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Abstract: This paper studies the kinematic modeling and control of two cooperative manip-
ulators. The cooperative system is composed of the two arms of the humanoid Nao robot of
Aldebaran. The serial structure of each arm has five degrees of freedom, in the closed formulation,
when transporting a common object, it has 4-DOF. The kinematic and dynamics representing
the closed chain system is studied. A control scheme based on the cooperative task space with a
minimum representation of the task is implemented. Furthermore by modeling the object grasp
as a passive joint, all 6-DOF of the object can be controlled.
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1. INTRODUCTION

The capability of dual arm system when processing parts
reduces the need for custom fixtures and permits the use
of a simpler end effector. The system can then execute
sophisticated tasks that may be difficult for a single arm
system. For example, rather than using a large serial
robot a cooperative system distributes a heavy load among
several smaller robots. Similarly if the object is of an
unwieldy, non-rigid or awkward composition, the single
arm robot may struggle to manipulate it.

By using a cooperative system, both the location and the
internal forces of the object can be controlled. The two
principal approaches to control such a system are hybrid
position/force control and impedance control. An example
of a position/force scheme for cooperative systems is found
in Uchiyama and Dauchez (1988). The control variables
are split into force and position controlled variables. The
final control input is the sum of these variables after
converting them to joint torque. Decentralized impedance
control schemes, proposed by Bonitz and Hsia (1996) and
Sadati and Ghaffarkhah (2008), control the internal forces
for multi arm systems. An impedance relationship is en-
forced between each end effector velocity and the internal
force at the grasp location. In Caccavale et al. (2008)
impedance control schemes for cooperative manipulators
are extended to manage the effect of the environmental
forces on the object.

Another approach is to formulate kinematic relations that
create a task space describing the multi-arm system while
grasping an object. The main methods are known as Sym-
metric formulation Uchiyama and Dauchez (1988), and
cooperative task space Chiacchio et al. (1996), Caccavale
et al. (2000). The cooperative task space is a control scheme
used to manage both the external motion of the object and
the forces experienced by the object via an inverse kine-
matic controller. Furthermore it is demonstrated that an
undesired motion in the object grasp can be represented as

an extra joint in the kinematic chain, which increases the
degree of redundancy or in this case increases the mobility
of the object. On the other hand, the system can be viewed
as a redundantly actuated parallel manipulator. Kinematic
constraint equations are derived that establish a relation-
ship between the chosen independent and dependent joint
variables Yeo et al. (1999), Cheng et al. (2003). The
dependent joint variables adopt values that ensure loop
closure at each instant, the issue of inadmissible actuation
schemes is discussed in Özkan and Özgören (2001).

Most of the preceding work has been carried out with dual
arm systems, where both arms are either of planar or 6-
DOF spatial structure. On the other hand the study of
lower mobility cooperative manipulators has been limited.
In Zielinski and Szynkiewicz (1996) admissible path plan-
ning for two 5-DOF robots is explored. In Bicchi et al.
(1995) a generalized method based on the Jacobian matrix
of each arm and their constraint relations with the object,
permits the calculation of the mobility, possible first order
differential motions, and manipulability velocity ellipsoids
of general multiple limb robots. In Yeo et al. (1999) the
cooperation between a 5-DOF and 4-DOF robot is used
in conjunction with a passive joint in order to execute a
4-DOF position/force task. By adding a passive joint to
the closed chain, the mobility is increased.

The main contribution of this paper is the formulation of
two control approaches for lower mobility cooperative ma-
nipulators. Firstly by using the cooperative task space in
conjunction with a minimum description of task Dombre
(1981), the feasible directions of the object are controlled.
The liberated DOF are then used to optimize extra crite-
rion while satisfying the closed loop kinematic constraint
equations. Secondly, by modeling the object grasp of each
manipulator as a passive joint, the mobility of the object
can be increased to 6-DOF while ensuring the loop closure.
The cooperative control theory is applied to the two arms
of Aldebaran NAO T14 humanoid robot, in simulation,
and where possible experimentally. In this case, the object



has 4 DOF when firmly grasped by the manipulators.
The system is modeled as a closed chain mechanism in
Sections 2, 3, and 4, the control system is illustrated in
Section 5.

2. DESCRIPTION OF THE SYSTEM

Fig. 1. NAO T14 (Courtesy of Aldeberan-Robotics) with
schematic representation of its arm

0

Chain 1

Chain 2

LINK 5

Fig. 2. Closed Loop Formulation

The NAO T14 robot illustrated in Fig.1 is the experi-
mental platform used. The Modified Denavit-Hartenberg
(MDH) notation from Khalil and Kleinfinger (1986) is used
to describe the kinematics of system as given in Table 1.
The right arm consists of joints 1-5 and the left arm of
joints 6-10. Once the object is grasped a closed loop is
formed from the two arms, the object, and the common
robot torso. As illustrated in Fig. 2 link 5 of the closed
chain is composed of link 5 and link 10 of the open chain
and the object. Frame 10 is thus fixed on link 5. We
introduce frame 11, that is equivalent to frame 10, but
its antecedent is frame 5. The system has in this case only
nine bodies. Hence joint 10 is denoted as the cut joint. The
table parameters are explained as:

• j is the joint number, a(j) is its antecedent joint
• σj is the joint type: revolute (σj=0), prismatic (σj=1)

or fixed (σj=2)
• zj is the jth joint axis
• uj is the common normal between za(j) and zj
• xj is perpendicular to zj and one of the succeeding

axes, zk such that a(k) = j
• γj is the angle between xa(j) and uj about za(j)

• bj is the distance between xa(j) and uj along za(j)
• dj is the distance between za(j) and zj along uj

• αj is the angle between za(j) and zj about uj

• θj is the angle between uj and xj about zj
• rj is the distance between uj and xj along zj
• γj = bj = 0 when xa(j) is perpendicular to zj

Table 1. MDH Parameters of the closed loop

j a(j) σ(j) γ(j) b d α θ r

1 0 0 0 b1 0 −π
2

θ1 -r1
2 1 0 0 0 0 π

2
θ2 0

3 2 0 0 0 -d3
π
2

θ3 r3
4 3 0 0 0 0 −π

2
θ4 0

5 4 0 0 0 0 π
2

θ5 r5
6 0 0 0 b1 0 −π

2
θ6 r1

7 6 0 0 0 0 π
2

θ7 0

8 7 0 0 0 d3
π
2

θ8 r3
9 8 0 0 0 0 −π

2
θ9 0

10 9 0 0 0 0 π
2

θ10 r5
11 5 2 γ11 b11 d11 α11 θ11 r11

The parameters of frame 11 in Table 1 are defined by the
grasp. Therefore, when the robot grasps the object, the
transformation matrices of each serial arm are calculated.
The parameters defining frame 11 with respect to frame 5
are calculated such that they yield 5T11.

5T11 =
(
0T5

)−1 0T10 (1)

iTj is the 4 × 4 transformation matrix from frame i to
frame j. The six parameters defining frame 11 can be found
by solving the following equation:

5T11 = rotz(γ11) · transz(b11) · rotx(α11) ·
transx(d11) · rotz(θ11) · transz(r11) (2)

where roti(θ) indicates a rotation of θ radians about the
ith axis and transi(l) a translation of l meters along the
ith axis.

3. KINEMATIC MODELING

3.1 Kinematic Constraint Equations

The location, velocity, and acceleration of the frame at the
cut joint must be equivalent when calculated via either
chain. This ensures a constant object grasp throughout
the trajectory. In the closed loop formulation, some joints
may be actuated and some others could be passive. Let qa

contain the joint variables that are actuated, qp contain
the passive joint variables and qc contain the passive joint
variable where the chain is considered to be cut. The
passive and cut joint variables can be obtained in terms
of the active joint variables using the following geometric
constraint equations:

0T1
1T2

2T3
3T4

4T5
5T11 = 0T6

6T7
7T8

8T9
9T10 (3)

The kinematic constraints are given by:



[
v11

ω11

]
= 0J11


q̇1
q̇2
q̇3
q̇4
q̇5

 = 0J11 q̇r (4)

[
v10

ω10

]
= 0J10


q̇6
q̇7
q̇8
q̇9
q̇10

 = 0J10 q̇l (5)

where q̇r and q̇l contain the joint velocities of the right arm
and the left arm, respectively. 0vj is the linear velocity and
0ωj the angular velocity of frame j in frame 0, 0Jj is the
kinematic Jacobian matrix of frame j w.r.t. frame 0. As
frames 10 and 11 are coincident:[

v11

ω11

]
=

[
v10

ω10

]
(6)

by substituting (4) and (5) into (6)[
0J11 −0J10

] [ q̇r

q̇l

]
= 0 (7)

By rearranging the rows and columns of (7), a relationship
is obtained between the passive joint velocities and the
actuated joint velocities[

Ga Gp 0
Gac Gpc Gc

] [ q̇a

q̇p

q̇c

]
= 0 (8)

that can be rewritten as

Jc q̇ = 0 (9)

From the first row of (8), we obtain:

q̇p = G q̇a (10)

where

G = −G−1
p Ga (11)

From the second row of (8), we obtain:

q̇c = −G−1
c (Gac + Gpc G) q̇a (12)

Upon differentiation of (8) with respect to time the accel-
eration constraints equation is expressed as:[

Ga Gp 0
Gac Gpc Gc

] [ q̈a

q̈p

q̈c

]
+ J̇c q̇ = 0 (13)

3.2 Mobility Analysis

The mobility of a closed loop mechanism can be calculated
exactly by using the rank of the closed loop kinematic
constraint equations (9). The rank of (Jc) is obtained
numerically using random configurations.

Jc =
[
0J11 −0J10

]
(14)

The DOF can be found as the number of independent
joints l before loop closure, minus those that lose their
independence after the loop is closed (the degree of the
constraint equation c):

n = l − c = l − rank(Jc) (15)

n = 10 − 6 = 4 (16)

3.3 Closed Loop Jacobian Matrix

A new Jacobian matrix is derived that relates the actuated
joint velocities to the task space velocities. The velocity is
equal when calculated via either chain, from (4) and (5),
and also via the actuators:[

v
ω

]
= 0J11 q̇r = 0J10 q̇l = Ja q̇a (17)

When a closed chain is formed, the object has 4-DOF.
It can thus be fully controlled by four actuated joints, a

feasible actuation scheme is chosen as qa = [q1 q2 q3 q7]
T

.

The passive joint vector is qp = [q4 q5 q6 q8 q9 q10]
T

.
Therefore using (10) and (12):

q̇r =


1 0 0 0
0 1 0 0
0 0 1 0
G(1, :)
G(2, :)

 q̇a (18)

where G(i, :) indicates the ith row of the matrix G.
The Jacobian matrix Ja can be calculated by using the
Jacobian matrix from either arm. For the right arm it is
obtained by combining (17) and (18):

Ja =0 J11


1 0 0 0
0 1 0 0
0 0 1 0
G(1, :)
G(2, :)

 (19)

(20)

4. DYNAMIC MODELING OF CLOSED LOOP

4.1 Calculation of the Inverse Dynamic Model

The inverse dynamic model (IDM) calculates the active
motor torques τ in terms of q, q̇, and q̈ of the joints.

Let qtr =
[
qT
a qT

p

]T
denote the joint variables of the

tree structure obtained when considering q10 as virtually
cut. In order to find the Closed Loop Inverse Dynamic
Model (CLIDM), first the IDM for the tree structure is
found and then converted to CLIDM by using the following
relation given in Khalil and Dombre (2004):

τ =

(
∂qtr

∂qa

)T

Γtr = Γa +

(
∂q̇p

∂q̇a

)T

Γp (21)

where Γtr denotes the joint torques of the tree structure.
It can be expressed as:

Γtr =

[
Γa

Γp

]
= Atr (qtr)

[
q̈a

q̈p

]
+ Htr (qtr, q̇tr) (22)

Γa, Γp represent the torque on the actuated and passive
joints of the tree structure, respectively. Atr and Htr are
tree structure inertia matrix and the tree structure matrix
of Coriolis, Centrifugal, and Gravity forces respectively.
Using (10) and (21), we obtain the dynamic model:

τ =
[
IN GT

] [Γa

Γp

]
(23)

G is defined by (11) and IN is the identity matrix of
dimension N , where N is equal to the DOF of the system.
Substituting the general expression for the tree dynamic



model given by (22) into (21), the closed loop dynamic
model is obtained as:

τ =
[
IN GT

]
Atr

[
q̈a

q̈p

]
+
[
IN GT

]
Htr (24)

4.2 Dynamic Model with Redundant Actuators

When the number of actuated joints is greater than four,
the inverse dynamic model will be given by:

τra =

(
∂qa

∂qra

)T

τ (25)

where τra is the torque vectors composed of all actuated
joints. qra is defined as:

where qr is the vector of redundant actuated joints. Thus,
τra can be obtained as:

qra =

[
qa

qr

]
(26)

τra =

[
IN

(
∂qr

∂qa

) ]+
τ (27)

4.3 Calculation of the Direct Dynamic Model

The direct dynamic model (DDM) calculates the indepen-
dant joint accelerations q̈a from the motor torques τ . It
can be obtained after expressing q̈p in terms of q̈a as shown
in (13), then substituting the result into (24).

5. CONTROL AND SIMULATION

5.1 Kinematic controller

A kinematic controller obtains the joint velocities that
realize a desired task frame velocity. One implementation
uses (17) to obtain the actuated joint velocities for a cer-
tain task velocity. Then from (8) the remaining velocities,
which satisfy the closed loop constraints, can be resolved.
Instead of this two step process, by using the cooperative
task space as defined by Chiacchio et al. (1996), the task
velocities and constraints can be embedded into one equa-
tion. This compact representation is applied for the first of
our control schemes. Twelve variables are fully defined, six
controlling the object location in space and a further six
controlling the relative location between the end effectors,
denoted here as the task and relative variables respectively.
The direct kinematic model that relates the joint velocities
to the end effector velocities is recalled here:[

Vtsk

Vrel

]
=

[
Jtsk

Jrel

] [
q̇r

q̇l

]
= Jext

[
q̇r

q̇l

]
(28)

where

Vtsk =

[
vtsk

ωtsk

]
, Vrel =

[
vrel

ωrel

]
(29)

Jtsk =
1

2

[
0J11

0J10

]
Jrel =

[
−0J11

0J10

]
(30)

Jext =

[
Jtsk

Jrel

]
(31)

5.2 Kinematic Control with Minimum representation

Minimum representation is used when the location of the
end effector does not need to be not fully defined, see
Dombre (1981). The degree of redundancy is exploited to
improve the performance of the robot with regard to some
optimization criteria. Since the mobility of the system is
4, the maximum dimension of the task coordinates is 4,
dim(Vtsk) ≤ 4. Therefore the task is defined as transport-
ing a common object from one position to another meaning
some variables do not need to be assigned. This leads to a
minimum representation of the task variables denoted as ḣ
while fully controlling all the relative variables. The mini-
mum representation is implemented by pre-multiplying the
Jacobian matrix of equation (31) by a selection matrix H:[

ḣ
Vrel

]
= H Jext

[
q̇r

q̇l

]
(32)

The inverse kinematic control law with optimization func-
tion Z is defined as:[

q̇r

q̇l

]
= (H Jext)

+

[
ḣ
Vrel

]
+ PZ (33)

with Vrel = 0 ensures the validation of the loop constraint.
P is the projection into the null space of HJext defined as:

P =
(
In − (H Jext)

+
(H Jext)

)
(34)

The minimum representation of task is implemented with
different degrees of redundancy, by selecting an appropri-
ate H matrix.

Point on plane A point on the object is moved to a
plane by a series of elementary motions denoted as ḣ
along the normal to that plane. The task is defined by
one direction whereas the relative variables contain six
coordinates. Thus in total seven variables are controlled,
maximizing the degrees of redundancy, while maintaining
loop closure. The normal to the plane is used to project
the velocity of the object to that directing towards the
plane. The motion is uncontrolled in five directions but the
normal projection guarantees that the point on the object
will reach the plane. The orientation of the plane can
be changed through the trajectory. The total kinematic
equation is defined as:[

ḣ
Vrel

]
= H1Jext

[
q̇r

q̇l

]
(35)

H1 =

[
uT 01×9

06 I6

]
(36)

u is the unit vector along the normal to the desired plane,
for example to attain a horizontal plane:

uT = [0 0 1 ] (37)

Point on Point A point on the object is moved to a
point in space by a series of elementary motions with
an arbitrary orientation. Three degrees of freedom of the
object are controlled. Equation (32) is modified as follows:[

vtsk

Vrel

]
= H2Jext

[
q̇r

q̇l

]
(38)

H2 =

[
I3 03×9

06 I6

]
(39)
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Fig. 3. Cooperative Control with Minimum Representation

The redundancy created by the minimum representation is
employed to maximize the distance from the joint limits,
utilizing the workspace as much as possible. The figures
from Fig. 4 to 8 compare the joint values of the right arm,
during a point to point trajectory. Joint limit motion is
the solution when the joint limit optimization criterion is
applied. Pseudo is the solution using the pseudoinverse
solution.

Fig. 4. Effect of joint limit optimization on joint q1

Fig. 5. Effect of joint limit optimization on joint q2

5.3 6 DOF Control of Object

The system described in table 1 is modified to include
two additional passive revolute joints, the new M-DH
parameters are given in table 2. These joints represent
the object grasp conditions as shown in Fig.9 where the
passive joint is denoted as q11 (q12 of the second chain). It

Fig. 6. Effect of joint limit optimization on joint q3

Fig. 7. Effect of joint limit optimization on joint q4

Fig. 8. Effect of joint limit optimization on joint q5

is assumed that the object grasp constrains five degrees
of freedom but allows one degree of rotation about an
axis that passes through the two contact points. By the
addition of these passive joints the object gains 2-DOF.
Thus qa becomes a vector of six components. In contrast
to Section 5.2, arbitrary forces can no longer be applied
to the object since the chain contains passive joints. The
parameters of frame 13 are defined by the grasp. The
procedure defined in section 2 is carried out to find these
parameters θ12 and θ11 represent the passive rotation of
the aforementioned grasp condition.

Control By modeling the robot as a closed loop kine-
matic chain, the entire system can be controlled as one



Fig. 9. Nao with passive joint

Table 2. MDH Parameters with passive grasp

j a(j) σ(j) γ(j) b d α θ r

1 0 0 0 b1 0 −π
2

θ1 -r1
2 1 0 0 0 0 π

2
θ2 0

3 2 0 0 0 -d3
π
2

θ3 r3
4 3 0 0 0 0 −π

2
θ4 0

5 4 0 0 0 0 π
2

θ5 r5
6 0 0 0 b1 0 −π

2
θ6 r1

7 6 0 0 0 0 π
2

θ7 0

8 7 0 0 0 d3
π
2

θ8 r3
9 8 0 0 0 0 −π

2
θ9 0

10 9 0 0 0 0 π
2

θ10 r5
11 5 0 0 0 d11 0 θ11 r11
12 6 0 0 0 d12 0 θ12 r12
13 11 2 γ13 b13 d13 α13 θ13 r13

dynamic entity. Fig. 10 illustrates a PID controller in task
space, where K represents appropriate gain matrices.

+

+
+

+

+

-

-

K

K

K

1

2

3

Xd

X

Vd

V

τ = JTaF DDM

DKM

DGM

Fig. 10. PID Cooperative Control in Task Space

6. CONCLUSIONS

This work has presented a study of the two arms of
the NAO robot when engaged in a cooperative task.
By using cooperative task space formulation, an inverse
kinematic controller with minimum representation of task
is implemented. The minimum representation allows loop
closure and also the creation a degree of redundancy. This

redundancy is then employed to avoid the violation of joint
limits. Secondly a task space PID is used to demonstrate
the feasibility of the virtual passive joint. By including this
passive joint two of the redundant actuators can be used
to control the object directions in space.
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