N7 0.6
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TABLE 2. Resilience results - AE of burst

Demand Fig. ?? Impact
Inset minimum medium maximum

a. 99.39 96.27 51.60
maximum b. 99.39 96.07 51.33

c. 99.39 95.55 51.07
d. 99.27 96.12 45.28

minimum e. 99.27 95.93 44.98
f. 99.27 95.43 44.68

General - 99.39 95.90 44.68
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Fig. 1. Anomalous events in a WDN – Resilience curve. (a) Temporal-technical dimension of the
resilience, and (b) absorptive phase - times.
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Fig. 2. Overview of the proposed network resilience quantification process.
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Fig. 3. TLN network. Network layout configuration, and flow directions.
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of the average impact – complex case. (a-c) Maximum peak of demand, and (d-f) minimum valley
of demand. (a and d) minImp, (b and e) medImp, and (c and f) maxImp.
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Fig. 8. Resilience based on ASR, component importance maps for SIA and MIA. Quantification
of average impact – complex case. (a-b) Maximum peak of demand, and (c-d) minimum valley of
demand. (a and c) SIA, and (b and d) MIA.
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Fig. 9. Surrounding area identification. Example of application of the Eq. ?? applied to a particular
pipe (P4 in this case). (a) Network layout, (b) incidence matrix and its respective column vector
for the affected pipe, (c) undirected incidence matrix and its respective undirected column vector
(transposed) for the affected pipe, and (d) surrounding area indicator.
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